RESUMO
The increasing concern over microplastics (MPs) contamination in agricultural soils due to excessive plastic use is a worldwide concern. The objective of this study was to determine which analytical technique is most effective for the analysis of MPs in agricultural soils. Near-infrared spectroscopy (NIR), scanning electron microscopy (SEM), multispectral analysis, and X-ray diffraction were used to analyze sections of clay soil containing varying percentages of virgin white MPs from 0 to 100%. X-ray analysis only detected MPs at high concentrations (20%). However, NIR at 2.300 nm and multispectral analysis at 395 nm demonstrated greater accuracy and sensitivity in distinguishing between all MPs levels. SEM revealed that MPs have an amorphous structure that is distinct from crystalline soil, potentially influencing their interactions with other soil constituents. These findings highlight the value of NIR and multispectral analysis in accurately identifying and measuring MPs in soil. Efficient management plans rely on increased awareness of MPs' environmental impact.
Assuntos
Microplásticos , Microscopia Eletrônica de Varredura , Poluentes do Solo , Poluentes do Solo/análise , Microplásticos/análise , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Difração de Raios X , Monitoramento Ambiental/métodos , Solo/química , AgriculturaRESUMO
Automating infrared spectra interpretation in microplastic identification is of interest since most current methodologies are conducted manually or semi-automatically, which requires substantial processing time and presents a higher accuracy limited to single-polymer materials. Furthermore, when it comes to multicomponent or weathered polymeric materials commonly found in aquatic environments, identification usually becomes considerably depreciated as peaks shift and new signals are frequently observed, representing a significant deviation from reference spectral signatures. Therefore, this study aimed to develop a reference modeling framework for polymer identification through infrared spectra processing, addressing the limitations above. The case study selected for model development was polypropylene (PP) identification, as it is the second most abundant material in microplastics. Therefore, the database comprises 579 spectra with 52.3% containing PP to some degree. Different pretreatment and model parameters were evaluated for a more robust investigation, totaling 308 models, including multilayer perceptron and long-short-term memory architectures. The best model presented a test accuracy of 94.8% within the cross-validation standard deviation interval. Overall, the results achieved in this study indicate an opportunity to investigate the identification of other polymers following the same framework.
Assuntos
Plásticos , Polímeros , Redes Neurais de Computação , PolipropilenosRESUMO
Microplastics are emerging pollutants that have been found in different environmental matrices of marine and coastal ecosystems, where they can generate harmful ecological impacts. Little is known about the current state of microplastic pollution in fragile tropical lagoon ecosystems, such as Ciénaga Grande de Santa Marta (CGSM) in the Caribbean coast of Colombia. This study assesses microplastic pollution in surface waters and sediments, and the occurrence of microplastic ingestion in commercially important fish species from CGSM. In waters, microplastic abundances ranged from 0.0 to 0.3 items L-1 while in sediments they varied from 0.0 to 3.1 items kg-1. The most abundant types of microplastics are fibers and fragments, with polypropylene, polyethylene and high-density polyethylene as the most abundant polymers. Also, 100 (i.e. 21.1%) out of 474 individuals from nine fish species had microplastics in their digestive tracts. Microplastics present in water and sediments and in the digestive tract of the analyzed fish species have similar characteristics, also showing a moderate and statistically significant association. Microplastic abundances are higher near river mouths and in urban areas with a high density of fishing activities and aquaculture infrastructures, which are important sources of contaminants. Microplastic pollution in CGSM represents a threat to the lagoon ecosystem and to local people depending on artisanal fishing. Consequently, effective actions to reduce pollution and its socio-environmental impacts are urgently required.
Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Colômbia , Ecossistema , Monitoramento Ambiental , Humanos , Plásticos , Polietileno , Água , Poluentes Químicos da Água/análiseRESUMO
Microplastic pollution has become a global concern due to its distribution, high abundance, and negative impacts on aquatic ecosystems. These particles enter aquatic systems through the inadequate management of solid waste and wastewater generated from socioeconomic and domestic activities. In Colombia, about 65% of the solid waste generated in coastal populations is improperly managed and discharged into natural water bodies, contributing to microplastic pollution. The present study aimed to determine the abundances, distribution, and physical and chemical characteristics of microplastics in coastal surface waters of the Colombian Caribbean and Pacific. Samplings were carried out at 41 stations distributed across nine study areas during the rainy season of 2017, using a 500-µm mesh plankton net. The microplastic abundances ranged from 0.01 to 8.96 items m-3, with the coastal waters of the Caribbean areas being the most polluted. Microplastics with shapes of fragments, filaments, and foams, composed of polyethylene, polypropylene, and polystyrene, were the most common. A baseline of microplastic pollution in Colombian coastal water was generated, which will serve to evaluate the effectiveness of the environmental measures implemented to significantly reduce this pollution type, within the sustainable development goals.
