Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.970
Filtrar
1.
J Nephrol ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969871

RESUMO

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is a hereditary kidney disorder that may progress to kidney failure, accounting for 5-10% of all patients with end-stage kidney disease (ESKD). Clinical data, as well as molecular genetics and advanced imaging techniques have provided surrogate prognostic biomarkers to predict rapid decline in kidney function, nonetheless enhanced tools for assessing prognosis for ADPKD are still needed. The aim of this study was to analyze specific microRNAs involved in the pathogenesis of ADPKD and in the development of renal fibrosis, evaluating their potential role as predictors of renal function loss. METHODS: We evaluated kidney function by estimated glomerular filtration rate (eGFR) in 32 ADPKD patients in different stages of kidney disease at T0 and after a 24-month follow up (T1). Patients were divided into two groups: Rapid disease progression ([RP], n 15) and Non-rapid disease progression ([NRP], n 17), according to the Mayo Clinic classification criteria. At T0, ADPKD patients underwent plasma sampling for quantitative analysis of h-miR-17-5p, h-miR-21-5p and h-miR-199a-5p microRNA expression, using the quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) method and a 3 T magnetic resonance imaging (MRI), using an advanced MRI imaging protocol, for the quantification of total kidney volume (TKV), total perfusion volume (TPV) and total fibrotic volume (TFV). RESULTS: The expression of h-miR17-5p was higher (p < 0.05) in ADPKD patients with rapid disease progression. h-miR-17-5p, h-miR-21-5p and h-mir-199-5p showed a positive and significant correlation with the eGFR slope (mL/min/1.73 m2/year) (p < 0.05) but not with the eGFR at both T0 and T1. Both total fibrotic volume (cm3) and height-adjusted total fibrotic volume (cm3/m) were positively and significantly correlated to h-miR 21-5p and h-miR 199-5p (p < 0.05), but not to total kidney volume (cm3) and height-adjusted total kidney volume (cm3/m). CONCLUSIONS: The microRNAs we studied were associated with fibrosis and renal damage, suggesting their possible role as biomarkers able to identify ADPKD patients at high risk of disease progression regardless of the degree of kidney function, and therefore suitable for medical therapy, and may help uncovering new molecular mechanisms underlying cystogenesis.

2.
Biochem Genet ; 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38971859

RESUMO

Polycystic kidney disease (PKD) is a common inherited disease characterized by multiple cysts in kidneys and various extra renal manifestations. Molecular diagnosis plays a crucial role in confirming both the clinical diagnosis and preimplantation genetic diagnosis furthermore, selecting appropriate treatment options. This study aimed to expand the understanding of genetic mutations in patients with polycystic kidney disease and to improve the management of patients. The study included 92 patients with a clinical diagnosis of PKD based on renal ultrasound criteria. Targeted next-generation sequencing was performed using a custom panel kit. Of the 92 patients included in the study, pathogenic/likely pathogenic variants of the PKD1, PKD2 genes were detected in 37 patients (40.2%), while 8 patients (8.6%) had variants with uncertain clinical significance. After the additional assessment of pathogenic/likely pathogenic variants, it was found that 15 of the variants in PKD1 and 2 of the variants in PKD2 have not been reported in the literature previously. Additionally, pathogenic variants, 5 of which were novel, have been identified in different genes in 8 patients. This study presented the largest patient cohort conducted in Turkey. These findings were significant in expanding our understanding of the genetic variations associated with polycystic kidney disease. The study contributed the literature data on polycystic kidney disease by reporting important findings that could pave the way for further investigations in the diagnosis, treatment, and management of the affected patients.

