Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 758
Filtrar
1.
Turk J Pharm Sci ; 21(4): 348-354, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39224925

RESUMO

Objectives: The aim of this study was to prepare a sustained-delivery mucoadhesive-thermosensitive formulation containing poloxamer 338 (P338), poloxamer 188 (P188), and mucoadhesive agents, such as chitosan (CHT) and carboxymethylcellulose (CMC), to increase the ophthalmic bioavailability of timolol maleate (TM). Materials and Methods: Gels were prepared by mixing different amounts of P338, P188, and a mucoadhesive agent in cold isotonic water using a magnetic stirrer. The sol-gel gelation time of the gels was determined using the test tube inversion method. Viscosity measurements and analysis of the mechanical properties of the gel formulations were performed. In vitro release using dialysis membranes and ex vivo permeation studies using fresh-warmed cow eyes were performed. Results: The gelation times of formulations containing 20:2.5 (P338:P188) and 0.1% CMC and formulations containing 20:2.5 (P338:P188) and 0.1% CHT were 35 s and 26.67 s, respectively. An optimally selected CHT mucoadhesive-thermosensitive in situ gelling system can successfully control the release of moderately hydrophilic drugs, such as TM. In the viscosity study, both formulations showed Newtonian fluid, and the CHT gel's viscosity was found to be higher. The CHT gel showed better mechanical properties than the CMC gel. The amount of TM penetrating the cow cornea after 24 hours was 73.38%, 71.80%, 67.25%, and 60.55% from the CHT gel, CMC gel, TM solution, and commercial preparation, respectively. Conclusion: The improved mucoadhesive-thermosensitive in situ gelling system successfully controlled the release of TM. The significantly lower drainage of TM into the circulation compared with eye drops is an advantage in treating glaucoma, and the use of mucoadhesive agents increases drug penetration.

2.
Daru ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225953

RESUMO

BACKGROUND: Glatiramer acetate (GA), a commonly used treatment for multiple sclerosis (MS), requires long-term frequent injections to ensure its effectiveness. This often leads to adverse effects, patient noncompliance, and economic inefficiency. OBJECTIVES: In this study, poloxamer, as a thermosensitive polymer modified by chitosan (CS) and hyaluronic acid (HA), was employed to prepare an in situ forming prolonged release formulation of GA to overcome the problems derived from frequent repeated injections and to enhance the patient compliance. METHODS: The sol-gel formulation was produced through a cold method and optimized using design of experiments. The final product was characterized in terms of gelation time (GT), rheological behaviors, morphological properties, assay, and drug release kinetics. RESULTS: The in vitro release rate of GA during the first 24 h was quite rapid, but then it continued at a slower rate of 0.05 mg ml-1h-1. The in vivo analysis after the subcutaneous injections showed lower levels of IL-5, IL-13, and uric acid (UA) in mice treated with the gel formulation compared with those receiving free GA in the first few days. However, after 10 days, significantly higher concentrations were detected, which continued to increase slowly. CONCLUSION: It can be concluded that the designed thermosensitive sol-gel formula is capable of extending the effectiveness of GA and can be considered as a promising sustained release formulation for the treatment of MS.

3.
Polymers (Basel) ; 16(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39125174

RESUMO

We present the development and characterization of a nasal drug delivery system comprised of a thermosensitive mucoadhesive hydrogel based on a mixture of the polymers Poloxamer 407, Poloxamer 188 and Hydroxypropyl-methylcellulose, and the psychedelic drug 5-methoxy-N,-N-dimethyltryptamine. The development relied on a 3 × 3 Box-Behnken experimental design, focusing on optimizing gelification temperature, viscosity and mucoadhesion. The primary objective of this work was to tailor the formulation for efficient nasal drug delivery. This would increase contact time between the hydrogel and the mucosa while preserving normal ciliary functioning. Following optimization, the final formulation underwent characterization through an examination of the in vitro drug release profile via dialysis under sink conditions. Additionally, homogeneity of its composition was assessed using Raman Confocal Spectroscopy. The results demonstrate complete mixing of drug and polymers within the hydrogel matrix. Furthermore, the formulation exhibits sustained release profile, with 73.76% of the drug being delivered after 5 h in vitro. This will enable future studies to assess the possibility of using this formulation to treat certain mental disorders. We have successfully developed a promising thermosensitive and mucoadhesive hydrogel with a gelling temperature of around 32 °C, a viscosity close to 100 mPas and a mucoadhesion of nearly 4.20 N·m.

