Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 950064, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991458

RESUMO

Polyamines (PAs) play a critical role in growth and developmental processes and stress responses in plants. Polyamine oxidase (PAO) is a flavin adenine dinucleotide (FAD)-dependent enzyme that plays a major role in PA catabolism. Here, for the first time, PAO genes in maize were screened for the whole genome-wide and nine ZmPAO genes were identified in this study, named as ZmPAO1-9. Based on structural characteristics and a comparison of phylogenetic relationships of PAO gene families from seven representative species, all nine PAO proteins in maize were categorized into three distinct subfamilies. Further, chromosome location and schematic structure revealed an unevenly distribution on chromosomes and evolutionarily conserved structure features of ZmPAO genes in maize, respectively. Furthermore, transcriptome analysis demonstrated that ZmPAO genes showed differential expression patterns at diverse developmental stages of maize, suggesting that these genes may play functional developmental roles in multiple tissues. Further, through qRT-PCR validation, these genes were confirmed to be responsive to heat, drought and salinity stress treatments in three various tissues, indicating their potential roles in abiotic stress responses. Eventually, to verify the biological function of ZmPAO genes, the transgenic Arabidopsis plants overexpressing ZmPAO6 gene were constructed as a typical representative to explore functional roles in plants. The results demonstrated that overexpression of ZmPAO6 can confer enhanced heat tolerance through mediating polyamine catabolism in transgenic Arabidopsis, which might result in reduced H2O2 and MDA accumulation and alleviated chlorophyll degradation under heat stress treatment, indicating that ZmPAO6 may play a crucial role in enhancing heat tolerance of transgenic Arabidopsis through the involvement in various physiological processes. Further, the expression analysis of related genes of antioxidant enzymes including glutathione peroxidase (GPX) and ascorbate peroxidase (APX) demonstrated that ZmPAO6 can enhance heat resistance in transgenic Arabidopsis through modulating heat-induced H2O2 accumulation in polyamine catabolism. Taken together, our results are the first to report the ZmPAO6 gene response to heat stress in plants and will serve to present an important theoretical basis for further unraveling the function and regulatory mechanism of ZmPAO genes in growth, development and adaptation to abiotic stresses in maize.

2.
Plant Sci ; 292: 110372, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32005378

RESUMO

Polyamines (PAs) are small aliphatic amines with important regulatory activities in plants. Biotic stress results in changes in PA levels due to de novo synthesis and PA oxidation. In Arabidopsis thaliana five FAD-dependent polyamine oxidase enzymes (AtPAO1-5) participate in PA back-conversion and degradation. PAO activity generates H2O2, an important molecule involved in cell signaling, elongation, programmed cell death, and defense responses. In this work we analyzed the role of AtPAO genes in the Arabidopsis thaliana-Pseudomonas syringae pathosystem. AtPAO1 and AtPAO2 genes were transcriptionally up-regulated in infected plants. Atpao1-1 and Atpao2-1 single mutant lines displayed altered responses to Pseudomonas, and an increased susceptibility was found in the double mutant Atpao1-1 x Atpao2-1. These polyamine oxidases mutant lines showed disturbed contents of ROS (H2O2 and O2-) and altered activities of RBOH, CAT and SOD enzymes both in infected and control plants. In addition, changes in the expression levels of AtRBOHD, AtRBOHF, AtPRX33, and AtPRX34 genes were also noticed. Our data indicate an important role for polyamine oxidases in plant defense and ROS homeostasis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , NADPH Oxidases/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH2/genética , Pseudomonas syringae/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , NADPH Oxidases/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH2/metabolismo
3.
Plants (Basel) ; 8(9)2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31484414