3.
Function (Oxf) ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38984987

RESUMO

Polycystic kidney disease (PKD), a disease characterized by enlargement of the kidney through cystic growth is the fourth leading cause of end-stage kidney disease world-wide. TRPV4, a calcium-permeable TRP, channel participates in kidney cell physiology and since TRPV4 forms complexes with another channel whose malfunction is associated to PKD, TRPP2 (or PKD2), we sought to determine whether patients with PKD, exhibit previously unknown mutations in TRPV4. Here, we report the presence of mutations in the TRPV4 gene in patients diagnosed with PKD and determine that they produce gain-of-function (GOF). Mutations in the sequence of the TRPV4 gene have been associated to a broad spectrum of neuropathies and skeletal dysplasias but not PKD, and their biophysical effects on channel function have not been elucidated. We identified and examined the functional behavior of a novel E6K mutant and of the previously known S94L and A217S mutant TRVP4 channels. The A217S mutation has been associated to mixed neuropathy and/or skeletal dysplasia phenotypes, however, the PKD carriers of these variants had not been diagnosed with these reported clinical manifestations. The presence of certain mutations in TRPV4 may influence the progression and severity of PKD through GOF mechanisms. PKD patients carrying TRVP4 mutations are putatively more likely to require dialysis or renal transplant as compared to those without these mutations.

4.
Ann Med Surg (Lond) ; 86(7): 4304-4307, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38989164

RESUMO

Introduction: The association between primary brain tumors, such as glioneuronal tumors, with autosomal-dominant polycystic kidney disease (ADPKD) remains poorly understood, with only two cases reported excluding this one. This case of an ADPKD patient diagnosed with a rosette-forming glioneuronal tumor highlights an exceptionally rare potential association warranting further investigation. Case presentation: A 28-year-old male with ADPKD presented with progressive ataxia, dizziness, and headache. MRI revealed a cerebellar mass and obstructive hydrocephalus. Surgical resection and histopathological examination confirmed the diagnosis of a rosette-forming glioneuronal tumor. Postoperatively, the patient showed significant symptom improvement. Discussion: The interplay between genetics and glioneuronal development is complex and underexplored. While most glioneuronal arise sporadically, rare genetic syndromes may predispose individuals to these tumors. Additionally, although more than 70 cases of ADPKD with concurrent tumors were reported, the literature on this specific association remains limited. Conclusion: This case underscores the need for heightened awareness of potential associations between ADPKD and tumors such as glioneuronal tumors. With limited literature on this subject, further research is imperative to understand the underlying mechanisms and clinical implications. Enhancing our knowledge in this area can improve patient outcomes and management strategies.

5.
Oman Med J ; 39(3): e636, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-39045280

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is a common inherited condition characterized by the growth of multiple bilateral cysts in the kidneys. We describe the case of a 35-year-old male with combined ADPKD and type 1 diabetes mellitus with a strong family history of both. At the age of 32, he developed end-stage kidney disease for which he underwent preemptive simultaneous pancreatic and kidney transplant, which in turn led to multiple perioperative complications. Evaluation of familial clustering of genetic disease is critical in genetic epidemiology and precision medicine as it enables estimation of lifetime disease risk and early assessment as well as detection of the disease among one's siblings.

6.
Sci Rep ; 14(1): 16280, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009643

RESUMO

This retrospective study investigated the incidence, medication use, and outcomes in pediatric autosomal-dominant polycystic kidney disease (ADPKD) using Taiwan's National Health Insurance Research Database (NHIRD). A 1:4 matched control group of individuals included in the NHIRD during the same period was used for comparative analyses. A total of 621 pediatric patients were identified from 2009 to 2019 (mean age, 9.51 ± 6.43 years), and ADPKD incidence ranged from 2.32 to 4.45 per 100,000 individuals (cumulative incidence, 1.26-1.57%). The incidence of newly developed hypertension, anti-hypertensive agent use, nephrolithiasis, and proteinuria were significantly higher in the ADPKD group than the non-ADPKD group (0.7 vs. 0.04, 2.26 vs. 0.30, 0.4 vs. 0.02, and 0.73 vs. 0.05 per 100 person-years, respectively). The adjusted hazard ratios for developing hypertension, proteinuria, nephrolithiasis and anti-hypertensive agent use in cases of newly-diagnosed pediatric ADPKD were 12.36 (95% CI 4.92-31.0), 13.49 (95% CI 5.23-34.79), 13.17 (95% CI 2.48-69.98), and 6.38 (95% CI 4.12-9.89), respectively. The incidence of congenital cardiac defects, hematuria, urinary tract infections, gastrointestinal diverticulosis, dyslipidemia, and hyperuricemia were also higher in the ADPKD group. Our study offers valuable insights into the epidemiology of pediatric ADPKD in Taiwan and could help in formulating guidelines for its appropriate management.


