Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.573
Filtrar
1.
Sci Rep ; 14(1): 15054, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38956159

RESUMO

This study aimed to develop a highly efficient nanocomposite composed of magnetic chitosan/molybdenum disulfide (CS/MoS2/Fe3O4) for the removal of three polycyclic aromatic hydrocarbons (PAHs)-pyrene, anthracene, and phenanthrene. Novelty was introduced through the innovative synthesis procedure and the utilization of magnetic properties for enhanced adsorption capabilities. Additionally, the greenness of chitosan as a sorbent component was emphasized, highlighting its biodegradability and low environmental impact compared to traditional sorbents. Factors influencing PAH adsorption, such as nanocomposite dosage, initial PAH concentration, pH, and contact time, were systematically investigated and optimized. The results revealed that optimal removal efficiencies were attained at an initial PAH concentration of 150 mg/L, a sorbent dose of 0.045 g, pH 6.0, and a contact time of 150 min. The pseudo-second-order kinetic model exhibited superior fitting to the experimental data, indicating an equilibrium time of approximately 150 min. Moreover, the equilibrium adsorption process followed the Freundlich isotherm model, with kf and n values exceeding 7.91 mg/g and 1.20, respectively. Remarkably, the maximum absorption capacities for phenanthrene, anthracene, and pyrene on the sorbent were determined as 217 mg/g, 204 mg/g, and 222 mg/g, respectively. These findings underscore the significant potential of the CS/MoS2/Fe3O4 nanocomposite for efficiently removing PAHs from milk and other dairy products, thereby contributing to improved food safety and public health.


Assuntos
Quitosana , Dissulfetos , Leite , Molibdênio , Nanocompostos , Hidrocarbonetos Policíclicos Aromáticos , Dissulfetos/química , Nanocompostos/química , Quitosana/química , Hidrocarbonetos Policíclicos Aromáticos/química , Hidrocarbonetos Policíclicos Aromáticos/isolamento & purificação , Molibdênio/química , Leite/química , Animais , Adsorção , Cinética , Concentração de Íons de Hidrogênio
2.
Comp Biochem Physiol C Toxicol Pharmacol ; 283: 109975, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38972621

RESUMO

Polycyclic aromatic hydrocarbons (PAHs), which are widely present in incompletely combusted air particulate matter <2.5 µm (PM2.5), tobacco and other organic materials, can enter the human body through various routes and are a class of environmental pollutants with neurotoxic effects. PAHs exposure can lead to abnormal development of the nervous system and neurobehavioral abnormalities in animals, including adverse effects on the nervous system of children and adults, such as a reduced learning ability, intellectual decline, and neural tube defects. After PAHs enter cells of the nervous system, they eventually lead to nervous system damage through mechanisms such as oxidative stress, DNA methylation and demethylation, and mitochondrial autophagy, potentially leading to a series of nervous system diseases, such as Alzheimer's disease. Therefore, preventing and treating neurological diseases caused by PAHs exposure are particularly important. From the perspective of the in vitro and in vivo effects of PAHs exposure, as well as its effects on human neurodevelopment, this paper reviews the toxic mechanisms of action of PAHs and the corresponding prevention and treatment methods to provide a relevant theoretical basis for preventing the neurotoxicity caused by PAHs, thereby reducing the incidence of diseases related to the nervous system and protecting human health.