RESUMO

The chaperones, heat shock proteins (HSPs), stabilize proteins to minimize proteotoxic stress, especially during heat stress (HS) and polyamine (PA) oxidases (PAOs) participate in the modulation of the cellular homeostasis of PAs and reactive oxygen species (ROS). An interesting interaction of HSP90s and PAOs was revealed in Arabidopsis thaliana by using the pLFY:HSP90RNAi line against the four AtHSP90 genes encoding cytosolic proteins, the T-DNA Athsp90-1 and Athsp90-4 insertional mutants, the Atpao3 mutant and pharmacological inhibitors of HSP90s and PAOs. Silencing of all cytosolic HSP90 genes resulted in several-fold higher levels of soluble spermidine (S-Spd), acetylated Spd (N8-acetyl-Spd) and acetylated spermine (N1-acetyl-Spm) in the transgenic Arabidopsis thaliana leaves. Heat shock induced increase of soluble-PAs (S-PAs) and soluble hydrolyzed-PAs (SH-PAs), especially of SH-Spm, and more importantly of acetylated Spd and Spm. The silencing of HSP90 genes or pharmacological inhibition of the HSP90 proteins by the specific inhibitor radicicol, under HS stimulatory conditions, resulted in a further increase of PA titers, N8-acetyl-Spd and N1-acetyl-Spm, and also stimulated the expression of PAO genes. The increased PA titers and PAO enzymatic activity resulted in a profound increase of PAO-derived hydrogen peroxide (H2O2) levels, which was terminated by the addition of the PAO-specific inhibitor guazatine. Interestingly, the loss-of-function Atpao3 mutant exhibited increased mRNA levels of selected AtHSP90 genes. Taken together, the results herein reveal a novel function of HSP90 and suggest that HSP90s and PAOs cross-talk to orchestrate PA acetylation, oxidation, and PA/H2O2 homeostasis.

4.
Front Plant Sci ; 10: 561, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31134113

RESUMO

Polyamine (PA) catabolic processes are performed by copper-containing amine oxidases (CuAOs) and flavin-containing PA oxidases (PAOs). So far, several CuAOs and PAOs have been identified in many plant species. These enzymes exhibit different subcellular localization, substrate specificity, and functional diversity. Since PAs are involved in numerous physiological processes, considerable efforts have been made to explore the functions of plant CuAOs and PAOs during the recent decades. The stress signal transduction pathways usually lead to increase of the intracellular PA levels, which are apoplastically secreted and oxidized by CuAOs and PAOs, with parallel production of hydrogen peroxide (H2O2). Depending on the levels of the generated H2O2, high or low, respectively, either programmed cell death (PCD) occurs or H2O2 is efficiently scavenged by enzymatic/nonenzymatic antioxidant factors that help plants coping with abiotic stress, recruiting different defense mechanisms, as compared to biotic stress. Amine and PA oxidases act further as PA back-converters in peroxisomes, also generating H2O2, possibly by activating Ca2+ permeable channels. Here, the new research data are discussed on the interconnection of PA catabolism with the derived H2O2, together with their signaling roles in developmental processes, such as fruit ripening, senescence, and biotic/abiotic stress reactions, in an effort to elucidate the mechanisms involved in crop adaptation/survival to adverse environmental conditions and to pathogenic infections.

5.
Methods Mol Biol ; 1694: 141-147, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29080164

RESUMO

Diamine and polyamine catabolism controls plant development, resistance to pathogens and stress responses. Diamine and polyamine oxidases control the catabolism of diamines and polyamines, respectively. Two major routes of di-/polyamine catabolism exist: the terminal and the interconverting. The in vitro activity of each route is assayed by the colorimetric or chemiluminescent determination of hydrogen peroxide produced by oxidation of di-/polyamine substrates. However, these assays fail to estimate activity of individual di-/polyamine oxidase isoenzymes. Herein, I describe an assay for the simultaneous in-gel determination of terminal and interconverting di-/polyamine oxidase isoenzyme activities.