Assuntos
Rim Policístico Autossômico Dominante , Humanos , Taiwan/epidemiologia , Rim Policístico Autossômico Dominante/epidemiologia , Rim Policístico Autossômico Dominante/terapia , Rim Policístico Autossômico Dominante/tratamento farmacológico , Criança , Masculino , Feminino , Adolescente , Estudos Retrospectivos , Pré-Escolar , Incidência , Hipertensão/epidemiologia , Hipertensão/tratamento farmacológico , Proteinúria/epidemiologia , Nefrolitíase/epidemiologia , Resultado do Tratamento , Anti-Hipertensivos/uso terapêutico , Lactente , Bases de Dados Factuais
7.
Front Genet ; 15: 1429336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015774

RESUMO

Background: To investigate whether the novel mutation of PKHD1 could cause polycystic kidney disease by affecting splicing with a recessive inheritance pattern. Methods: A nonconsanguineous Chinese couple with two recurrent pregnancies showed fetal enlarged echogenic polycystic kidney and oligoamnios were recruited. Pedigree WES, minigene splicing assay experiment and following bioinformatics analysis were performed to verify the effects, and inheritance pattern of diseasing-causing mutations. Results: WES revealed that both fetuses were identified as carrying the same novel mutation c.3592_3628 + 45del, p.? and c.11207 T>C, p.(Ile3736Thr) in the PKHD1 gene (NM_138694.4), which inherited from the father and mother respectively. Both bioinformatic method prediction and minigene splicing assay experience results supported the mutation c.3592_3628 + 45del, p.? affects the splicing of the PKHD1 transcript, resulting in exon 31 skipping. Another missense mutation c.11207 T>C, p.(Ile3736Thr) has a low frequency in populations and is predicted to be deleterious by bioinformatic methods. Conclusion: These findings provide a direct clinical and functional evidence that the truncating mutations of the PKHD1 gene could lead to more severe phenotypes, and cause ARPKD as a homozygous or compound heterozygous pattern. Our study broadens the variant spectrum of the PKHD1 gene and provides a basis for genetic counseling and diagnosis of ARPKD.

8.
Autops Case Rep ; 14: e2024498, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39021471

RESUMO

Localized cystic kidney disease (LCKD) is a distinct renal disorder characterized by the presence of cysts within specific regions of the kidneys. We present a rare case of a 41-year-old African American man, who presented to our medical center with lower urinary tract symptoms and gross hematuria. The initial assessment culminated in the identification of an uncomplicated urinary tract infection, prompting the prescription of appropriate oral antibiotic therapy. On follow-up after 5 months, the patient presented with gross hematuria. Imaging studies revealed a mixed-density cystic lesion of 2.6 cm situated within the interpolar region of the right kidney. This cystic lesion exhibited intricate septations at the superior pole of the kidney. Robotic-assisted right partial nephrectomy was performed, and pathologic examination was diagnostic for LCKD. This report not only underscores the uniqueness of LCKD but also presents a comprehensive review of the existing literature that pertains to this condition. Particular emphasis is placed upon its inherent benign behavior and its marked divergence from the progressive trajectory commonly associated with other renal diseases. We also explored the incidental findings of the disease, its diverse clinical symptomatology, conceivable etiological underpinnings, and the array of diagnostic modalities used. Finally, similarities in histopathologic findings with polycystic kidney disease and other entities are discussed, underscoring the importance of accurate diagnosis and management.