3.
Adv Med Sci ; 69(2): 296-302, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38977159

RESUMO

PURPOSE: Polycyclic aromatic hydrocarbons (PAHs), present in air and food, generated during energy production and waste incineration, are known for health toxicity. PAHs may activate the aryl hydrocarbon receptor, which could in turn modify estrogen-dependent inflammatory pathways in endometriosis. The possible role of PAHs in the pathogenesis of endometriosis remains unclear. The study aimed to evaluate the potential link between exposure to PAHs and the occurrence of peritoneal and ovarian endometriosis. METHODS: A prospective case-control tertiary-center study included 46 women aged 22-45 undergoing laparoscopy due to pelvic endometriosis (n â€‹= â€‹32; arm 1) and idiopathic infertility (n â€‹= â€‹14; arm 2). A sample of the greater omentum was collected intraoperatively for detection of 16 standard PAHs by gas chromatography-isotope dilution mass spectrometry method. PAHs concentrations were compared in both study arms. The associations between PAHs concentrations and selected variables were investigated. RESULTS: There were no significant differences between both arms in terms of reference PAHs concentrations, nor correlations between PAHs concentrations and the stage of endometriosis. However, notable differences were observed in specific PAHs concentrations related to certain conditions. The concentrations of acenaphthene (p â€‹= â€‹0.016) and fluorene (p â€‹= â€‹0.013) were significantly lower in women with peritoneal adhesions, while the concentrations of benz[a]anthracene, benzo[k]fluoranthene and indeno[1,2,3-cd]pyrene [ng/g] were higher in cigarette smokers. CONCLUSIONS: The study showed no differences in exposure to PAHs between women with and without pelvic endometriosis. Determining the toxicity of PAHs in endometriosis requires further research.

4.
Environ Toxicol Chem ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980319

RESUMO

In 2019, there was an environmental catastrophe in Brazil, when more than 5000 tons of unknown origin crude oil invaded beaches and mangroves. Two years later, two monitoring areas were selected to study seahorses' offspring: Massangana River estuary (apparently healthy area) and Cocaia Island (affected area). Thirty-six reproductive events of Hippocampus reidi (Syngnathidae) couples from these two areas were monitored to analyze the offspring. At the apparently healthy area, no newborns with malformations were found. However, the offspring from Cocaia Island showed a mean of 19.73% (±5.23) malformations in newborns. It is argued that the toxic/teratogenic effects of polycyclic aromatic hydrocarbons have affected the population in two ways: directly through the induction of mutations in the germ cells of the species and through a drastic reduction of the population (bottleneck effect) whose density observed today recovered through consanguineous couplings, potentiating deleterious genotypes in the offspring. Environ Toxicol Chem 2024;00:1-9. © 2024 SETAC.

5.
Angew Chem Int Ed Engl ; : e202409750, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38982974

RESUMO

Splitting the five and seven-membered rings of azulene and embedding them separately into a conjugated backbone provides azulene-like polycyclic aromatic hydrocarbons (PAHs), which are of great interest in quantum and material chemistry. However, the synthetic accessibility poses a significant challenge. In this study, we present the synthesis of a novel azulene-like PAH, Pery-57, which can be viewed as the integration of a perylene framework into the split azulene. The compact structure of Pery-57 displays several intriguing characteristics, including NIR II absorption at 1200 nm, a substantial dipole moment of 3.5 D, and head-to-tail alternating columnar packing. Furthermore, Pery-57 exhibits remarkable redox properties. The cationic radical Pery-57•+ readily captures a hydrogen atom. Variable-temperature NMR (VT-NMR) and variable-temperature EPR (VT-EPR) studies reveal that the dianion Pery-572- possesses an open-shell singlet ground state and demonstrates significant global anti-aromaticity. The dication Pery-572+ is also predicted to exhibit diradical character. Despite bearing three bulky substituents, Pery-57 displays p-type transport characteristics with a mobility of 0.03 cm2 V-1 s-1, attributed to its unique azulene-like structure. Overall, this work directs interest in azulene-like PAHs, a unique member of nonalternant PAHs showcasing exceptional properties and applications.

