RESUMO
Several strains were isolated from subsurface soil of the Atacama Desert and were previously assigned to the Micromonospora genus. A polyphasic study was designed to determine the taxonomic affiliation of isolates 4G51T, 4G53, and 4G57. All the strains showed chemotaxonomic properties in line with their classification in the genus Micromonospora, including meso-diaminopimelic acid in the cell wall peptidoglycan, MK-9(H4) as major respiratory quinone, iso-C15:0 and iso-C16:0 as major fatty acids and diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol as major polar lipids. The 16S rRNA gene sequences of strains 4G51T, 4G53, and 4G57 showed the highest similarity (97.9 %) with the type strain of Micromonospora costi CS1-12T, forming an independent branch in the phylogenetic gene tree. Their independent position was confirmed with genome phylogenies, being most closely related to the type strain of Micromonospora kangleipakensis. Digital DNA-DNA hybridization and average nucleotide identity analyses between the isolates and their closest phylogenomic neighbours confirmed that they should be assigned to a new species within the genus Micromonospora for which the name Micromonospora sicca sp. nov. (4G51T=PCM 3031T=LMG 30756T) is proposed.
Assuntos
DNA Bacteriano , Clima Desértico , Ácidos Graxos , Micromonospora , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Microbiologia do Solo , RNA Ribossômico 16S/genética , Micromonospora/genética , Micromonospora/classificação , Micromonospora/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/análise , Ácidos Graxos/química , Peptidoglicano/química , Peptidoglicano/análise , Técnicas de Tipagem Bacteriana , Ácido Diaminopimélico/análise , Parede Celular/química , Chile , Fosfolipídeos/análise , Fosfolipídeos/químicaRESUMO
Cotton (Gossypium hirsutum, Malvaceae) is the most important fiber crop in the world. There are published records of many fungal pathogens attacking Gossypium spp., causing numerous diseases, including powdery mildews. Recently, in 2022, non-cultivated spontaneous G. hirsutum plants bearing powdery mildews symptoms were found at roadsides in two municipalities of the state of Minas Gerais (Brazil): Varginha and Ubá. Such localities are situated ca. 260 km apart, suggesting a broader distribution of this fungus-host association in Brazil. Samples were taken to the laboratory, and an Ovulariopsis-like, asexual stage of Phyllactinia, was identified forming amphigenous colonies, that were more evident, white and cottony, abaxially. Morphological and molecular data- of the ITS and LSU regions- have shown that colonies from those two samples were of the same fungus species, belonging to a previously unknown species of Erysiphaceae (Ascomycota). The fungus fits into the Phyllactinia clade and is described herein as the new species Phyllactinia gossypina sp. nov. This new species belongs to the 'basal Phyllactinia group', a lineage that includes species known only from the Americas. This report expands the list of pathogenic fungi on cotton. It is early to anticipate whether this new powdery mildew represents a threat to cultivated cotton, which is a major crop in Brazil. Nevertheless, further studies about its infectivity to commercial cotton varieties are recommended, since all known Erysiphaceae are specialized obligate plant parasites and several species cause major losses to important crops.
Assuntos
Gossypium , Filogenia , Doenças das Plantas , Gossypium/microbiologia , Brasil , Doenças das Plantas/microbiologia , Ascomicetos/classificação , Ascomicetos/isolamento & purificação , Ascomicetos/genética , Ascomicetos/fisiologia , DNA Fúngico/genéticaRESUMO
Introduction: Sporotrichosis is a subcutaneous mycosis caused by fungi of the genus Sporothrix sp. Phenotypic and genotypic differences have been associated with their geographic distribution, virulence, or clinical manifestation of sporotrichosis. In the past decade, the interest in identifying species of the Sporothrix sp. has been increasing, due to its epidemiological importance and, in consequence, is important to know how to preserve them for future studies, in culture collection. Aims: The purposes of this study were to analyze the global distribution of environmental isolates and/or causal agents of sporotrichosis identified by polyphasic taxonomy, with mandatory use of molecular identification, and to evaluate the percentages and distribution of isolates stored in culture collections. Methods: A systematic review of articles on animal and human sporotrichosis and/or environmental isolation of the fungus, from 2007 to 2023, was done. Results: Our results demonstrated that, S. globosa, S. schenckii, and S. brasiliensis were the most identified species. With respect to the deposit and maintenance of species, we observed that only 17% of the strains of Sporothrix sp. isolated in the world are preserved in a culture collection. Conclusions: This systematic review confirmed a difficulty in obtaining the frequency of Sporothrix species stored in culture collection and insufficient data on the molecular identification mainly of animal sporotrichosis and isolation of Sporothrix sp. in environmental samples.