9.
Cureus ; 16(6): e62597, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39027782

RESUMO

A 61-year-old asymptomatic female with autosomal dominant polycystic kidney disease (ADPKD) on tolvaptan therapy was hospitalized for acute kidney injury (AKI). Nephrolithiasis had already been diagnosed; however, the patient had not undergone any interventions. She also presented with hyponatremia possibly caused by overhydration. Because the estimated glomerular filtration rate (eGFR) decline was significantly higher than the predicted rate, we considered a possible case of postrenal AKI and examined computed tomography (CT), which revealed left hydronephrosis with a 9.4-mm ureteric stone at the level of L3/L4. We restricted fluid intake, which resulted in an increase in sodium levels. She was treated with transurethral lithotripsy (TUL) twice, which successfully improved her kidney function. Although the serum sodium levels increase because of aquaresis in almost all patients treated with tolvaptan, our case was unique in that the patient presented with hyponatremia. We should pay more attention to the periodical follow-up of nephrolithiasis in addition to the increase in total kidney volume and decide the appropriate time to treat nephrolithiasis depending on the case. We should also keep in mind that ADPKD patients have a high frequency of nephrolithiasis and, even if asymptomatic, investigate urinary tract obstruction and hydronephrosis in case of AKI.

10.
J Biol Chem ; : 107574, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39009345

RESUMO

Polycystin-2 (PC2) is mutated in ∼15% of patients with autosomal dominant polycystic kidney disease (ADPKD). PC2 belongs to the family of transient receptor potential (TRP) channels and can function as homotetramer. We investigated whether three disease-associated mutations (F629S, C632R or R638C) localized in the channel's pore loop alter ion channel properties of human PC2 expressed in Xenopus laevis oocytes. Expression of wildtype (WT) PC2 typically resulted in small but measurable Na+ inward currents in the absence of extracellular divalent cations. These currents were no longer observed, when individual pore mutations were introduced in WT PC2. Similarly, Na+ inward currents mediated by the F604P gain-of-function (GOF) PC2 construct (PC2 F604P) were abolished by each of the three pore mutations. In contrast, when the mutations were introduced in another GOF construct, PC2 L677A N681A, only C632R had a complete loss-of-function effect, whereas significant residual Na+ inward currents were observed with F629S (∼15 %) and R638C (∼30 %). Importantly, the R638C mutation also abolished the Ca2+ permeability of PC2 L677A N681A and altered its monovalent cation selectivity. To elucidate the molecular mechanisms by which the R638C mutation affects channel function, molecular dynamics (MD) simulations were used in combination with functional experiments and site-directed mutagenesis. Our findings suggest that R638C stabilizes ionic interactions between Na+ ions and the selectivity filter residue D643. This probably explains the reduced monovalent cation conductance of the mutant channel. In summary, our data support the concept that altered ion channel properties of PC2 contribute to the pathogenesis of ADPKD.

11.
bioRxiv ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38948811

RESUMO

Kidney tubular cells are submitted to two distinct mechanical forces generated by the urine flow: shear stress and hydrostatic pressure. In addition, the mechanical properties of the surrounding extracellular matrix modulate tubule deformation under constraints. These mechanical factors likely play a role in the pathophysiology of kidney diseases as exemplified by autosomal dominant polycystic kidney disease, in which pressure, flow and matrix stiffness have been proposed to modulate the cystic dilation of tubules with PKD1 mutations. The lack of in vitro systems recapitulating the mechanical environment of kidney tubules impedes our ability to dissect the role of these mechanical factors. Here we describe a perfused kidney-on-chip with tunable extracellular matrix mechanical properties and hydrodynamic constraints, that allows a decoupling of shear stress and flow. We used this system to dissect how these mechanical cues affect Pkd1 -/- tubule dilation. Our results show two distinct mechanisms leading to tubular dilation. For PCT cells (proximal tubule), overproliferation mechanically leads to tubular dilation, regardless of the mechanical context. For mIMCD-3 cells (collecting duct), tube dilation is associated with a squamous cell morphology but not with overproliferation and is highly sensitive to extracellular matrix properties and hydrodynamic constraints. Surprisingly, flow alone suppressed Pkd1 -/- mIMCD-3 tubule dilation observed in static conditions, while the addition of luminal pressure restored it. Our in vitro model emulating nephron geometrical and mechanical organization sheds light on the roles of mechanical constraints in ADPKD and demonstrates the importance of controlling intraluminal pressure in kidney tubule models.