4.
Macromol Biosci ; : e2400196, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177156

RESUMO

Electrospinning is a technique used to create nano/micro-fibrous materials from various polymers for biomedical uses. Polymers like polycaprolactone (PCL) are commonly used, but their hydrophobic properties can limit their applications. To enhance hydrophilicity, nonionic surfactants such as sorbitane monooleate (Span80) and poloxamer (P188) can be added to the PCL electrospinning solution without altering its net charge density. These additions enable the successful production of PCL/P188 and PCL/Span80 fibrous substrates. In this study, P188 and Span80 are incorporated into the PCL solutions; they are successfully electrospun into PCL/P188 and PCL/Span80 substrates, respectively. PCL/P188 substrates show that until a specific P188 concentration, fiber and pore sizes are similar to PCL substrates. However, exceeding 0.30% P188 concentration enlarges fibers, impacting fiber uniformity at higher concentrations. Conversely, higher concentrations of Span80 result in thicker, less uniform fibers, indicating potential disruptions in the electrospinning process. Notably, both surfactants significantly improve substrate hydrophilicity, enhancing the adhesion and proliferation of fibroblasts, endothelial cells, and smooth muscle cells. P188, in particular, shows superior efficacy in promoting cell adhesion and growth at concentrations optimized for different cell types. Therefore, precise surfactant concentrations in the electrospinning solution can lead to the optimization of electrospun substrates for tissue engineering applications.

5.
Sci Rep ; 14(1): 19516, 2024 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-39174603

RESUMO

The effect of chemotherapy for anti-glioblastoma is limited due to insufficient drug delivery across the blood-brain-barrier. Poloxamer 188-coated nanoparticles can enhance the delivery of nanoparticles across the blood-brain-barrier. This study presents the design, preparation, and evaluation of a combination of PLGA nanoparticles (PLGA NPs) loaded with methotrexate (P-MTX NPs) and PLGA nanoparticles loaded with paclitaxel (P-PTX NPs), both of which were surface-modified with poloxamer188. Cranial tumors were induced by implanting C6 cells in a rat model and MRI demonstrated that the tumors were indistinguishable in the two rats with P-MTX NPs + P-PTX NPs treated groups. Brain PET scans exhibited a decreased brain-to-background ratio which could be attributed to the diminished metabolic tumor volume. The expression of Ki-67 as a poor prognosis factor, was significantly lower in P-MTX NPs + P-PTX NPs compared to the control. Furthermore, the biodistribution of PLGA NPs was determined by carbon quantum dots loaded into PLGA NPs (P-CQD NPs), and quantitative analysis of ex-vivo imaging of the dissected organs demonstrated that 17.2 ± 0.6% of the NPs were concentrated in the brain after 48 h. The findings highlight the efficacy of combination nanochemotherapy in glioblastoma treatment, indicating the need for further preclinical studies.


Assuntos
Barreira Hematoencefálica , Neoplasias Encefálicas , Glioblastoma , Metotrexato , Nanopartículas , Poloxâmero , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Animais , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioblastoma/metabolismo , Glioblastoma/diagnóstico por imagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Nanopartículas/química , Ratos , Poloxâmero/química , Metotrexato/química , Metotrexato/administração & dosagem , Metotrexato/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Paclitaxel/administração & dosagem , Paclitaxel/farmacologia , Paclitaxel/química , Paclitaxel/farmacocinética , Paclitaxel/uso terapêutico , Distribuição Tecidual , Portadores de Fármacos/química , Masculino , Sistemas de Liberação de Medicamentos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Humanos
6.
Materials (Basel) ; 17(16)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39203102