Assuntos
Sporothrix , Esporotricose , Sporothrix/classificação , Sporothrix/isolamento & purificação , Sporothrix/genética , Esporotricose/microbiologia , Animais , Humanos , Microbiologia Ambiental , Preservação Biológica/métodosRESUMO
Fungal diseases are often linked to poverty, which is associated with poor hygiene and sanitation conditions that have been severely worsened by the COVID-19 pandemic. Moreover, COVID-19 patients are treated with Dexamethasone, a corticosteroid that promotes an immunosuppressive profile, making patients more susceptible to opportunistic fungal infections, such as those caused by Candida species. In this study, we analyzed the prevalence of Candida yeasts in wastewater samples collected to track viral genetic material during the COVID-19 pandemic and identified the yeasts using polyphasic taxonomy. Furthermore, we investigated the production of biofilm and hydrolytic enzymes, which are known virulence factors. Our findings revealed that all Candida species could form biofilms and exhibited moderate hydrolytic enzyme activity. We also proposed a workflow for monitoring wastewater using Colony PCR instead of conventional PCR, as this technique is fast, cost-effective, and reliable. This approach enhances the accurate taxonomic identification of yeasts in environmental samples, contributing to environmental monitoring as part of the One Health approach, which preconizes the monitoring of possible emergent pathogenic microorganisms, including fungi.
Assuntos
COVID-19 , Candida , Águas Residuárias , Fluxo de Trabalho , Águas Residuárias/microbiologia , Águas Residuárias/virologia , Brasil/epidemiologia , Candida/isolamento & purificação , Candida/genética , Candida/classificação , COVID-19/epidemiologia , COVID-19/virologia , Humanos , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Biofilmes , Monitoramento Ambiental/métodos , PandemiasRESUMO
Common bean is considered a legume of great socioeconomic importance, capable of establishing symbioses with a wide variety of rhizobial species. However, the legume has also been recognized for its low efficiency in fixing atmospheric nitrogen. Brazil is a hotspot of biodiversity, and in a previous study, we identified 13 strains isolated from common bean (Phaseolus vulgaris) nodules in three biomes of Mato Grosso do Sul state, central-western Brazil, that might represent new phylogenetic groups, deserving further polyphasic characterization. The phylogenetic tree of the 16S rRNA gene split the 13 strains into two large clades, seven in the R. etli and six in the R. tropici clade. The MLSA with four housekeeping genes (glnII, gyrB, recA, and rpoA) confirmed the phylogenetic allocation. Genomic comparisons indicated eight strains in five putative new species and the remaining five as R. phaseoli. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) comparing the putative new species and the closest neighbors ranged from 81.84 to 92.50% and 24.0 to 50.7%, respectively. Other phenotypic, genotypic, and symbiotic features were evaluated. Interestingly, some strains of both R. etli and R. tropici clades lost their nodulation capacity. The data support the description of the new species Rhizobium cerradonense sp. nov. (CNPSo 3464T), Rhizobium atlanticum sp. nov. (CNPSo 3490T), Rhizobium aureum sp. nov. (CNPSo 3968T), Rhizobium pantanalense sp. nov. (CNPSo 4039T), and Rhizobium centroccidentale sp. nov. (CNPSo 4062T).