6.
Environ Sci Technol ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984996

RESUMO

The global increase in wildfires, primarily driven by climate change, significantly affects air quality and health. Wildfire-emitted particulate matter (WFPM) is linked to adverse health effects, yet the toxicological mechanisms are not fully understood given its physicochemical complexity and the lack of spatiotemporal exposure data. This study focuses on the physicochemical characterization of WFPM from a Canadian wildfire in June 2023, which affected over 100 million people in the US Northeast, particularly around New Jersey/New York. Aerosol systems were deployed to characterize WFPM during the 3 day event, revealing unprecedented mass concentrations mainly in the WFPM0.1 and WFPM0.1-2.5 size fractions. Peak WFPM2.5 concentrations reached 317 µg/m3, nearly 10 times the National Ambient Air Quality Standard (NAAQS) 24 h average limit. Chemical analysis showed a high organic-to-total carbon ratio (96%), consistent with brown carbon wildfires nanoparticles. Large concentrations of high-molecular-weight PAHs were found predominantly bound to WFPM0.1, with retene, a molecular marker of biomass burning and a known teratogen, being the most abundant (>70%). Computational modeling estimated a total lung deposition of 9.15 mg over 72 h, highlighting the health risks of WFPM, particularly due to its long-distance travel capability and impact on densely populated areas.

7.
J Colloid Interface Sci ; 674: 745-752, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38955006

RESUMO

The exploration of novel electrochemiluminescence (ECL) luminophores with excellent ECL properties is a current research hotspot in the ECL field. Herein, a novel high-efficiency Ru-complex-free ECL emitter PyTS-Zr-BTB-MOL has been prepared by using porous ultrathin Zr-BTB metal-organic layer (MOL) as carrier to coordinatively graft the cheap and easily available polycyclic aromatic hydrocarbon (PAH) derivative luminophore PyTS whose ECL performance has never been investigated. Gratifyingly, the ECL intensity and efficiency of PyTS-Zr-BTB-MOL were markedly enhanced compared to both PyTS monomers and PyTS aggregates. The main reason was that the distance between pyrene rings was greatly expanded after the PyTS grafting on the Zr6 clusters of Zr-BTB-MOL, which overcame the aggregation-caused quenching (ACQ) effect of PyTS and thus enhanced the ECL emission. Meanwhile, the porous nanosheet structure of PyTS-Zr-BTB-MOL could distinctly increase the exposure of PyTS luminophores and shorten the diffusion paths of coreactants and electrons/ions, which effectively promoted the electrochemical excitation of more PyTS luminophores and thus achieved a further ECL enhancement. In light of the remarkable ECL property of PyTS-Zr-BTB-MOL, it was employed as an ECL indicator to build a novel high-sensitivity ECL biosensor for microRNA-21 determination, possessing a satisfactory response range (100 aM to 100 pM) and an ultralow detection limit (10.4 aM). Overall, this work demonstrated that using MOLs to coordinatively graft the PAH derivative luminophores to eliminate the ACQ effect and increase the utilization rate of the luminophores is a promising and efficient strategy to develop high-performance Ru-complex-free ECL materials for assembling ultrasensitive ECL biosensing platforms.