Assuntos
Ensaios Enzimáticos , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Plantas/enzimologia , Espermidina/química , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Técnicas In Vitro , Extratos Vegetais/química , Poliamina Oxidase
7.
J Exp Bot ; 68(5): 997-1012, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28199662

RESUMO

In plants, the polyamines putrescine, spermidine, spermine (Spm), and thermospermine (Therm-Spm) participate in several physiological processes. In particular, Therm-Spm is involved in the control of xylem differentiation, having an auxin antagonizing effect. Polyamine oxidases (PAOs) are FAD-dependent enzymes involved in polyamine catabolism. In Arabidopsis, five PAOs are present, among which AtPAO5 catalyzes the back-conversion of Spm, Therm-Spm, and N1-acetyl-Spm to spermidine. In the present study, it is shown that two loss-of-function atpao5 mutants and a 35S::AtPAO5 Arabidopsis transgenic line present phenotypical differences from the wild-type plants with regard to stem and root elongation, differences that are accompanied by changes in polyamine levels and the number of xylem vessels. It is additionally shown that cytokinin treatment, which up-regulates AtPAO5 expression in roots, differentially affects protoxylem differentiation in 35S::AtPAO5, atpao5, and wild-type roots. Together with these findings, Therm-Spm biosynthetic genes, as well as auxin-, xylem-, and cytokinin-related genes (such as ACL5, SAMDC4, PIN1, PIN6, VND6, VND7, ATHB8, PHB, CNA, PXY, XTH3, XCP1, and AHP6) are shown to be differentially expressed in the various genotypes. These data suggest that AtPAO5, being involved in the control of Therm-Spm homeostasis, participates in the tightly controlled interplay between auxin and cytokinins that is necessary for proper xylem differentiation.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Diferenciação Celular , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH2/genética , Transdução de Sinais , Arabidopsis/citologia , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Oxirredutases atuantes sobre Doadores de Grupo CH-NH2/metabolismo , Xilema/citologia , Xilema/enzimologia , Xilema/genética
8.
Int J Biochem Cell Biol ; 79: 151-157, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27590852

RESUMO

We have shown recently that acrolein is strongly involved in cell damage during brain infarction and chronic renal failure. To study the mechanism of acrolein detoxification, we tried to isolate Neuro2a cells with reduced sensitivity to acrolein toxicity (Neuro2a-ATD cells). In one cell line, Neuro2a-ATD1, the level of glutathione (GSH) was increased. We recently isolated a second cell line, Neuro2a-ATD2, and found that acrolein-producing enzymes [polyamine oxidases (PAO); i.e. acetylpolyamine oxidase (AcPAO), and spermine oxidase (SMO)] are reduced in this cell line due to changes at the level of transcription. In the Neuro2a-ATD2 cells, the IC50 of acrolein increased from 4.2 to 6.8µM, and the levels of FosB and C/EBPß - transcription factors involved in the transcription of AcPAO and SMO genes - were reduced. Transfection of siRNAs for FosB and C/EBPß reduced the levels of AcPAO and SMO, respectively. In addition, the synthesis of FosB and AcPAO was also decreased by siRNA for C/EBPß, because C/EBPß is one of the transcription factors for the FosB gene. It was also found that transfection of siRNA for C/EBPß decreased SMO promoter activity in Neuro2a cells but not in ATD2 cells confirming that a decrease in C/EBPß is involved in the reduced SMO activity in Neuro2a-ATD2 cells. Furthermore, transfection of the cDNA for AcPAO or SMO into Neuro2a cells increased the toxicity of acrolein. These results suggest that acrolein is mainly produced from polyamines by PAO.


Assuntos
Acroleína/toxicidade , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Animais , Linhagem Celular Tumoral , DNA Complementar/genética , Camundongos , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Poliamina Oxidase
9.
Front Plant Sci ; 7: 1219, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27570530