Assuntos
Phaseolus , Rhizobium , Brasil , Rhizobium/genética , Filogenia , RNA Ribossômico 16S/genética , Verduras , DNARESUMO
The myrtle rust (MR), caused by Austropuccinia psidii, is a worldwide threat to the cultivated and wild Myrtaceae. Originally from the neotropics, it has spread to North America, Africa, and Asia and has reached geographically isolated areas in the Pacific and Australasia. It is attacking native species in those new ranges and is still spreading and causing great concern for the damage caused to endemic Myrtaceae, and to the environment. Classical biological control is regarded as the most sustainable management option for mitigating such biological invasions. However, there are no examples of introductions of host-specific co-evolved natural enemies of plant pathogens, from their native range, as a management strategy for plant pathogens. In order to explore this neglected approach, a survey of potential fungal natural enemies of A. psidii was initiated recently in the state of Minas Gerais (Brazil). Several purported mycoparasites have been collected from A. Psidii pustules formed on myrtaceous hosts. This included some isolates of dematiaceous fungi recognized as having a Cladosporium-like morphology. Here we present the results of the investigation aimed at elucidating their identity through a polyphasic taxonomic approach. Besides morphological and cultural features, molecular analyses using sequences of translation elongation factor 1-α (EF1) and actin (ACT) were performed. The combination of data generated is presented herein and placed all Cladosporium-like isolates in six species of Cladosporium, namely, Cladosporium angulosum, C. anthropophilum, C. bambusicola, C. benschii, C. guizhouense, and C. macadamiae. None of these have ever been recorded in association with A. psidii. Now, with the identification of these isolates at hand, an evaluation of biocontrol potential of these fungi will be initiated. In contrast with the ready finding of fungicolous (possibly mycoparasitic) fungi on MR in this study, no evidence of those was recorded from Australasia until now.
Assuntos
Basidiomycota , Myrtus , Brasil , Cladosporium/genética , Basidiomycota/genéticaRESUMO
Two new actinobacteria, designated strains IBSBF 2807T and IBSBF 2953T, isolated from scab lesions on potato tubers grown in the southern Brazilian states of Rio Grande do Sul and Santa Catarina, respectively, were characterized and identified through a polyphasic approach. Phylogenetic analyses of 16S rRNA sequences revealed that these two strains belong to the genus Streptomyces. Multilocus sequence analysis using five concatenated genes, atpD, gyrB, recA, rpoB and trpB, allocated strains IBSBF 2807T and IBSBF 2953T in distinct branches of Streptomyces phytopathogenic strains. PCR-RFLP analysis of the atpD gene also confirmed that these strains differ from the type strains of Streptomyces associated with potato scab. The morphological, physiological and biochemical characterization, along with the overall genome-related index properties, indicated that these two strains could be distinguished from their closest phylogenetic relatives and each other. According to the data, IBSBF 2807T and IBSBF 2953T represent two new Streptomyces species related to potato scab. The proposed names for these strains are Streptomyces hilarionis sp. nov. (IBSBF 2807T=CBMAI 2674T=ICMP 24297T=MUM 22.66T) and Streptomyces hayashii sp. nov (IBSBF 2953T=CBMAI 2675T=ICMP 24301T=MUM 22.68T).
Assuntos
Solanum tuberosum , Streptomyces , Ácidos Graxos/química , Análise de Sequência de DNA , Solanum tuberosum/microbiologia , Brasil , Filogenia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de BasesRESUMO
Strain Llam7T was isolated from microbial mat samples from the hypersaline lake Salar de Llamará, located in Taracapá region in the hyper-arid core of the Atacama Desert (Chile). Phenotypic, chemotaxonomic and genomic traits were studied. Phylogenetic analyses based on 16S rRNA gene sequences assigned the strain to the family Micromonosporaceae with affiliation to the genera Micromonospora and Salinispora. Major fatty acids were C17â:â1ω8c, iso-C15â:â0, iso-C16â:â0 and anteiso-C17â:â0. The cell walls contained meso-diaminopimelic acid and ll-2,6 diaminopimelic acid (ll-DAP), while major whole-cell sugars were glucose, mannose, xylose and ribose. The major menaquinones were MK-9(H4) and MK-9(H6). As polar lipids phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol and several unidentified lipids, i.e. two glycolipids, one aminolipid, three phospholipids, one aminoglycolipid and one phosphoglycolipid, were detected. Genome sequencing revealed a genome size of 6.894 Mb and a DNA G+C content of 71.4 mol%. Phylogenetic analyses with complete genome sequences positioned strain Llam7T within the family Micromonosporaceae forming a distinct cluster with Micromonospora (former Xiangella) phaseoli DSM 45730T. This cluster is related to Micromonospora pelagivivens KJ-029T, Micromonospora craterilacus NA12T, and Micromonospora craniellae LHW63014T as well as to all members of the former genera Verrucosispora and Jishengella, which were re-classified as members of the genus Micromonospora, forming a clade distinct from the genus Salinispora. Pairwise whole genome average nucleotide identity (ANI) values, digital DNA-DNA hybridization (dDDH) values, the presence of the diamino acid ll-DAP, and the composition of whole sugars and polar lipids indicate that Llam7T represents a novel species, for which the name Micromonospora tarapacensis sp. nov. is proposed, with Llam7T (=DSM 109510T,=LMG 31023T) as the type strain.