Assuntos
Microplásticos , Poluentes Químicos da Água , Região do Caribe , Colômbia , Ecossistema , Monitoramento Ambiental , Plásticos , Águas Residuárias , Poluentes Químicos da Água/análiseRESUMO
Poly(3-hydroxybutyrate) (PHB) belongs to the family of polyhydroxyalkanoates, biopolymers used for agricultural, industrial, or even medical applications. However, scaling up the production is still an issue due to the myriad of parameters involved in the fermentation processes. The present work seeks, firstly, to scale up poly(3-hydroxybutyrate) (PHB) production by wild type C. necator ATCC 17697 from shaken flasks to a stirred-tank bioreactor with the optimized media and fructose as carbon source. The second purpose is to improve the production of PHB by applying both the batch and fed-batch fermentation strategies in comparison with previous works of wild type C. necator with fructose. Furthermore, thinking of biomedical applications, physicochemical, and cytotoxicity analyses of the produced biopolymer, are presented. Fed-batch fermentation with an exponential feeding strategy enabled us to achieve the highest values of PHB concentration and productivity, 25.7 g/l and 0.43 g/(l h), respectively. The PHB productivity was 3.3 and 7.2 times higher than the one in batch strategy and shaken flask cultures, respectively. DSC, FTIR, 1H, and 13C NMR analysis led to determine that the biopolymer produced by C. necator ATCC 17697 has a molecular structure and characteristics in agreement with the commercial PHB. Additionally, the biopolymer does not induce cytotoxic effects on the NIH/3T3 cell culture. Due to the improved fermentation strategies, PHB concentration resulted in 40 % higher of the already reported one for wild type C. necator using other fed-batch modes and fructose as a carbon source. Thus the produced PHB could be attractive for biomedical applications, which generate a rising interest in polyhydroxyalkanoates during recent years.
RESUMO
The effects of incorporating polycaprolactone (PCL) in three binary blends with cassava thermoplastic starch (TPS) at TPS/PCL ratios of 60/40, 50/50, and 40/60 were studied. TPS previously obtained by single-screw extrusion was manually mixed with PCL and then transformed by extrusion. The results' analysis focused mainly on monitoring the retrogradation phenomenon in TPS for different storage times at two relative humidities (29% and 54%) and constant temperature (25 °C). With the plasticization of the starch, a predominantly amorphous mass was generated, as evidenced by the scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) results. The results suggested that two opposite processes coexisted simultaneously: retrogradation, which stiffened the material, and plasticization, which softened it, with the latter mechanism predominating at short times and reversing at longer times. With the incorporation of PCL, immiscible blends were obtained in which TPS was the dispersed phase; the mechanical properties improved with the amount of PCL added. The properties of the binary blends as a function of time showed a trend similar to that observed for TPS alone; this finding indicated that the TPS/PCL interactions were not strong enough to affect the structural changes in the TPS, which continued to occur regardless of the PCL content. Finally, it was found that for the binary blend, the relative humidity during storage was more significant to the retrogradation phenomenon than the amount of PCL.