RESUMO

Poor water solubility of drugs is a limiting factor for their bioavailability and pharmacological activity. Many approaches are known to improve drug solubility, and among them, the physical method, solid dispersions (SDs), is applied. SDs are physical mixtures of a drug and a carrier, sometimes with the addition of a surfactant, which can be obtained by milling, cryomilling, spray-drying, or lyophilization processes. In this study, solid dispersions with etodolac (ETD-SDs) were prepared by the milling method using different carriers, such as hypromellose, polyvinylpyrrolidone, copovidone, urea, and mannitol. Solubility studies, dissolution tests, morphological assessment, thermal analysis, and FTIR imaging were applied to evaluate the SD properties. It was shown that the ball-milling process can be applied to obtain SDs with ETD. All designed ETD-SDs were characterized by higher water solubility and a faster dissolution rate compared to unprocessed ETD. SDs with amorphous carriers (HPMC, PVP, and PVP/VA) provided greater ETD solubility than dispersions with crystalline features (urea and mannitol). FTIR spectra confirmed the compatibility of ETD with tested carriers.

7.
Biomimetics (Basel) ; 9(8)2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39194462

RESUMO

Skin is the largest protective tissue of the body and is at risk of damage. Hence, the design and development of wound dressing materials is key for tissue repair and regeneration. Although silk fibroin is a known biopolymer in tissue engineering, its degradation rate is not correlated with wound closure rate. To address this disadvantage, we mimicked the hierarchical structure of skin and also provided antibacterial properties; a hydrogel with globular structure consisting of silk fibroin, pluronic F127, and curcumin was developed. In this regard, the effect of pluronic and curcumin on the structural and mechanical properties of the hydrogel was studied. The results showed that curcumin affected the particle size, crystallinity, and ultimate elongation of the hydrogels. In vitro assays confirmed that the hydrogel containing curcumin is not cytotoxic while the diffused curcumin and pluronic provided a considerable bactericidal property against Methicillin-resistant Staphylococcus aureus. Interestingly, presence of pluronic caused more than a 99% reduction in planktonic and adherent bacteria in the curcumin-free hydrogel groups. Moreover, curcumin improved this number further and inhibited bacteria adhesion to prevent biofilm formation. Overall, the developed hydrogel showed the potential to be used for skin tissue regeneration.

8.
Gels ; 10(8)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39195050

RESUMO

This study aims to highlight the importance of choosing the appropriate co-polymer or co-polymer mixed combinations in order to design value-added nasal dosage forms. Local therapy of upper respiratory tract-related infections, such as nasal rhinosinusitis is of paramount importance, thus advanced local therapeutic options are required. Dexamethasone was encapsulated into three different polymeric micelle formulations: Soluplus or TPGS-only and their mixed combinations. Dynamic light scattering measurements proved that the particles have a micelle size less than 100 nm in monodisperse distribution, with high encapsulation efficiency above 80% and an at least 7-fold water solubility increase. Tobramycin, as an antimicrobial agent, was co-formulated into the in situ gelling systems which were optimized based on gelation time and gelation temperature. The sol-gel transition takes place between 32-35 °C, which is optimally below the temperature of the nasal cavity in a quick manner below 5 min, a suitable strategic criterion against the mucociliary clearance. In vitro drug release and permeability studies confirmed a rapid kinetics in the case of the encapsulated dexamethasone accompanied with a sustained release of tobramycin, as the hydrophilic drug.

9.
AAPS PharmSciTech ; 25(7): 199, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39198340

RESUMO

Fenbendazole is an antiparasitic drug widely used in veterinary medicine to treat parasitic infections caused in animals like cattle, horses, sheep, and dogs. Recently, it has been repositioned as a potential alternative for cancer treatment. However, it is a highly hydrophobic molecule (0.9 ug/mL), which can compromise its dissolution rate and absorption. Thus, this work aimed to apply a nanotechnological approach to improve drug solubility and dissolution performance. Fenbendazole nanoparticles stabilized by different poloxamers were obtained by lyophilization without cryoprotectants. The behavior of the drug in the solid state was analyzed by X-ray diffractometry, differential scanning calorimetry, and infrared spectroscopy. The nanosystems were also evaluated for solubility and dissolution rate. A long-term stability evaluation was performed for three years at room temperature. The yields of the lyophilization ranged between 75 and 81% for each lot. The nanoparticles showed a submicron size (< 340 nm) and a low polydispersity depending on the stabilizer. The physicochemical properties of the prepared systems indicated a remarkable amorphization of the drug, which influenced its solubility and dissolution performance. The drug dissolution from both the fresh and aged nanosystems was significantly higher than that of the raw drug. In particular, nanoparticles prepared with poloxamer 407 showed no significant modifications in their particle size in three years of storage. Physical stability studies indicated that the obtained systems prepared with P188, P237, and P407 suffered certain recrystallization during long storage at 25 °C. These findings confirm that selected poloxamers exhibited an important effect in formulating fenbendazole nanosystems with improved dissolution.