Assuntos
Lagos/microbiologia , Micromonospora , Filogenia , Águas Salinas , Técnicas de Tipagem Bacteriana , Composição de Bases , Chile , DNA Bacteriano/genética , Clima Desértico , Ácido Diaminopimélico/química , Ácidos Graxos/química , Micromonospora/classificação , Micromonospora/isolamento & purificação , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/químicaRESUMO
The rod-shaped and Gram-stain-negative bacterial strain 16FT, isolated from an air sample collected at King George Island, maritime Antarctica, was investigated to determine its taxonomic status. Strain 16FT is strictly aerobic, catalase positive, oxidase positive and non-motile. Strain 16FT hydrolyses casein, lecithin, Tween 20, 60 and 80, but not aesculin, gelatin and starch. Growth of strain 16FT is observed at 0-20 °C (optimum 10 °C), pH 5.0-8.0 (optimum pH 6.0), and in the presence of 0-2.0% NaCl (optimum 0.5%). The predominant menaquinone is MK-6, and the major fatty acids comprise anteiso-C15:0 and iso-C15:0. The major polar lipids are phosphatidylethanolamine, ornithine lipid OL2, unidentified phospholipid PL1 and the unidentified lipids L3 and L6 lacking functional groups. The DNA G + C content based on the draft genome sequence is 32.3 mol%. Sequence analysis of the 16S rRNA gene indicates the highest similarity to Kaistella palustris 3A10T (95.4%), Kaistella chaponensis Sa 1147-06 T (95.2%), Kaistella antarctica AT1013T (95.1%), Kaistella carnis NCTC 13525 T (95.1%) and below 95.0% to other species with validly published names. Phylogenetic analysis based on 16S rRNA gene and whole-genome sequences places strain 16FT in a distinct branch, indicating a separate lineage within the family Weeksellaceae. Based on the data from our polyphasic approach, 16FT represents a novel species of a new genus, for which the name Frigoriflavimonas asaccharolytica gen. nov, sp. nov. is proposed. The type strain is 16FT (= CCM 8975 T = CGMCC No.1.16844 T).
Assuntos
Bacteroidetes , Esterases , Peptídeo Hidrolases , Regiões Antárticas , Técnicas de Tipagem Bacteriana , Bacteroidetes/enzimologia , Bacteroidetes/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2RESUMO
This study aimed to characterize six Streptomyces strains associated with potato scab in south Brazil through polyphasic taxonomy involving morphology, pathogenicity and genetic features. These strains were compared with other potato-scab Streptomyces species mainly S. europaeiscabiei, S. scabiei and S. stelliscabiei. South-Brazilian Streptomyces strains were morphologically distinct from the type strains of S. scabiei (CFBP 4517T) and their genomospecies S. europaeiscabiei (CFBP 4497 T) and S. stelliscabiei (CFBP 4521T), producing a brown substrate mycelium with red borders and cream-grey brown aerial spores. Red-brown diffusible pigment on YME was also observed. The carbon sources L-Arabinose, D-Fructose, D-Glucose, D-Mannitol, meso-Inositol, Raffinose, Rhamnose, Sucrose, D-Xylose were tested for these strains. All strains were pathogenic causing symptoms of necrosis on radish and several potato cultivars commonly used in potato growing areas in Brazil. In greenhouse conditions, the strains caused scab disease and produced deep-pitted lesions covering large areas of the tuber. These results were correlated with presence of pathogenicity marker genes (txtAB, tomA or nec1) detected by PCR amplifications. In both phylogenetic analyses, 16S rRNA and MLSA, Streptomyces sp. Brazilian strains were closely related to S. europaeiscabiei, S. scabiei and S. stelliscabiei species, but they were allocated in separated branches supported by high bootstrap values and/or with low sequence similarity values. Sequencing of whole genome showed an 10,846,379 bp linear chromosome with high GC content (71.3%) consisting of 9179 putative genes, 3 rRNAs, 89 tRNAs and 1 CRISPRS. The molecular data, including genomic features, associated with morphological, biochemical and pathogenic characteristics warrant that the six Streptomyces Brazilian strains represent a new species associated with potato scab in Brazil, which would be named Streptomyces brasiliscabiei with IBSBF 2867T as the type strain.