8.
Epigenetics Commun ; 4(1): 4, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962689

RESUMO

Background: Exposure to environmental chemicals such as phthalates, phenols, and polycyclic aromatic hydrocarbons (PAHs) during pregnancy can increase the risk of adverse newborn outcomes. We explored the associations between maternal exposure to select environmental chemicals and DNA methylation in cord blood mononuclear cells (CBMC) and placental tissue (maternal and fetal sides) to identify potential mechanisms underlying these associations. Method: This study included 75 pregnant individuals who planned to give birth at the University of Cincinnati Hospital between 2014 and 2017. Maternal urine samples during the delivery visit were collected and analyzed for 37 biomarkers of phenols (12), phthalates (13), phthalate replacements (4), and PAHs (8). Cord blood and placenta tissue (maternal and fetal sides) were also collected to measure the DNA methylation intensities using the Infinium HumanMethylation450K BeadChip. We used linear regression, adjusting for potential confounders, to assess CpG-specific methylation changes in CBMC (n = 54) and placenta [fetal (n = 67) and maternal (n = 68) sides] associated with gestational chemical exposures (29 of 37 biomarkers measured in this study). To account for multiple testing, we used a false discovery rate q-values < 0.05 and presented results by limiting results with a genomic inflation factor of 1±0.5. Additionally, gene set enrichment analysis was conducted using the Kyoto Encyclopedia of Genes and Genomics pathways. Results: Among the 29 chemical biomarkers assessed for differential methylation, maternal concentrations of PAH metabolites (1-hydroxynaphthalene, 2-hydroxyfluorene, 4-hydroxyphenanthrene, 1-hydroxypyrene), monocarboxyisononyl phthalate, mono-3-carboxypropyl phthalate, and bisphenol A were associated with altered methylation in placenta (maternal or fetal side). Among exposure biomarkers associated with epigenetic changes, 1-hydroxynaphthalene, and mono-3-carboxypropyl phthalate were consistently associated with differential CpG methylation in the placenta. Gene enrichment analysis indicated that maternal 1-hydroxynaphthalene was associated with lipid metabolism and cellular processes of the placenta. Additionally, mono-3-carboxypropyl phthalate was associated with organismal systems and genetic information processing of the placenta. Conclusion: Among the 29 chemical biomarkers assessed during delivery, 1-hydroxynaphthalene and mono-3-carboxypropyl phthalate were associated with DNA methylation in the placenta. Supplementary Information: The online version contains supplementary material available at 10.1186/s43682-024-00027-7.

9.
Clin Obes ; : e12687, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965765

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are naturally occurring environmental pollutants that may contribute to obesity in the adult population. To investigate the relationship between the urinary concentrations of PAH metabolites and adult obesity among the US population, the National Health and Nutritional Examination Survey (NHANES, 2003-2016) was used as a data source for this study. As many as 4464 participants in the NHANES 2003-2016 were included in the final analyses. We used logistic regression to look at the link between urinary PAH metabolites and obesity, using odds ratios (ORs) and 95% confidence intervals (CIs). The study sample comprised 4464 individuals aged ≥18 years, 2199 were male and 2265 were female. The study characteristics for four different quartiles were analyzed, and the average ages of the four urinary PAH quartiles were 49.61 ± 20.01, 46.63 ± 20.33, 44.28 ± 19.19, and 43.27 ± 17.68 years, respectively. In the quartile analysis of all participants, the third quartile was significantly associated with an increased prevalence of obesity (OR = 1.33, 95% CI = 1.12-1.59) with p-values <.05. In addition, females, but not males, had a strong link between the second, third, and fourth quartiles of urinary PAH and a higher risk of obesity (OR = 1.27, 95% CI = 1.00-1.61; OR = 1.52, 95% CI = 1.19-1.94; and OR = 1.39, 95% CI = 1.09-1.78). In conclusion, the study observed that urinary PAH metabolites were associated with the prevalence of obesity among the US population.

10.
Mar Pollut Bull ; 206: 116666, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38991611

RESUMO

This study reports OCP and PAH concentrations in the tissues of stranded sea snakes from Sharjah, UAE. Samples from 10 Hydrophis lapemoides, 2 Hydrophis ornatus and 1 Hydrophis curtus were analyzed. Muscle, liver and fat tissues were extracted using micro-QuEChERs, followed by d-SPE and analyzed using GC/MS. Higher concentrations of OCPs were detected, while PAHs were more frequently detected. Significant correlations suggest that OCPs and PAHs do bioaccumulate in the tissues of sea snakes. Additionally, OCPs with lower log Kow (octanol-water partition coefficient) values were mainly detected in the muscle samples of H. lapemoides, whereas OCPs with higher log Kow values were more commonly present in the liver and fat samples. The concentrations of OCPs reported in this study were higher than those previously documented in other marine reptiles in the UAE or sea snakes from different geographical regions.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38954338

RESUMO

Chemical oxidation coupled with microbial remediation has attracted widespread attention for the removal of polycyclic aromatic hydrocarbons (PAHs). Among them, the precise evaluation of the feasible oxidant concentration of PAH-contaminated soil is the key to achieving the goal of soil functional ecological remediation. In this study, phenanthrene (PHE) was used as the target pollutant, and Fe2+-activated persulphate (PS) was used to remediate four types of soils. Linear regression analysis identified the following important factors influencing remediation: PS dosage and soil PHE content for PHE degradation, Fe2+ dosage, hydrolysable nitrogen (HN), and available phosphorus for PS decomposition. A comprehensive model of "soil characteristics-oxidation conditions-remediation effect" with a high predictive accuracy was constructed. Based on model identification, Pseudomonas aeruginosa GZ7, which had high PAHs degrading ability after domestication, was further applied to coupling repair remediation. The results showed that the optimal PS dose was 0.75% (w/w). The response relationship between soil physical, chemical, and biological indicators at the intermediate interface and oxidation conditions was analysed. Coupled remediation effects were clarified using microbial diversity sequencing. The introduction of Pseudomonas aeruginosa GZ7 stimulated the relative abundance of Cohnella, Enterobacter, Paenibacillus, and Bacillus, which can promote material metabolism and energy transformation during remediation.

12.
World J Microbiol Biotechnol ; 40(9): 262, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38972951

RESUMO

Pseudomonas aeruginosa PR23 isolated from the hydrocarbon contaminated soil can tolerate and degrade mixture of polyaromatic hydrocarbons (PAHs) at an initial concentration of 1300 ppm. The degradation and intermediates formed were assessed by gas chromatography-mass spectrometry (GC-MS) analysis. The isolated strain was able to degrade 59.2% of the mixture of PAHs in 3 days and 71.6% by day 15. Effect of PAHs on protein expression in Pseudomonas aeruginosa PR23 was studied using nano LC-MS/MS. Thirty-six proteins showed a more than 2-fold increase in expression in the presence of mixture of PAHs. Out of these proteins, 7 proteins have been reported for their role in degradation of naphthalene, phenanthrene, and pyrene. The data revealed the presence of 16 proteins that were uniquely expressed in the presence of mixture of PAHs. A twin-arginine translocation signal peptide (Tat system), known for the transportation of folded proteins across the cell membrane, showed more than 8-fold increased expression in the presence of mixture of PAHs. These results indicate that the isolated strain adopts the conditions in the presence of mixture of PAHs by modulating its metabolic and physiological processes. These findings suggest that Pseudomonas aeruginosa PR23 may be a suitable candidate for use in the development of strategies for bioremediation of mixtures of PAHs.


Assuntos
Proteínas de Bactérias , Biodegradação Ambiental , Hidrocarbonetos Policíclicos Aromáticos , Pseudomonas aeruginosa , Microbiologia do Solo , Poluentes do Solo , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/genética , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poluentes do Solo/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Cromatografia Gasosa-Espectrometria de Massas , Fenantrenos/metabolismo , Espectrometria de Massas em Tandem , Naftalenos/metabolismo
13.
Environ Geochem Health ; 46(8): 288, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970676

RESUMO

The combustion of coal in power plants releases significant amounts of polycyclic aromatic hydrocarbons (PAHs), which are highly toxic and carcinogenic. This study assesses the ecological and human health impacts of PAHs contamination from a coal-fired power plant over 8 years. The monitoring site selection considered the distance from the power plant and the prevailing wind direction in the investigated area. The results reveal that, during the monitoring period, PAH levels increased on average by 43%, 61%, and 37% in the zone of the prevailing wind direction, in the area proximate to the power plant, and the zone distant from it, respectively. The site, which has a radius of 4.5 km in the prevailing wind direction, exhibited the highest ecological and human health impacts. Additionally, a strong correlation was observed between environmental and human health impacts, depending on the distance from the power plant, particularly in areas with the prevailing wind direction. These insights contribute to a comprehensive understanding of the intricate dynamics linking power plant emissions, PAHs contamination, and their far-reaching consequences on the environment and human health.


Assuntos
Carvão Mineral , Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos , Centrais Elétricas , Poluentes do Solo , Hidrocarbonetos Policíclicos Aromáticos/análise , Humanos , Monitoramento Ambiental/métodos , Poluentes do Solo/análise , Vento , Avaliação do Impacto na Saúde
14.
J Hazard Mater ; 476: 134977, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38905976

RESUMO

In recent decades, polycyclic aromatic hydrocarbons (PAHs), the primary organic pollutants associated with particulate matter (PM), have attracted significant attention due to their carcinogenic and mutagenic potential. However, past studies have lacked exploration into the diurnal variation characteristics of PAHs, primarily due to limited analytical technical capabilities. This study utilized a thermal-desorption device coupled with gas chromatography/mass spectrometry (TD-GC/MS) to identify the levels of PAHs in PM2.5 during short periods (3-hr) and aimed to investigate the diurnal variations, possible sources, and potential health risks associated with PM2.5-bound PAHs in northern Taiwan. The mean concentration of total PAHs in PM2.5 was 1.22 ± 0.69 ng m-3 during the sampling period, with high molecular weight PAHs dominating. Source apportionment by the positive matrix factorization (PMF) model indicated that industrial emissions and traffic emissions (57.7 %) were the predominant sources of PAHs, with petroleum volatilization and coal/biomass combustion (42.3 %) making a lesser contribution. Diurnal variations of industrial and traffic emissions showed higher concentrations during traffic rush hours, while petroleum volatilization and coal/biomass combustion displayed higher concentrations at noon. Results from the potential source contribution function (PSCF) and the concentration weighted trajectory (CWT) model suggested that industrial emissions and traffic emissions mostly originated from local sources and were concentrated in the vicinity of the sampling site and the coastal area of western Taiwan. Source-attributed excess cancer risk (ECR) showed that industrial and traffic emissions had the highest cancer risks during morning traffic peak hours (1.69 ×10-5), while petroleum volatilization and coal/biomass combustion reached the maximum at noon (4.75 ×10-6). As a result, efforts to reduce PAH emissions from industrial and vehicle exhaust sources, especially during morning traffic hours, can help mitigate their adverse impact on human health.

15.
Huan Jing Ke Xue ; 45(6): 3688-3699, 2024 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-38897788

RESUMO

The continuous accumulation of microplastics in agricultural soils may affect the natural attenuation of oxygen-containing polycyclic aromatic hydrocarbons (OPAHs). The effects of low-density polyethylene (LDPE) microplastics with the spiking proportion of 1 % and 0.01 % in soils on the natural attenuation of OPAHs were investigated via soil microcosm experiments. The relation between the response of bacterial communities and OPAHs dissipation was also explored. The initial content of OPAHs in the soil was 34.6 mg·kg-1. The dissipation of OPAHs in the soil on day 14 was inhibited by LDPE. The contents of OPAHs in LDPE groups were higher than that in the control by 0.9-1.6 mg·kg-1, and the inhibition degree increased with the proportion of LDPE. The contents of OPAHs were not significantly different among groups on day 28, indicating that the inhibitory effect of LDPE disappeared. LDPE did not change the composition of the dominant taxa in the OPAHs-contaminated soil community but influenced the relative abundances of some dominant taxa. LDPE increased the relative abundance of Proteobacteria and Actinobacteria at the phylum level and decreased that of Bacillus and increased those of Micromonospora, Sphingomonas, and Nitrospira (potential degrading bacteria of LDPE and endogenous substances) at the genus level, all four of which were the main genera dominating intergroup community differences. LDPE changed the α and ß diversity of bacterial communities, but the extents were not significant. LDPE affected the function of the bacterial community, reducing the total abundance of PAHs-degrading genes and some degrading enzymes, inhibiting the growth of PAHs-degrading bacteria and thus interfering with the natural decay of OPAHs.


Assuntos
Biodegradação Ambiental , Microplásticos , Hidrocarbonetos Policíclicos Aromáticos , Polietileno , Microbiologia do Solo , Poluentes do Solo , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes do Solo/metabolismo , Poluentes do Solo/análise , Solo/química , Bactérias/classificação , Bactérias/metabolismo , Bactérias/crescimento & desenvolvimento , Bactérias/efeitos dos fármacos , Oxigênio/metabolismo
16.
Artigo em Inglês | MEDLINE | ID: mdl-38886247

RESUMO

OBJECTIVE: To investigate the effect of urinary PAHs on MAFLD. METHODS: The study included 3,136 adults from the National Health and Nutrition Examination Survey (NHANES) conducted between 2009 and 2016. Among them, 1,056 participants were diagnosed with MAFLD and were designated as the case group. The analysis of the relationship between monohydroxy metabolites of seven PAHs in urine and MAFLD was carried out using logistic regression and Bayesian kernel regression (BKMR) models. RESULTS: In single-pollutant models, the concentration of 2-hydroxynaphthalene (2-OHNAP) was positively correlated with MAFLD (OR = 1.47, 95% CI 1.18, 1.84), whereas 3-hydroxyfluorene (3-OHFLU) and 1-hydroxypyrene (1-OHPYR) demonstrated a negative correlation with MAFLD (OR = 0.59, 95% CI 0.48 0.73; OR = 0.70, 95% CI 0.55, 0.89). Conversely, in multi-pollutant models, 2-OHNAP, 2-hydroxyfluorene (2-OHFLU), 2-hydroxyphenanthrene, and 3-hydroxyphenanthrene (2&3-OHPHE) displayed positive correlations with MAFLD (OR = 6.17, 95% CI 3.15, 12.07; OR = 2.59, 95% CI 1.37, 4.89). However, 3-OHFLU and 1-OHPYR continued to exhibit negative correlations with MAFLD (OR = 0.09, 95% CI 0.05, 0.15; OR = 0.62, 95% CI 0.43, 0.88). Notably, the BKMR analysis mixtures approach did not indicate a significant joint effect of multiple PAHs on MAFLD, but identified interactions between 3-OHFLU and 2-OHFLU, 1-OHPYR and 2-OHFLU, and 1-OHPYR and 3-OHFLU. CONCLUSION: No significant association was found between mixed PAHs exposure and the risk of MAFLD. However, interactions were observed between 3-OHFLU and 2-OHFLU. Both 2-OHFLU and 2&3-OHPHE exposure are significant risk factors for MAFLD, whereas 3-OHFLU is a key protective factor for the disease.

17.
Chemosphere ; 362: 142580, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38866336

RESUMO

The effects of different organic substrate compositions on the efficiency of outdoor co-composting as a bioremediation technology for decontaminating soil polluted by polycyclic aromatic hydrocarbons (PAHs) were investigated. Four different substrate mixtures and two different aged PAH-contaminated soils were used in a semi-pilot-scale experiment that lasted nearly 700 days. The two soils (A and B) differed concerning both the initial concentrations of the Æ©16 US EPA PAHs (5926 vs. 369 mg kg-1, respectively) and the type of predominant PAH group by molecular weight. The experiments revealed that while the composition of the organic substrate had an impact on the rate of PAH degradation, it did not significantly influence the final extent of PAH degradation. Notably, the organic substrate consisting of green waste and wood chips (GW) was found to facilitate the most rapid rate of PAH degradation (first-order rate constant k = 0.033 ± 0.000 d-1 with soil A over the initial 42 days of the experiment and k = 0.036 ± 0.000 d-1 with soil B over the initial 56 days). Despite the differences in organic substrate compositions and types of soil being treated, PAH degradation levels exceeded at least 95% in all the treatments after more than 680 days of co-composting. Regardless of the composition, the removal of low- and medium- molecular-weight (2-4 rings) PAHs was nearly complete by the end of the experiment. Furthermore, high-molecular-weight PAHs (5 rings and more) were significantly degraded during co-composting, with reductions ranging from 54% to 79% in soil A and from 59% to 68% in soil B. All composts were dominated by Proteobacteria, Firmicutes, and Actinobacteria, with significant differences in abundance between soils. Genera with PAH degradation potentials were detected in all samples. The results of a battery of toxicity tests showed that there was almost no toxicity associated with the final composts.

18.
J Environ Health Sci Eng ; 22(1): 295-303, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38887758

RESUMO

Cooking is a significant source of polycyclic aromatic hydrocarbon (PAHs) emissions in indoor environments. A one-month biomonitoring study was carried out in previously selected rural Hungarian kitchens to evaluate cooking-related PAHs concentrations in 4 common kitchen vegetables such as basil, parsley, rocket and chives. The study had two mainobjectives: firstly, to follow PAHs accumulation pattern and to find out if this pattern can be associated with different cooking habits. Also, the usefulness of culinary herbs for indoor bioaccumulation studies was assessed. The 2-ring naphthalene was the dominant PAH in the majority of the samples, its concentrations were in the range of 25.4 µg/kg and 274 µg/kg, of 3-ring PAHs the prevalency of phenanthrene was observed, with highest concentration of 62 µg/kg. PAHs accumulation pattern in tested plants clearly indicated differences in cooking methods and cooking oils used in the selected households. Use of lard and animal fats in general resulted in the high concentrations of higher molecular weight (5- and 6-ring) PAHs, while olive oil usage could be associated with the emission of 2- and 3-ring PAHs. Culinary herbs, however, accumulated carcinogenic PAHs such as benzo[a]anthracene (highest concentration 11.9 µg/kg), benzo[b]fluoranthene (highest concentration 13.8 µg/kg) and chrysene (highest concentration 20.1 µg/kg) which might question their safe use.

19.
Foods ; 13(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38890942

RESUMO

Polycyclic aromatic hydrocarbons are considered to be potentially genotoxic and carcinogenic to humans. For non-smoking populations, food is the main source of polycyclic aromatic hydrocarbons exposure. Due to their lipophilic nature, oils and fats rank among the food items with the highest polycyclic aromatic hydrocarbon content. Consequently, the detection of polycyclic aromatic hydrocarbons in edible oils is critical for the promotion of human health. This paper reviews sample pretreatment methods, such as liquid-phase-based extraction methods, adsorbent-based extraction methods, and the QuEChERS (quick, easy, cheap, effective, rugged, and safe) method, combined with detection techniques like mass spectrometry and chromatography-based techniques for accurate quantification of polycyclic aromatic hydrocarbons in edible oils since 2010. An overview on the advances of the methods discussed herein, along with a commentary addition of current challenges and prospects, will guide researchers to focus on developing more effective detection methods and control measures to reduce the potential risks and hazards posed by polycyclic aromatic hydrocarbons.

20.
Int J Mol Sci ; 25(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38891971

RESUMO

π-π stacking are omnipresent interactions, crucial in many areas of chemistry, and often studied using quantum chemical methods. Here, we report a simple and computationally efficient method of estimating the binding energies of stacked polycyclic aromatic hydrocarbons based on steered molecular dynamics. This method leverages the force field parameters for accurate calculation. The presented results show good agreement with those obtained through DFT at the ωB97X-D3/cc-pVQZ level of theory. It is demonstrated that this force field-driven SMD method can be applied to other aromatic molecules, allowing insight into the complexity of the stacking interactions and, more importantly, reporting π-π stacking energy values with reasonable precision.


Assuntos
Simulação de Dinâmica Molecular , Hidrocarbonetos Policíclicos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos/química , Termodinâmica , Dimerização , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...