Assuntos
Estabilidade de Medicamentos , Fenbendazol , Liofilização , Nanopartículas , Solubilidade , Nanopartículas/química , Fenbendazol/química , Liofilização/métodos , Varredura Diferencial de Calorimetria/métodos , Armazenamento de Medicamentos , Tamanho da Partícula , Difração de Raios X/métodos , Liberação Controlada de Fármacos , Química Farmacêutica/métodos , Poloxâmero/química , Crioprotetores/química
10.
Int J Pharm ; 663: 124559, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39122197

RESUMO

The objective of this study was to evaluate the potential of novel poloxamer thermosensitive hydrogels (PTHs) formulations for prolonged release of iron dextran particles (IDP) for intramuscular (IM) injection. The thermosensitive behaviour helps to avoid hepcidin overexpression and toxicity by releasing IDPs without iron accumulation in injection or deposit sites. We hypothesized that novel PTH formulation would prolong iron liberation compared to the commercial iron dextran formulation (FEDEX). PTHs loaded with IDPs were developed with increasing iron content (0.1, 0.2 and 0.4 g of iron/g of poloxamer) and characterized as a prolonged release IM iron supplement. The PTHs had a biocompatible pH for IM injection (6.4) and thermosensitive viscosity, increasing from ∼50 (4 °C) to ∼3000 mPa.s (37 °C). PTHs were successfully injected in the sol state (at 4 °C) into pork meat at 37 °C, transitioning to the gel state in situ (in ∼60-190 s). Structural characterization indicated that there were no PTH-IDP chemical interactions, suggesting that IDP entrapment in PTHs was physical upon gelation. In vitro release studies revealed that iron release from PTH (0.4 g of iron/g of poloxamer) reached 100 % by day 10, whereas 100 % release from FEDEX was complete in 4 h. This novel iron PTH formulation achieved a 60 times long iron release compared to the commercial product. In conclusion, the reported strategy shows adequate IDP entrapment/release properties for prolonged iron release following ex vivo IM injection using biocompatible materials. These results provide a strong basis for future preclinical evaluation to elucidate aspects such as drug release, local irritation, biocompatibility, and efficacy.


Assuntos
Preparações de Ação Retardada , Hidrogéis , Complexo Ferro-Dextran , Poloxâmero , Temperatura , Poloxâmero/química , Hidrogéis/química , Hidrogéis/administração & dosagem , Injeções Intramusculares , Animais , Complexo Ferro-Dextran/administração & dosagem , Suínos , Ferro/química , Ferro/administração & dosagem , Liberação Controlada de Fármacos , Viscosidade , Suplementos Nutricionais , Concentração de Íons de Hidrogênio
11.
Pharmaceutics ; 16(8)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39204356