RESUMO

Seed germination is a complicated biological process that requires regulated enzymatic and non-enzymatic reactions. The action of polyamine oxidase (PAO) produces hydrogen peroxide (H2O2), which promotes dicot seed germination. However, whether and, if so, how PAOs regulate monocot seed germination via H2O2 production is unclear. Herein, we report that the coleorhiza is the main physical barrier to radicle protrusion during germination of rice seed (a monocot seed) and that it does so in a manner similar to that of dicot seed micropylar endosperm. We found that H2O2 specifically and steadily accumulated in the coleorhizae and radicles of germinating rice seeds and was accompanied by increased PAO activity as the germination percentage increased. These physiological indexes were strongly decreased in number by guazatine, a PAO inhibitor. We also identified 11 PAO homologs (OsPAO1-11) in the rice genome, which could be classified into four subfamilies (I, IIa, IIb, and III). The OsPAO genes in subfamilies I, IIa, and IIb (OsPAO1-7) encode PAOs, whereas those in subfamily III (OsPAO8-11) encode histone lysine-specific demethylases. In silico-characterized expression profiles of OsPAO1-7 and those determined by qPCR revealed that OsPAO5 is markedly upregulated in imbibed seeds compared with dry seeds and that its transcript accumulated to a higher level in embryos than in the endosperm. Moreover, its transcriptional abundance increased gradually during seed germination in water and was inhibited by 5 mM guazatine. Taken together, these results suggest that PAO-generated H2O2 is involved in coleorhiza-limited rice seed germination and that OsPAO5 expression accounts for most PAO expression and activity during rice seed germination. These findings should facilitate further study of PAOs and provide valuable information for functional validation of these proteins during seed germination of monocot cereals.

10.
Front Plant Sci ; 7: 824, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27446096

RESUMO

Plant polyamines are catabolized by two classes of amine oxidases, the copper amine oxidases (CuAOs) and the flavin adenine dinucleotide (FAD)-dependent polyamine oxidases (PAOs). These enzymes differ to each other in substrate specificity, catalytic mechanism and subcellular localization. CuAOs and PAOs contribute to several physiological processes both through the control of polyamine homeostasis and as sources of biologically-active reaction products. CuAOs and PAOs have been found at high level in the cell-wall of several species belonging to Fabaceae and Poaceae families, respectively, especially in tissues fated to undertake extensive wall loosening/stiffening events and/or in cells undergoing programmed cell death (PCD). Apoplastic CuAOs and PAOs have been shown to play a key role as a source of H2O2 in light- or developmentally-regulated differentiation events, thus influencing cell-wall architecture and maturation as well as PCD. Moreover, growing evidence suggests a key role of intracellular CuAOs and PAOs in several facets of plant development. Here, we discuss recent advances in understanding the contribution of different CuAOs/PAOs, as well as their cross-talk with different intracellular and apoplastic metabolic pathways, in tissue differentiation and organ development.

11.
Front Plant Sci ; 7: 173, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26925084

RESUMO

Early and more recent studies have suggested that some polyamines (PAs), and particularly spermine (Spm), exhibit anti-senescence properties in plants. In this work, we have investigated the role of Arabidopsis Polyamine Oxidase 4 (PAO4), encoding a PA back-conversion oxidase, during dark-induced senescence. Two independent PAO4 (pao4-1 and pao4-2) loss-of-function mutants have been found that accumulate 10-fold higher Spm, and this associated with delayed entry into senescence under dark conditions. Mechanisms underlying pao4 delayed senescence have been studied using global metabolic profiling by GC-TOF/MS. pao4 mutants exhibit constitutively higher levels of important metabolites involved in redox regulation, central metabolism and signaling that support a priming status against oxidative stress. During senescence, interactions between PAs and oxidative, sugar and nitrogen metabolism have been detected that additively contribute to delayed entry into senescence. Our results indicate the occurrence of metabolic interactions between PAs, particularly Spm, with cell oxidative balance and transport/biosynthesis of amino acids as a strategy to cope with oxidative damage produced during senescence.