RESUMO
This study was focused on the polyhydroxybutyrate (PHB) accumulation property of Bacillus aryabhattai isolated from environment. Twenty-four polyhydroxyalkanoate (PHA) producers were screened out from sixty-two environmental bacterial isolates based on Sudan Black B colony staining. Based on their PHA accumulation property, six promising isolates were further screened out. The most productive isolate PHB10 was identified as B. aryabhattai PHB10. The polymer production maxima were 3.264 g/L, 2.181 g/L, 1.47 g/L, 1.742 g/L and 1.786 g/L in glucose, fructose, maltose, starch and glycerol respectively. The bacterial culture reached its stationary and declining phases at 18 h and 21 h respectively and indicated growth-associated PHB production. Nuclear Magnetic Resonance (NMR) spectra confirmed the material as PHB. The material has thermal stability between 30 and 140 °C, melting point at 170 °C and maximum thermal degradation at 287 °C. The molecular weight and poly dispersion index of the polymer were found as 199.7 kDa and 2.67 respectively. The bacterium B. aryabhattai accumulating PHB up to 75% of cell dry mass utilizing various carbon sources is a potential candidate for large scale production of bacterial polyhydroxybutyrate.(AU)
Assuntos
Poli-Hidroxialcanoatos , Esgotos Domésticos , Biopolímeros , Polímeros/análise , Bacilos Gram-PositivosRESUMO
Abstract This study was focused on the polyhydroxybutyrate (PHB) accumulation property of Bacillus aryabhattai isolated from environment. Twenty-four polyhydroxyalkanoate (PHA) producers were screened out from sixty-two environmental bacterial isolates based on Sudan Black B colony staining. Based on their PHA accumulation property, six promising isolates were further screened out. The most productive isolate PHB10 was identified as B. aryabhattai PHB10. The polymer production maxima were 3.264 g/L, 2.181 g/L, 1.47 g/L, 1.742 g/L and 1.786 g/L in glucose, fructose, maltose, starch and glycerol respectively. The bacterial culture reached its stationary and declining phases at 18 h and 21 h respectively and indicated growth-associated PHB production. Nuclear Magnetic Resonance (NMR) spectra confirmed the material as PHB. The material has thermal stability between 30 and 140 °C, melting point at 170 °C and maximum thermal degradation at 287 °C. The molecular weight and poly dispersion index of the polymer were found as 199.7 kDa and 2.67 respectively. The bacterium B. aryabhattai accumulating PHB up to 75% of cell dry mass utilizing various carbon sources is a potential candidate for large scale production of bacterial polyhydroxybutyrate.
Assuntos
Bacillus/metabolismo , Poli-Hidroxialcanoatos/biossíntese , Amido/metabolismo , Bacillus/isolamento & purificação , Bacillus/crescimento & desenvolvimento , Bacillus/genética , Meios de Cultura/metabolismo , Meios de Cultura/química , Microbiologia Ambiental , Poli-Hidroxialcanoatos/química , Glicerol/metabolismoRESUMO
This study was focused on the polyhydroxybutyrate (PHB) accumulation property of Bacillus aryabhattai isolated from environment. Twenty-four polyhydroxyalkanoate (PHA) producers were screened out from sixty-two environmental bacterial isolates based on Sudan Black B colony staining. Based on their PHA accumulation property, six promising isolates were further screened out. The most productive isolate PHB10 was identified as B. aryabhattai PHB10. The polymer production maxima were 3.264g/L, 2.181g/L, 1.47g/L, 1.742g/L and 1.786g/L in glucose, fructose, maltose, starch and glycerol respectively. The bacterial culture reached its stationary and declining phases at 18h and 21h respectively and indicated growth-associated PHB production. Nuclear Magnetic Resonance (NMR) spectra confirmed the material as PHB. The material has thermal stability between 30 and 140°C, melting point at 170°C and maximum thermal degradation at 287°C. The molecular weight and poly dispersion index of the polymer were found as 199.7kDa and 2.67 respectively. The bacterium B. aryabhattai accumulating PHB up to 75% of cell dry mass utilizing various carbon sources is a potential candidate for large scale production of bacterial polyhydroxybutyrate.
Assuntos
Bacillus/metabolismo , Poli-Hidroxialcanoatos/biossíntese , Bacillus/genética , Bacillus/crescimento & desenvolvimento , Bacillus/isolamento & purificação , Meios de Cultura/química , Meios de Cultura/metabolismo , Microbiologia Ambiental , Glicerol/metabolismo , Poli-Hidroxialcanoatos/química , Amido/metabolismoRESUMO
Chitosan is a natural copolymer generally available in pharmaceutical and food powders associated with drugs, vitamins, and nutraceuticals. This study focused on monitoring the effect of the morphology and structural features of the chitosan particles for controlling the release profile of the active pharmaceutical ingredient (API) propranolol hydrochloride. Chitosan with distinct molecular mass (low and medium) were used in the formulations as crystalline and irregular particles from commercial raw material, or as spherical, uniform, and amorphous spray-dried particles. The APIâ»copolymer interactions were assessed when adding the drug before (drug-loaded particles) or after the spray drying (only mixed with blank particles). The formulations were further compared with physical mixtures of the API with chitin and microcrystalline cellulose. The scanning electron microscopy (SEM) images, surface area, particle size measurements, X-ray diffraction (XRD) analysis and drug loading have supported the drug release behavior. The statistical analysis of experimental data demonstrated that it was possible to control the drug release behavior (immediate or slow drug release) from chitosan powders using different types of particles.