RESUMO

Delayed wound healing increases the wound's vulnerability to possible infections, which may have lethal outcomes. The treatments available can be effective, but the urgency is not fully encompassed. The drug repositioning strategy proposes effective alternatives for enhancing medical therapies for chronic diseases. Likewise, applying wound dressings as biodegradable membranes is extremely attractive due to their ease of application, therapeutic effectiveness, and feasibility in industrial manufacturing. This article aims to demonstrate the pleiotropic effects during insulin repositioning in wound closure by employing a biopolymeric membrane-type formulation with insulin. We prepared biopolymeric membranes with sodium alginate cross-linked with calcium chloride, supported in a mixture of xanthan gum and guar gum, and plasticized with glycerol and sorbitol. Human insulin was combined with poloxamer 188 as a protein stabilizing agent. Our investigation encompassed physicochemical and mechanical characterization, antioxidant and biological activity through antibacterial tests, cell viability assessments, and scratch assays as an in vitro and in vivo wound model. We demonstrated that our biopolymeric insulin membranes exhibited adequate manipulation and suitable mechanical resistance, transparency, high swelling capability (1100%), and 30% antioxidant activity. Furthermore, they exhibited antibacterial activity (growth inhibition of S. aureus at 85% and P. aeruginosa at 75%, respectively), and insulin promoted wound closure in vitro with a 5.5-fold increase and 72% closure at 24 h. Also, insulin promoted in vivo wound closure with a 3.2-fold increase and 92% closure at 10 days compared with the groups without insulin, and this is the first report that demonstrates this therapeutic effect with two administrations of 0.7 IU. In conclusion, we developed a multifunctional insulin-loaded biopolymeric membrane in this study, with the main activity derived from insulin's role in wound closure and antioxidant activity, augmented by the antimicrobial effect attributed to the polymer poloxamer 188. The synergistic combination of excipients enhances its usefulness and highlights our innovation as a promising material in wound healing materials.

12.
Pharmaceutics ; 16(8)2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39204400

RESUMO

The aqueous solution of binary mixtures of amphiphilic copolymers is a potential platform for fabricating mixed polymeric micelles for pharmaceutical applications, particularly in developing drug delivery depots for a poorly water-soluble compound. This study fabricated and investigated binary mixtures of poloxamer 403 (P403) and poloxamer 407 (P407) at varying P403:P407 molar ratios to develop a vehicle for the poorly water-soluble compound, using ibuprofen as a model drug. The cooperative formation of mixed micelles was obtained, and the solubility of ibuprofen in the binary mixtures was enhanced compared to the solubility in pure water and an aqueous single P407 solution. The binary mixture with the P403:P407 molar ratio of 0.75:0.25 at a total polymer concentration of 19% w/v exhibited the temperature dependence of micellization and sol-to-gel characteristics of the thermosensitive mixed micellar gels. It possessed suitable micellization and gelation characteristics for in situ gelling systems. The release of ibuprofen from the thermosensitive mixed micellar depots was sustained through a diffusion-controlled mechanism. The findings can aid in formulating binary mixtures of P403 and P407 to achieve the desired properties of mixed micelles and micellar gels.

13.
Biomater Adv ; 164: 213966, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39094443

RESUMO

Osteomyelitis is an inflammation of bone tissue usually caused by pyogenic bacteria. The most recurrent clinical approach consists of bone debridement followed by parenteral administration of antibiotics. However, systemic antibiotic treatment has limitations regarding absorption rate and bioavailability over time. The main challenge of osteomyelitis treatment consists of coupling the persistent infection treatment with the regeneration of the bone debrided. In this work, we developed an injectable drug delivery system based on poloxamer 407 hydrogel containing undoped Mg, Zn-doped tricalcium phosphate (ß-TCP), and teicoplanin, a broad-spectrum antibiotic. We evaluated how the addition of teicoplanin and ß-TCP affected the micellization, gelation, particle size, and surface charge of the hydrogel. Later, we studied the hydrogel degradation and drug delivery kinetics. Finally, the bactericidal, biocompatibility, and osteogenic properties were evaluated through in vitro studies and confirmed by in vivo Wistar rat models. Teicoplanin was found to be encapsulated in the corona portions of the hydrogel micelles, yielding a bigger hydrodynamics radius. The encapsulated teicoplanin showed a sustained release over the evaluated period, enough to trigger antibacterial properties against Gram-positive bacteria. Besides, the formulations were biocompatible and showed bone healing ability and osteogenic properties. Finally, in vivo studies confirmed that the proposed locally injected formulations yielded osteomyelitis treatment with superior outcomes than parenteral administration while promoting bone regeneration. In conclusion, the presented formulations are promising drug delivery systems for osteomyelitis treatment and deserve further technological improvements.