Assuntos
Solanum tuberosum , Streptomyces , Brasil , Filogenia , Doenças das Plantas , RNA Ribossômico 16S/genética , Streptomyces/genéticaRESUMO
Aspergillus is one of the most common fungal genera found indoors; it is important because it can cause a wide range of diseases in humans. Aspergillus species identification is based on a combination of morphological, physiological, and molecular methods. However, molecular methodologies have rarely been used for the identification of environmental isolates of Aspergillus in Cuba. Therefore, the objective of this work was to identify the species of the genus Aspergillus obtained from houses in Havana, Cuba, through the construction of phylogeny from a partial sequence of the benA gene region, and to analyze the diversity and richness of Aspergillus in the studied municipalities. Isolates of Aspergillus spp. included in this study presented the typical macro- and micromorphology described for the genus. According to this polyphasic characterization, A. niger, A. flavus, A. welwitschiae, A. heteromorphus, A. sydowii, A. tamarii, A. fumigatus, A. clavatus, and A. tubingensis were the most abundant species. Most of the identified species constitute new records for outdoor and indoor environments in Cuba and contribute to the knowledge of fungal biodiversity in the country. These results constitute an alert for the health authorities of the country, since prolonged exposure of the inhabitants to Aspergillus spores can cause severe persistent asthma, among other diseases.
RESUMO
During a bioprospection of bacteria with antimicrobial activity, the actinomycete strain A38T was isolated from a sediment sample of the Carpintero river located in the Gran Piedra Mountains, Santiago de Cuba province (Cuba). This strain was identified as a member of the genus Micromonospora by means of a polyphasic taxonomy study. Strain A38T was an aerobic Gram-positive filamentous bacterium that produced single spores in a well-developed vegetative mycelium. An aerial mycelium was absent. The cell wall contained meso-diaminopimelic acid and the whole-cell sugars were glucose, mannose, ribose and xylose. The major cellular fatty acids were isoC15:0, 10 methyl C17:0, anteiso-C17:0 and iso-C17:0. The predominant menaquinones were MK-10(H4) and MK-10(H6). Phylogenetic analysis of 16S rRNA gene sequences revealed that this strain was closely related to Micromonospora tulbaghiae DSM 45142T (99.5â%), Micromonospora citrea DSM 43903T (99.4â%), Micromonospora marina DSM 45555T (99.4â%), Micromonospora maritima DSM 45782T (99.3â%), Micromonospora sediminicola DSM 45794T (99.3â%), Micromonospora aurantiaca DSM 43813T (99.2â%) and Micromonospora chaiyaphumensis DSM 45246T (99.2â%). The results of OrthoANIu analysis showed the highest similarity to Micromonospora chalcea DSM 43026T (96.4â%). However, the 16S rRNA and gyrB gene sequence-based phylogeny and phenotypic characteristics provided support to distinguish strain A38T as a novel species. On the basis of the results presented here, we propose to classify strain A38T (=LMG 30467T=CECT 30034T) as the type strain of the novel species Micromonospora fluminis sp. nov.
Assuntos
Sedimentos Geológicos/microbiologia , Micromonospora/classificação , Filogenia , Rios/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Cuba , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Micromonospora/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/químicaRESUMO
An actinomycete, strain D1T, was isolated from a freshwater sediment sample collected from the San Pablo river in the La Risueña community, Santiago de Cuba province, Cuba. The strain was identified as a member of the genus Nocardiopsis by means of a polyphasic taxonomic study. It produced a light yellow non-fragmented substrate mycelium, a white well-developed aerial mycelium and straight to flexuous hyphae. No specific spore chains were observed. Strain D1T contained meso-diaminopimelic acid, no diagnostic sugars, and MK-10(H2), MK-10(H4), MK-10 and MK-10(H6) as predominant menaquinones, but not phosphatidylcholine as diagnostic polar lipid of the genus Nocardiopsis. The predominant fatty acids were iso-C16â:â0, 10-methyl-C18â:â0 and anteiso-C17â:â0. Strain D1T showed the highest degree of 16S rRNA gene sequence similarity to Nocardiopsis synnematoformans DSM 44143T (99.8â%), Nocardiopsis dassonvillei subsp. albirubida NBRC 13392T (99.8â%) and Nocardiopsis dassonvillei subsp. dassonvillei DSM 43111T (99.6â%). A genomic OrthoANIu value between D1T and N. dassonvillei subsp. dassonvillei DSM 43111T of 97.63â% and a dDDH value of 78.9â% indicated that strain D1T should be classified in N. dassonvillei. However, phenotypic characteristics distinguished strain D1T from its nearest neighbour taxon. On basis of these results we propose to classify strain D1T (=LMG 30468T=CECT 30033T) as a representative of a novel subspecies of the genus Nocardiopsis, for which the name Nocardiopsis dassonvillei subsp. crassaminis subsp. nov. is proposed. In addition, the genomic distance between N. dassonvillei subsp. albirubida NBRC 13392T and N. dassonvillei subsp. dassonvillei DSM 43111T as determined through OrthoANIu (93.64â%) and dDDH (53.40â%), along with considerable phenotypic and chemotaxonomic differences reported in earlier studies, indicated that the classification of this taxon as Nocardiopsis alborubida Grund and Kroppenstedt 1990 is to be preferred over its classification as N. dassonvillei subsp. albirubida Evtushenko et al. 2000.
Assuntos
Água Doce/microbiologia , Sedimentos Geológicos/microbiologia , Nocardiopsis/classificação , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , Cuba , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Nocardiopsis/isolamento & purificação , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/químicaRESUMO
The aim of the study was to characterise the diversity and niche-specific colonization of Vibrio spp. in a marine aquaria system by a cultivation-dependent approach. A total of 53 Vibrio spp. isolates were cultured from different ecological niches in a marine aquarium including microplastic (MP) and sandy sediment particles (12 weeks after added sterile to the system), detritus, and the surrounding aquarium water. Based on the 16S rRNA gene sequence phylogeny and multilocus sequence analysis (MLSA) the isolates were assigned to seven different phylotypes. Six phylotypes were identified by high probability to the species level. The highest phylotype diversity was cultured from detritus and water (six out of seven phylotypes), while only two phylotypes were cultured from MP and sediment particles. Genomic fingerprinting indicated an even higher genetic diversity of Vibrio spp. at the strain (genotype) level. Again, the highest diversity of genotypes was recovered from detritus and water while only few partially particle-type specific genotypes were cultured from MP and sediment particles. Phylotype V-2 formed an independent branch in the MLSA tree and could not be assigned to a described Vibrio species. Isolates of this phylotype showed highest 16S rRNA gene sequence similarity to type strains of Vibrio japonicus (98.5%) and Vibrio caribbeanicus (98.4%). A representative isolate, strain THAF100T, was characterised by a polyphasic taxonomic approach and Vibrio aquimaris sp. nov., with strain THAF100T (=DSM 109633T=LMG 31434T=CIP 111709T) as type strain, is proposed as novel species.
Assuntos
Ecossistema , Água do Mar/microbiologia , Vibrio/classificação , Vibrio/fisiologia , Animais , Organismos Aquáticos/microbiologia , Técnicas de Tipagem Bacteriana , Biodiversidade , Genes Bacterianos , Genes de RNAr , Variação Genética , Genoma Bacteriano , Genótipo , Sedimentos Geológicos/microbiologia , Tipagem de Sequências Multilocus , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vibrio/genética , Vibrio/isolamento & purificação , Virulência/genéticaRESUMO
This paper describes and illustrates a new species of Laboulbeniales (Ascomycota, Laboulbeniomycetes) recovered from Mastoptera guimaraesi bat flies (Diptera, Streblidae) in Ecuador and Panama. Bat fly-associated Laboulbeniales are still unexplored in the Neotropics, with only four described species of Gloeandromyces and one species of Nycteromyces known. Morphological characteristics and phylogenetic analyses support placement of the new taxon in Gloeandromyces and its recognition as an undescribed species. Gloeandromyces hilleri sp. nov. is easily recognized by 2-3 longitudinal rows of undulations at its perithecial venter. Phylogenetic reconstructions of the large subunit (LSU) ribosomal DNA and the translation elongation factor 1α (TEF1) both resolve G. hilleri and G. nycteribiidarum as sister species. We discuss the utility of LSU and TEF1 as secondary barcodes in Laboulbeniomycetes taxonomy.
Assuntos
Ascomicetos/classificação , Ascomicetos/genética , Código de Barras de DNA Taxonômico , Filogenia , Animais , Ascomicetos/isolamento & purificação , Quirópteros , Código de Barras de DNA Taxonômico/métodos , DNA Fúngico/genética , Dípteros/microbiologia , Equador , Feminino , Masculino , PanamáRESUMO
Three presumptive Modestobacter strains isolated from a high altitude Atacama Desert soil were the subject of a polyphasic study. The isolates, strains 1G4T, 1G51 and 1G52, were found to have chemotaxonomic and morphological properties that were consistent with their assignment to the genus Modestobacter. They formed a well supported clade in Modestobacter 16S rRNA gene trees and were most closely related to the type strain of 'Modestobacter excelsi' (99.8-99.9% similarity). They were also closely related to the type strains of Modestobacter caceresii (99.6â% similarity), Modestobacter italicus (99.7-99.9% similarity), Modestobacter lacusdianchii (98.4-99.2% similarity), Modestobacter marinus (99.4-99.5% similarity) and Modestobacter roseus (99.3-99.5% similarity), but were distinguished from their closest relatives by a combination of phenotypic features. Average nucleotide identity and digital DNA:DNA hybridization similarities drawn from comparisons of draft genome sequences of isolate 1G4T and its closest phylogenetic neighbours mentioned above, were well below the threshold used to assign closely related strains to the same species. The close relationship between isolate 1G4T and the type strain of M. excelsi was showed in a phylogenomic tree containing representative strains of family Geodermatophilaceae. The draft genome sequence of isolate 1G4T (size 5.18 Kb) was shown to be rich in stress related genes providing further evidence that the abundance of Modestobacter propagules in Atacama Desert habitats reflects their adaptation to the harsh environmental conditions prevalent in this biome. In light of all of these data it is proposed that the isolates be assigned to a novel species in the genus Modestobacter. The name proposed for this taxon is Modestobacter altitudinis sp. nov., with isolate 1G4T (=DSM 107534T=PCM 3003T) as the type strain.
Assuntos
Actinobacteria/classificação , Clima Desértico , Filogenia , Microbiologia do Solo , Actinobacteria/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Chile , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNARESUMO
The taxonomic status of a Nocardiopsis strain, designated H13T, isolated from a high altitude Atacama Desert soil, was established by using a polyphasic approach. The strain was found to have chemotaxonomic, cultural and morphological characteristics consistent with its classification within the genus Nocardiopsis and formed a well-supported clade in the Nocardiopsis phylogenomic tree together with the type strains of Nocardiopsis alborubida, Nocardiopsis dassonvillei and Nocardiopsis synnematoformans. Strain H13T was distinguished from its closest relatives by low average nucleotide identity (93.2-94.9â%) and in silico DNA-DNA hybridization (52.5-62.4â%) values calculated from draft genome assemblies and by a range of phenotypic properties. On the basis of these results, it is proposed that the isolate be assigned to the genus Nocardiopsis as Nocardiopsis deserti sp. nov. with isolate H13T (=CGMCC 4.7585T=KCTC 49249T) as the type strain.
Assuntos
Actinobacteria/classificação , Altitude , Clima Desértico , Microbiologia do Solo , Actinobacteria/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Chile , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNARESUMO
A Micromonospora strain, designated 5R2A7T, isolated from a high altitude Atacama Desert soil was examined by using a polyphasic approach. Strain 5R2A7T was found to have morphological, chemotaxonomic and cultural characteristics typical of members of the genus Micromonospora. The cell wall contains meso- and hydroxy-diaminopimelic acid, the major whole-cell sugars are glucose, ribose and xylose, the predominant menaquinones MK-10(H4), MK-10(H6), MK-10(H8) and MK-9(H6), the major polar lipids diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and an unknown glycolipid, and the predominant cellular fatty acids iso-C16â:â0, iso-C15â:â0 and 10-methyl C17â:â0. The digital genomic DNA G+C content is 72.3 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain 5R2A7T was closely related to Micromonospora coriariae DSM 44875T (99.8â%) and Micromonospora cremea CR30T (99.7â%), and was separated readily from the latter, its closest phylogenetic neighbour, based on gyrB and multilocus sequence data, by low average nucleotide identity (92.59â%) and in silico DNA-DNA relatedness (51.7â%) values calculated from draft genome assemblies and by a range of chemotaxonomic and phenotypic properties. Consequently, strain 5R2A7T is considered to represent a novel species of Micromonospora for which the name Micromonospora acroterricola sp. nov. is proposed. The type strain is 5R2A7T (=LMG 30755T=CECT 9656T).
Assuntos
Altitude , Clima Desértico , Micromonospora/classificação , Filogenia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , Parede Celular/química , Chile , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Glicolipídeos/química , Micromonospora/isolamento & purificação , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/químicaRESUMO
Streptomyces strain HST28T isolated from the Salar de Huasco, an athalassohaline and poly-extreme high altitude saline wetland located in northern Chile, was the subject of a polyphasic taxonomic study. Strain HST28T showed morphological and chemotaxonomic features in line with its classification in the genus Streptomyces. Optimal growth of strain HST28T was obtained at 28 °C, pH 8-9 and up to 10â% (w/v) NaCl. Single (16S rRNA) and multi-locus gene sequence analyses showed that strain HST28T had a distinct phylogenetic position from its closest relatives, the type strains of Steptomyces aureus and Streptomyces kanamyceticus. Digital DNA-DNA hybridization (23.3 and 31.0â%) and average nucleotide identity (79.3 and 85.6â%) values between strain HST28T and its corresponding relatives mentioned above were below the threshold of 70 and 96â%, respectively, defined for assigning a prokaryotic strains to the same species. Strain HST28T was characterised by the presence of ll-diaminopimelic acid in its peptidoglycan layer; galactose, glucose, ribose and traces of arabinose and mannose as whole-cell sugars; phosphatidylmethylethanolamine, phosphatidylinositol, aminolipid, glycophospholipid and an unidentified lipid as polar lipids; and the predominating menaquinones MK-9(H6), MK-9(H8) and MK-9(H4) (>20â%) as well as anteiso-C15â:â0 and anteiso-C17â:â0 as major fatty acids (>15â%). Based on the phenotypic and genetic results, strain HST28T (DSM 107268T=CECT 9648T) merits recognition as a new species named Streptomyces huasconensis sp. nov.
Assuntos
Altitude , Filogenia , Salinidade , Streptomyces/classificação , Áreas Alagadas , Técnicas de Tipagem Bacteriana , Composição de Bases , Chile , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Peptidoglicano/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Streptomyces/isolamento & purificação , Vitamina K 2/análogos & derivados , Vitamina K 2/químicaRESUMO
Based on morphological and molecular phylogenetic markers and the fertility of sexual crosses, two novel species of Fusarium associated with Dactylopius opuntiae (Hemiptera: Dactylopiidae) and Aleurocanthus woglumi (Hemiptera: Aleyrodidae) from northeastern Brazil are described as Fusarium caatingaense and F. pernambucanum. Partial sequences of five loci were generated for 29 entomopathogenic Fusarium isolates. Multilocus phylogenetic analyses demonstrated that F. caatingaense and F. pernambucanum belong to the Incarnatum clade of the Fusarium incarnatum-equiseti species complex (FIESC). These species displayed common morphological characters such as the production of various types of aerial conidia formed on monophialides and polyphialides and differ from each other mainly in the dimensions and morphology of their sporodochial conidia. Mating type polymerase chain reaction (PCR) revealed 17 MAT1-1 isolates and 12 MAT1-2 isolates, all of them heterothallic. Fertile perithecia were produced in 4.2% of infraspecific crosses of F. caatingaense and in 13.3% of infraspecific crosses of F. pernambucanum after 2-3 wk. Crosses between F. caatingaense and F. pernambucanum did not result in fertile perithecia. We demonstrate the existence of a sexual stage in species of the Incarnatum clade and describe the morphological characters of these sexual morphs for the first time. These results suggest that previously unknown sexual cycles contribute to the high genetic diversity within FIESC.