12.
Case Rep Nephrol Dial ; 14(1): 116-121, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015122

RESUMO

Introduction: Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic kidney disease and the 4th leading cause of renal replacement therapy in the world. ADPKD is a systemic disorder as cysts may develop in several organs. Liver cysts are the most common extrarenal manifestations and are often incidentally detected. Even though cysts do not influence liver function, they can grow to a very great size and can significantly enlarge liver volume, causing structural distortion of the biliary tree and patient discomfort due to the mass effect. Nephrectomy is frequently considered in preparation for renal transplantation in patients with remarkable kidneys' enlargement. There are currently no globally recognized clinical guidelines for nephrectomy. Although cysts do not normally affect liver function in ADPKD, after nephrectomy cases of liver fibrosis and Budd-Chiari have been reported. These are uncommon disorders due to the obstruction of the blood flow in the hepatic venous causing spleen and liver volume enlargement, portal hypertension, and hepatic cirrhosis. Case Presentation: We present a case of hepatic fibrosis with splenomegaly and severe pancytopenia as a tardive complication after bilateral nephrectomy in 47-year-old ADPKD patient. Conclusion: This finding underscores the critical significance of meticulously examining the anatomical relationship between polycystic kidneys and the liver before performing nephrectomy. Additionally, it highlights the importance of assessing liver involvement and associated complications. By integrating liver assessment into the criteria, we can significantly enhance patient care and improve the overall management of ADPKD before kidney transplantation.

13.
Case Rep Nephrol Dial ; 14(1): 104-109, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015124

RESUMO

Introduction: Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disease, which is mainly caused by pathogenic variants in two particular genes: PKD1 and PKD2. ADPKD caused by variants in other genes (GANAB or IFT140) is very rare. Case Report: In a 6-year-old girl examined for abdominal pain, a cystic mass in the upper part of the right kidney was detected during an abdominal ultrasound. She was referred to pediatric oncology and urology for suspicion of a tumorous mass and the condition was assessed as a cystic nephroma. A heminephrectomy was then performed on the upper cystic part of the right kidney. The histological examination was inconclusive; therefore, genetic testing was recommended. Kidney and liver cysts were detected sonographically in the mother, but DNA analysis of the PKD1 and PKD2 genes did not reveal any pathogenic variant; the cause of the pathological formation in the kidneys remained unclear. Nine years later, next-generation sequencing of a panel of genes for kidney disease was performed and a heterozygous deletion was found on chromosome 16; this included exon 13 of the IFT140 gene. The same deletion was found in the patient's mother. Currently, the patient is 14 years old and has mild sonographic findings, normal glomerular filtration, mild proteinuria, and hypertension. Conclusion: Pathogenic variants of the IFT140 gene very rarely cause ADPKD; however, they should be considered in all children with autosomal dominant forms of PKD and asymmetric/atypical cystic kidney involvement or negative findings of PKD1 and PKD2.

14.
Biomedicines ; 12(6)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38927508

RESUMO

INTRODUCTION: the COVID-19 pandemic has brought to light the intricate interplay between viral infections and preexisting health conditions. In the field of kidney diseases, patients with Autosomal Dominant Polycystic Kidney Disease (ADPKD) and Chronic Kidney Disease (CKD) face unique challenges when exposed to the SARS-CoV-2 virus. This study aims to evaluate whether SARS-CoV-2 virus infection impacts renal function differently in patients suffering from ADPKD and CKD when compared to patients suffering only from CKD. MATERIALS AND METHODS: clinical data from 103 patients were collected and retrospectively analyzed. We compared the renal function of ADPKD and CKD patients at two distinct time points: before COVID-19 infection (T0) and 1 year after the infection (T1). We studied also a subpopulation of 37 patients with an estimated glomerular filtration rate (eGFR) < 60 mL/min and affected by ADPKD and CKD. RESULTS: clinical data were obtained from 59 (57.3%) ADPKD patients and 44 (42.7%) CKD patients. At T1, ADPKD patients had significantly higher serum creatinine levels compared to CKD patients, and a significantly lower eGFR was observed only in ADPKD patients with eGFR < 60 mL/min compared to CKD patients (p < 0.01, p < 0.05; respectively). Following COVID-19 infection, ADPKD-CKD patients exhibited significantly higher variation in both median serum creatinine (p < 0.001) and median eGFR (p < 0.001) compared to CKD patients. CONCLUSION: the interplay between COVID-19 and kidney disease is complex. In CKD patients, the relationship between COVID-19 and kidney disease progression is more established, while limited studies exist on the specific impact of COVID-19 on ADPKD patients. Current evidence does not suggest that ADPKD patients are at a higher risk of SARS-CoV-2 infection; however, in our study we showed a significant worsening of the renal function among ADPKD patients, particularly those with an eGFR < 60 mL/min, in comparison to patients with only CKD after a one-year follow-up from COVID-19 infection.

15.
Kidney Int Rep ; 9(6): 1802-1809, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38899202

RESUMO

Introduction: The Mayo imaging classification model (MICM) requires a prestep qualitative assessment to determine whether a patient is in class 1 (typical) or class 2 (atypical), where patients assigned to class 2 are excluded from the MICM application. Methods: We developed a deep learning-based method to automatically classify class 1 and 2 from magnetic resonance (MR) images and provide classification confidence utilizing abdominal T 2 -weighted MR images from 486 subjects, where transfer learning was applied. In addition, the explainable artificial intelligence (XAI) method was illustrated to enhance the explainability of the automated classification results. For performance evaluations, confusion matrices were generated, and receiver operating characteristic curves were drawn to measure the area under the curve. Results: The proposed method showed excellent performance for the classification of class 1 (97.7%) and 2 (100%), where the combined test accuracy was 98.01%. The precision and recall for predicting class 1 were 1.00 and 0.98, respectively, with F 1 -score of 0.99; whereas those for predicting class 2 were 0.87 and 1.00, respectively, with F 1 -score of 0.93. The weighted averages of precision and recall were 0.98 and 0.98, respectively, showing the classification confidence scores whereas the XAI method well-highlighted contributing regions for the classification. Conclusion: The proposed automated method can classify class 1 and 2 cases as accurately as the level of a human expert. This method may be a useful tool to facilitate clinical trials investigating different types of kidney morphology and for clinical management of patients with autosomal dominant polycystic kidney disease (ADPKD).

18.
Cells ; 13(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38891116

RESUMO

Polycystic kidney disease (PKD) is characterized by extensive cyst formation and progressive fibrosis. However, the molecular mechanisms whereby the loss/loss-of-function of Polycystin 1 or 2 (PC1/2) provokes fibrosis are largely unknown. The small GTPase RhoA has been recently implicated in cystogenesis, and we identified the RhoA/cytoskeleton/myocardin-related transcription factor (MRTF) pathway as an emerging mediator of epithelium-induced fibrogenesis. Therefore, we hypothesized that MRTF is activated by PC1/2 loss and plays a critical role in the fibrogenic reprogramming of the epithelium. The loss of PC1 or PC2, induced by siRNA in vitro, activated RhoA and caused cytoskeletal remodeling and robust nuclear MRTF translocation and overexpression. These phenomena were also manifested in PKD1 (RC/RC) and PKD2 (WS25/-) mice, with MRTF translocation and overexpression occurring predominantly in dilated tubules and the cyst-lining epithelium, respectively. In epithelial cells, a large cohort of PC1/PC2 downregulation-induced genes was MRTF-dependent, including cytoskeletal, integrin-related, and matricellular/fibrogenic proteins. Epithelial MRTF was necessary for the paracrine priming of the fibroblast-myofibroblast transition. Thus, MRTF acts as a prime inducer of epithelial fibrogenesis in PKD. We propose that RhoA is a common upstream inducer of both histological hallmarks of PKD: cystogenesis and fibrosis.


Assuntos
Células Epiteliais , Doenças Renais Policísticas , Canais de Cátion TRPP , Proteína rhoA de Ligação ao GTP , Animais , Humanos , Camundongos , Citoesqueleto/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Fibrose , Camundongos Endogâmicos C57BL , Doenças Renais Policísticas/metabolismo , Doenças Renais Policísticas/patologia , Doenças Renais Policísticas/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Transativadores/metabolismo , Canais de Cátion TRPP/metabolismo , Canais de Cátion TRPP/genética
19.
Environ Res ; 257: 119336, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38838751

RESUMO

Polycystic kidney disease is the most prevalent hereditary kidney disease globally and is mainly linked to the overexpression of a gene called PKD1. To date, there is no effective treatment available for polycystic kidney disease, and the practicing treatments only provide symptomatic relief. Discovery of the compounds targeting the PKD1 gene by inhibiting its expression under the disease condition could be crucial for effective drug development. In this study, a molecular docking and molecular dynamic simulation, QSAR, and MM/GBSA-based approaches were used to determine the putative inhibitors of the Pkd1 enzyme from a library of 1379 compounds. Initially, fourteen compounds were selected based on their binding affinities with the Pkd1 enzyme using MOE and AutoDock tools. The selected drugs were further investigated to explore their properties as drug candidates and the stability of their complex formation with the Pkd1 enzyme. Based on the physicochemical and ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) properties, and toxicity profiling, two compounds including olsalazine and diosmetin were selected for the downstream analysis as they demonstrated the best drug-likeness properties and highest binding affinity with Pkd1 in the docking experiment. Molecular dynamic simulation using Gromacs further confirmed the stability of olsalazine and diosmetin complexes with Pkd1 and establishing interaction through strong bonding with specific residues of protein. High biological activity and binding free energies of two complexes calculated using 3D QSAR and Schrodinger module, respectively further validated our results. Therefore, the molecular docking and dynamics simulation-based in-silico approach used in this study revealed olsalazine and diosmetin as potential drug candidates to combat polycystic kidney disease by targeting Pkd1 enzyme.


Assuntos
Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Relação Quantitativa Estrutura-Atividade , Humanos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Canais de Cátion TRPP/química , Canais de Cátion TRPP/genética , Descoberta de Drogas
20.
J Med Ultrasound ; 32(2): 110-115, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38882609

RESUMO

With an estimated prevalence of 1 in 1000 individuals globally, autosomal dominant polycystic kidney disease (ADPKD) stands as the most prevalent inherited renal disorder. Ultrasonography (US) is the most widely used imaging modality in the diagnosis and monitoring of ADPKD. This review discusses the role of US in the evaluation of ADPKD, including its diagnostic accuracy, limitations, and recent advances. An overview of the pathophysiology and clinical manifestations of ADPKD has also been provided. Furthermore, the potential of US as a noninvasive tool for the assessment of disease progression and treatment response is examined. Overall, US remains an essential tool for the management of ADPKD, and ongoing research efforts are aimed at improving its diagnostic and prognostic capabilities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...