Assuntos
Antibacterianos , Fosfatos de Cálcio , Hidrogéis , Osteogênese , Osteomielite , Ratos Wistar , Teicoplanina , Osteomielite/tratamento farmacológico , Osteomielite/microbiologia , Animais , Fosfatos de Cálcio/química , Teicoplanina/administração & dosagem , Teicoplanina/farmacologia , Teicoplanina/química , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Antibacterianos/química , Ratos , Hidrogéis/química , Hidrogéis/administração & dosagem , Osteogênese/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Humanos , Staphylococcus aureus/efeitos dos fármacos , Poloxâmero/química
14.
Heliyon ; 10(14): e34636, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39130422

RESUMO

Amorphous solid dispersion (ASD) has emerged to be an outstanding strategy among multiple options available for improving solubility and consequently biological activity. Interestingly several binary SD systems continue to exhibit insufficient solubility over time. Therefore, the goal of current research was to design ternary amorphous solid dispersions (ASDs) of hydrophobic model drug curcumin (CUR) to enhance the solubility and dissolution rate in turn, presenting enhanced anti-bacterial, antioxidant and anti-inflammatory activity. For this purpose several ternary solid dispersions (TSDs) consisting of Soluplus®, Syloid® XDP 3150, Syloid® 244 and Poloxamer® 188 in combination with HPMC E5 (binary carrier) were prepared using solvent evaporation method. Both solubility and dissolution testing of prepared solid dispersion were performed to determine the increase in solubility and dissolution. Solid state investigation was carried out utilizing infrared spectroscopy, also known as Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM),Differential scanning calorimetry (DSC) and X-ray diffraction (XRD).Optimized formulations were also tested for their biological effectiveness including anti-bacterial, anti-oxidant and anti-inflammatory activity. Amid all Ternary formulations F3 entailing 20 % soluplus® remarkably improved the solubility (186 µg/ml ± 3.95) and consequently dissolution (91 % ± 3.89 %) of curcumin by 3100 and 9 fold respectively. These finding were also supported by FTIR, SEM, XRD and DSC. In-vitro antibacterial investigation of F3 also demonstrated significant improvement in antibacterial activity against both gram positive (Staphylococcus aureus, Bacillus cereus) and gram negative (Pseudomonas aeruginosa, Escherichia coli) bacteria. Among all the tested strains Staphylococcus aureus was found to be most susceptible with a zone of inhibition of 24 mm ± 2.87. Antioxidant activity of F3 was also notably enhanced (93 % ± 5.30) in contrast to CUR (69 % ± 4.79). In vitro anti-inflammatory assessment also exhibited that F3 markedly protected BSA (bovine serum albumin) from denaturation with percent BSA inhibition of 80 % ± 3.16 in comparison to CUR (49 % ± 2.91). Hence, F3 could be an effective solid dispersion system for the delivery of model hydrophobic drug curcumin.

15.
Polymers (Basel) ; 16(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000671

RESUMO

The design and development of pharmaceutical products require specific knowledge, time, and investment. Response surface methodology (RSM) is a widely used technique in the design of experiments (DoE) to optimize various processes and products. The aim of this study was to model and produce experimental emulgels containing 1% ciclopirox olamine and to evaluate their physical, rheological, and mechanical properties and their ability to release ciclopirox olamine. The objective was to optimize the composition of the experimental emulgel containing 1% ciclopirox olamine by applying a central composite design based on selected criteria. The surfactant (polysorbate 80) had the greatest influence on the physical, rheological, and mechanical properties of the emulgels, as well as on the release of ciclopirox olamine from these systems. During the optimization process, an emulgel of optimal composition was generated containing 38.27% mineral oil, 6.56% polysorbate 80, and 55.17% hydrogel containing 1% ciclopirox olamine, meeting specified criteria (dependent variables) including the maximum flux of ciclopirox olamine, the minimum sol-gel transition temperature (Tsol/gel), and the minimum particle size of the oil phase. The oil phase particle size (D50) of this emulgel was determined to be 0.337 µm, the system Tsol/gel was 9.1 °C, and the flux of ciclopirox olamine from this gel matrix was calculated to be 1.44 mg/cm2. This emulgel of optimal composition could be used to treat fungal skin diseases.