12.
Free Radic Biol Med ; 81: 88-99, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25591967

RESUMO

The uptake of spermine into mammalian mitochondria indicated the need to identify its catabolic pathway in these organelles. Bovine liver mitochondria were therefore purified and their capacity for natural polyamine uptake was verified. A kinetic approach was then used to determine the presence of an MDL 72527-sensitive enzyme with spermine oxidase activity in the matrix of bovine liver mitochondria. Western blot analysis of mitochondrial fractions and immunogold electron microscopy observations of purified mitochondria unequivocally confirmed the presence of a protein recognized by anti-spermine oxidase antibodies in the mitochondrial matrix. Preliminary kinetic characterization showed that spermine is the preferred substrate of this enzyme; lower activity was detected with spermidine and acetylated polyamines. Catalytic efficiency comparable to that of spermine was also found for 1-aminododecane. The considerable effect of ionic strength on the Vmax/KM ratio suggested the presence of more than one negatively charged zone inside the active site cavity of this mitochondrial enzyme, which is probably involved in the docking of positively charged substrates. These findings indicate that the bovine liver mitochondrial matrix contains an enzyme belonging to the spermine oxidase class. Because H2O2 is generated by spermine oxidase activity, the possible involvement of the latter as an important signaling transducer under both physiological and pathological conditions should be considered.


Assuntos
Fígado/enzimologia , Mitocôndrias Hepáticas/enzimologia , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Espermina/metabolismo , Animais , Domínio Catalítico , Bovinos , Peróxido de Hidrogênio/metabolismo , Cinética , Concentração Osmolar , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/isolamento & purificação , Putrescina/análogos & derivados , Putrescina/química , Espermidina/metabolismo , Eletricidade Estática , Especificidade por Substrato , Poliamina Oxidase
13.
Front Plant Sci ; 5: 132, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24765099

RESUMO

Homeostasis of reactive oxygen species (ROS) in the intracellular compartments is of critical importance as ROS have been linked with nearly all cellular processes and more importantly with diseases and aging. PAs are nitrogenous molecules with an evolutionary conserved role in the regulation of metabolic and energetic status of cells. Recent evidence also suggests that polyamines (PA) are major regulators of ROS homeostasis. In Arabidopsis the backconversion of the PAs spermidine (Spd) and spermine to putrescine and Spd, respectively, is catalyzed by two peroxisomal PA oxidases (AtPAO). However, the physiological role of this pathway remains largely elusive. Here we explore the role of peroxisomal PA backconversion and in particular that catalyzed by the highly expressed AtPAO3 in the regulation of ROS homeostasis and mitochondrial respiratory burst. Exogenous PAs exert an NADPH-oxidase dependent stimulation of oxygen consumption, with Spd exerting the strongest effect. This increase is attenuated by treatment with the NADPH-oxidase blocker diphenyleneiodonium iodide (DPI). Loss-of-function of AtPAO3 gene results to increased NADPH-oxidase-dependent production of superoxide anions ([Formula: see text] ), but not H2O2, which activate the mitochondrial alternative oxidase pathway (AOX). On the contrary, overexpression of AtPAO3 results to an increased but balanced production of both H2O2 and [Formula: see text] . These results suggest that the ratio of [Formula: see text] /H2O2 regulates respiratory chain in mitochondria, with PA-dependent production of [Formula: see text] by NADPH-oxidase tilting the balance of electron transfer chain in favor of the AOX pathway. In addition, AtPAO3 seems to be an important component in the regulating module of ROS homeostasis, while a conserved role for PA backconversion and ROS across kingdoms is discussed.

14.
Acta bioquím. clín. latinoam ; 47(2): 279-305, abr.-jun. 2013. ilus, tab
Artigo em Espanhol | BINACIS | ID: bin-130981

RESUMO

Se destaca la actividad de las flavoenzimas como amino-oxidasas, que intervienen en el metabolismo de las aminas biogénicas como biorreguladores, especialmente en el crecimiento y la diferenciación celular. La clasificación de las amino-oxidasas incluye flavoenzimas y quinoenzimas. Se analizan las amino-oxidasas que son flavoproteínas, como las monoamino-oxidasas y las poliamino-oxidasas. Se discuten las isoformas, estructuras y función de ambas, sus sustratos e inhibidores, la expresión de MAO-A y MAO-B en tejidos humanos y sus implicancias clínicas. MAO plaquetaria es un biomarcador de desórdenes mentales y neurodegenerativos. Los inhibidores selectivos de MAO-A resultaron ser eficaces antidepresivos, mientras que algunos de MAO-B se utilizan en el tratamiento de enfermedades de Parkinson y de Alzheimer. La identificación de elevadas concentraciones de poliaminas en varias enfermedades, desde cáncer y psoriasis hasta infecciones parasitarias, hace que la manipulación de su metabolismo sea un blanco terapéutico o preventivo en ciertas enfermedades. Se discute además qué poliamino-oxidasas actúan en el metabolismo de las poliaminas en humanos, frente a las presentes en plantas, bacterias y protistas. Las poliaminas y las enzimas de su metabolismo desempeñan funciones relevantes en los procesos de envejecimiento y en algunas enfermedades, como cáncer, diabetes mellitus, accidentes cerebro-vasculares, insuficiencia renal y trastornos psiquiátricos.(AU)


The activity of flavoenzymes as amine oxidases involved in the metabolism of biogenic amines as bioregulators is highlighted, particularly for cell growth and differentiation. The classification of amine oxidases includes flavoenzymes and quinoenzymes. Amine oxidases that are flavoproteins, such as monoamine oxidases and polyamine oxidases, are analyzed herein. The isoforms, structures and functions of both enzyme families, their substrates and inhibitors, the expression of MAO-A and MAO-B in human tissues, and their clinical implications are discussed. Platelet MAO is a biomarker of mental and neurodegenerative disorders. Selective MAO-A inhibitors proved to be effective antidepressants, while some MAO-B inhibitors are used for treatment of Parkinsons and Alzheimers diseases. The identification of high concentrations of polyamines in a variety of diseases, from psoriasis to cancer and parasitic infections, makes handling their metabolism a therapeutic or preventive target for the treatment of some diseases. Also polyamine oxidase activity on polyamine metabolism in humans, compared to those present in plants, bacteria and protists,is discussed. Polyamines and the enzymes involved in their metabolism play important roles in the aging processes, as well as in certain diseases such as cancer, diabetes mellitus, stroke, kidney failure, and defined psychiatric disorders.(AU)


Foi enfatizada a atividade de flavoenzimas como as amina oxidases envolvidas no metabolismo de aminas biogÛnicas como biorreguladores, especialmente no crescimento e diferenciaþÒo celular. A classificaþÒo das amina oxidases inclui flavoenzimas e quinoenzimas. Amina oxidases que sÒo flavoproteínas, tais como monoamina oxidases e poliamina oxidases, sÒo analisadas. Isoformas, estrutura e funþÒo das duas oxidases sÒo discutidas, os seus substratos e inibidores, a expressÒo de MAO-A e MAO-B em tecidos humanos e suas implicaþ§es clínicas. MAO plaquetária é um biomarcador de desordens mentais e neurodegenerativas. Os inibidores selectivos da MAO-A resultaram ser eficazes antidepressivos, embora alguns dos MAO-B sejam utilizados no tratamento da doenþa de Parkinson e de Alzheimer. A identificaþÒo de elevadas concentraþ§es de poliaminas em várias doenþas, desde cÔncer e psoríase a infecþ§es parasitárias, faz com que a manipulaþÒo do seu metabolismo seja um alvo terapÛutico ou preventivo em certas doenþas. Também se discute que a poliamina oxidase atua sobre o metabolismo das poliaminas no ser humano, em comparaþÒo com aquelas presentes em plantas, bactérias e protistas. As poliaminas e enzimas do seu metabolismo desempenham papéis relevantes nos processos de envelhecimento e em algumas doenþas, tais como cÔncer, diabetes miellitus, acidente vascular cerebral, insuficiÛncia renal e perturbaþ§es psiquiátricas.(AU)

15.
Acta bioquím. clín. latinoam ; 47(2): 279-305, abr.-jun. 2013. ilus, tab
Artigo em Espanhol | LILACS | ID: lil-694554

RESUMO

Se destaca la actividad de las flavoenzimas como amino-oxidasas, que intervienen en el metabolismo de las aminas biogénicas como biorreguladores, especialmente en el crecimiento y la diferenciación celular. La clasificación de las amino-oxidasas incluye flavoenzimas y quinoenzimas. Se analizan las amino-oxidasas que son flavoproteínas, como las monoamino-oxidasas y las poliamino-oxidasas. Se discuten las isoformas, estructuras y función de ambas, sus sustratos e inhibidores, la expresión de MAO-A y MAO-B en tejidos humanos y sus implicancias clínicas. MAO plaquetaria es un biomarcador de desórdenes mentales y neurodegenerativos. Los inhibidores selectivos de MAO-A resultaron ser eficaces antidepresivos, mientras que algunos de MAO-B se utilizan en el tratamiento de enfermedades de Parkinson y de Alzheimer. La identificación de elevadas concentraciones de poliaminas en varias enfermedades, desde cáncer y psoriasis hasta infecciones parasitarias, hace que la manipulación de su metabolismo sea un blanco terapéutico o preventivo en ciertas enfermedades. Se discute además qué poliamino-oxidasas actúan en el metabolismo de las poliaminas en humanos, frente a las presentes en plantas, bacterias y protistas. Las poliaminas y las enzimas de su metabolismo desempeñan funciones relevantes en los procesos de envejecimiento y en algunas enfermedades, como cáncer, diabetes mellitus, accidentes cerebro-vasculares, insuficiencia renal y trastornos psiquiátricos.


The activity of flavoenzymes as amine oxidases involved in the metabolism of biogenic amines as bioregulators is highlighted, particularly for cell growth and differentiation. The classification of amine oxidases includes flavoenzymes and quinoenzymes. Amine oxidases that are flavoproteins, such as monoamine oxidases and polyamine oxidases, are analyzed herein. The isoforms, structures and functions of both enzyme families, their substrates and inhibitors, the expression of MAO-A and MAO-B in human tissues, and their clinical implications are discussed. Platelet MAO is a biomarker of mental and neurodegenerative disorders. Selective MAO-A inhibitors proved to be effective antidepressants, while some MAO-B inhibitors are used for treatment of Parkinson's and Alzheimer's diseases. The identification of high concentrations of polyamines in a variety of diseases, from psoriasis to cancer and parasitic infections, makes handling their metabolism a therapeutic or preventive target for the treatment of some diseases. Also polyamine oxidase activity on polyamine metabolism in humans, compared to those present in plants, bacteria and protists,is discussed. Polyamines and the enzymes involved in their metabolism play important roles in the aging processes, as well as in certain diseases such as cancer, diabetes mellitus, stroke, kidney failure, and defined psychiatric disorders.


Foi enfatizada a atividade de flavoenzimas como as amina oxidases envolvidas no metabolismo de aminas biogênicas como biorreguladores, especialmente no crescimento e diferenciação celular. A classificação das amina oxidases inclui flavoenzimas e quinoenzimas. Amina oxidases que são flavoproteínas, tais como monoamina oxidases e poliamina oxidases, são analisadas. Isoformas, estrutura e função das duas oxidases são discutidas, os seus substratos e inibidores, a expressão de MAO-A e MAO-B em tecidos humanos e suas implicações clínicas. MAO plaquetária é um biomarcador de desordens mentais e neurodegenerativas. Os inibidores selectivos da MAO-A resultaram ser eficazes antidepressivos, embora alguns dos MAO-B sejam utilizados no tratamento da doença de Parkinson e de Alzheimer. A identificação de elevadas concentrações de poliaminas em várias doenças, desde câncer e psoríase a infecções parasitárias, faz com que a manipulação do seu metabolismo seja um alvo terapêutico ou preventivo em certas doenças. Também se discute que a poliamina oxidase atua sobre o metabolismo das poliaminas no ser humano, em comparação com aquelas presentes em plantas, bactérias e protistas. As poliaminas e enzimas do seu metabolismo desempenham papéis relevantes nos processos de envelhecimento e em algumas doenças, tais como câncer, diabetes miellitus, acidente vascular cerebral, insuficiência renal e perturbações psiquiátricas.


Assuntos
Monoaminoxidase/biossíntese , Monoaminoxidase/metabolismo , Monoaminoxidase/fisiologia , Inibidores da Monoaminoxidase , Poliaminas , Poliaminas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...