16.
J Plast Reconstr Aesthet Surg ; 95: 357-367, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38971123

RESUMO

BACKGROUND: Autologous fat transplantation is limited by the uncertainty of graft retention, impeding its application. Among the current strategies for processing lipoaspirates, high-density fat (HDF) is recommended owing to the enrichment of stem cells and washing before cotton concentration for simplicity of operation. Poloxamer 188 (P188) washing has been shown to repair the membranes of damaged cells. This study aimed to investigate the effect of P188-washing on fat graft survival and identify the best technique for processing lipoaspirates. METHODS: Lipoaspirates were prepared using centrifugation to obtain HDF, which was then washed with saline or P188 followed by cotton concentration. Tissue integrity, adipocytic activity, and viability of stromal vascular fraction (SVF) in the samples from the 3 groups were assessed. Samples were sequenced in vitro using high-throughput RNA-seq, and differentially expressed genes were validated using qPCR and western blotting (WB). After transplantation under the dorsum of nude mice for 8 weeks, the grafts were extracted and examined for residual volume, histologic characteristics, and vascularization. RESULTS: The HDF and P188 groups showed a higher survival rate of SVF, more Ki67-positive cells, intact tissue structure, and lesser fibrosis than the saline group. There were no significant differences in the density of SVF and residual volume of grafts. HDF showed significantly improved vascularization during 8 weeks. Through RNA-seq and bioinformatic analysis, notable changes in several related genes after transplantation were observed. CONCLUSIONS: P188 treatment can prevent cells from apoptosis and preserve tissue viability, thereby improving graft quality. HDF contains large amounts of SVF and can be regarded as an excellent grafting material.


Assuntos
Tecido Adiposo , Sobrevivência de Enxerto , Lipectomia , Camundongos Nus , Poloxâmero , Animais , Poloxâmero/farmacologia , Camundongos , Tecido Adiposo/transplante , Lipectomia/métodos , Humanos , Feminino , Coleta de Tecidos e Órgãos/métodos , Transplante Autólogo
17.
Gels ; 10(7)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39057470

RESUMO

The study aimed to perform a comprehensive in vitro and in vivo evaluation of a newly developed, patent-pending, powder-to-hydrogel, film-forming polymer complex base, which possesses tissue-protective and microbiome-supportive properties, and to compare its characteristics with poloxamer 407. The study used a combination of in vitro assays, including tissue viability and cell migration, and in vivo wound healing evaluations in male diabetic mice. Microbiome dynamics at wound sites were also analyzed. The in vitro assays demonstrated that the polymer complex base was non-cytotoxic and that it enhanced cell migration over poloxamer 407. In vivo, the polymer complex base demonstrated superior wound healing capabilities, particularly in combination with misoprostol and phenytoin, as evidenced by the reduced wound area and inflammation scores. Microbiome analysis revealed favorable shifts in bacterial populations associated with the polymer complex base-treated wounds. The polymer complex base demonstrates clinical significance in wound care, potentially offering improved healing, safety and microbiome support. Its transformative properties and efficacy in drug delivery make it a promising candidate for advanced wound care applications, particularly in chronic wound management.

18.
Gels ; 10(7)2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39057483

RESUMO

Sulforaphane (SFN) has shown potential as an antioxidant and anti-inflammatory agent. To improve its druggability, we developed new analgesic formulations with sulforaphane-loaded hyaluronic acid (HA)-poloxamer (PL) hydrogel. This study evaluated the pre-clinical safety and effectiveness of these formulations. Effectiveness was tested on Wistar rats divided into groups (n = 15) receiving (IM, 10 mg/kg) SFN formulations or control groups (without SFN). This study used a hind paw incision postoperative pain model to evaluate mechanical hypersensitivity with von Frey filaments. TNF-α, IL-1ß, substance P, and CGRP levels verified anti-inflammatory activity in the hind paw tissue. Histopathology of tissues surrounding the injection site was assessed after 2 and 7 days post-treatment. To corroborate drug safety, cell viability of 3T3 and RAW 264.7 cultures was assessed. Additionally, RAW 264.7 cultures primed with carrageenan evaluated nitric oxide (NO) levels. All animals exhibited post-incisional hypersensitivity, and F2 (PL 407/338 (18/2%) + HA 1% + SFN 0.1%) showed a longer analgesic effect (p < 0.05). F2 reduced TNF-α, IL-1ß, and CGRP levels (p < 0.05). Histopathological evaluation showed mild to moderate inflammatory reactions after the formulations' injections. F2 produced no significant difference in cell viability (p > 0.05) but reduced NO production (p < 0.05). Thus, our results highlight the biocompatibility and effectiveness of F2.

19.
J Pharm Sci ; 113(9): 2688-2698, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39009347

RESUMO

The hydrolysis of polysorbate surfactants in large molecule drug product formulations caused by residual host cell proteins presents numerous stability concerns for pharmaceuticals. The fatty acids (FA) released by polysorbate hydrolysis can nucleate into particulates or challenge the conformational stability of the proteinaceous active pharmaceutical ingredient (API). The loss of intact polysorbate may also leave the Drug Product (DP) vulnerable to interfacial stresses. Polysorbate 20 and 80 are available in several different quality grades (Multi-compendial, Super Refined, Pure Lauric Acid (PLA)/Pure Oleic Acid (POA)). All variations of polysorbate as well as three alternative surfactants: Brij L23, Brij O20 and Poloxamer 188 were compared for their ability to protect against air-water interfacial stresses as well as their risk for developing particulates when in the presence of lipoprotein lipase (LPL) (Pseudomonas). Results show a meaningful difference in the timing and morphology of FA particle formation depending on the type of polysorbate used. All grades of polysorbate, while susceptible to hydrolysis, still offered sufficient protection to interfacial stresses, even when hydrolyzed to concentrations as low as 0.005 % (w/v). Alternative surfactants that lack an ester bond were resistant to lipase degradation and showed good protection against shaking stress.


Assuntos
Ácidos Graxos , Polissorbatos , Tensoativos , Polissorbatos/química , Tensoativos/química , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Hidrólise , Esterases/metabolismo , Estabilidade de Medicamentos , Tamanho da Partícula , Ácidos Láuricos/química
20.
AAPS PharmSciTech ; 25(6): 151, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38954171

RESUMO

The intranasal route has demonstrated superior systemic bioavailability due to its extensive surface area, the porous nature of the endothelial membrane, substantial blood flow, and circumvention of first-pass metabolism. In traditional medicinal practices, Bacopa monnieri, also known as Brahmi, is known for its benefits in enhancing cognitive functions and potential effects in epilepsy. This study aimed to develop and optimize a thermosensitive in-situ nasal gel for delivering Bacoside A, the principal active compound extracted from Bacopa monnieri. The formulation incorporated Poloxamer 407 as a thermogelling agent and HPMC K4M as the Mucoadhesive polymer. A 32-factorial design approach was employed for Optimization. Among the formulations. F7 exhibited the most efficient Ex-vivo permeation through the nasal mucosa, achieving 94.69 ± 2.54% permeation, and underwent a sol-gel transition at approximately 30.48 °C. The study's factorial design revealed that gelling temperature and mucoadhesive strength were critical factors influencing performance. The potential of in-situ nasal Gel (Optimized Batch-F7) for the treatment of epilepsy was demonstrated in an in-vivo investigation using a PTZ-induced convulsion model. This formulation decreased both the occurrence and intensity of seizures. The optimized formulation F7 showcases significant promise as an effective nasal delivery system for Bacoside A, offering enhanced bioavailability and potentially increased efficacy in epilepsy treatment.


Assuntos
Administração Intranasal , Epilepsia , Géis , Mucosa Nasal , Triterpenos , Animais , Administração Intranasal/métodos , Epilepsia/tratamento farmacológico , Géis/química , Mucosa Nasal/metabolismo , Mucosa Nasal/efeitos dos fármacos , Masculino , Triterpenos/administração & dosagem , Triterpenos/farmacocinética , Triterpenos/farmacologia , Triterpenos/química , Temperatura , Saponinas/administração & dosagem , Saponinas/química , Saponinas/farmacologia , Saponinas/farmacocinética , Química Farmacêutica/métodos , Disponibilidade Biológica , Ratos , Poloxâmero/química , Anticonvulsivantes/administração & dosagem , Anticonvulsivantes/farmacocinética , Anticonvulsivantes/farmacologia , Anticonvulsivantes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA