Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Toxicol In Vitro ; 100: 105893, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002813

RESUMO

BACKGROUND: Polystyrene nanoplastics (PS-NPs), are ubiquitous pollution sources in human environments, posing significant biosafety and health risks. While recent studies, including our own, have illustrated that PS-NPs can breach the blood-testis barrier and impact germ cells, there remains a gap in understanding their effects on specific spermatogenic cells such as spermatocytes. METHODS AND RESULTS: Herein, we employed an integrated approach encompassing phenotype, metabolomics, and transcriptomics analyses to assess the molecular impact of PS-NPs on mouse spermatocyte-derived GC-2spd(ts) cells. Optimal exposure conditions were determined as 24 h with 50 nm PS-NPs at 12.5 µg/mL and 90 nm PS-NPs at 50 µg/mL for subsequent multi-omics analysis. Our findings revealed that PS-NPs significantly influenced proliferation and viability, causing alterations in transcriptome and metabolome profiles. Transcriptomics analysis of GC-2spd(ts) cells exposed to PS-NPs indicated the pivotal involvement of cell proliferation and cycle, autophagy, ferroptosis, and redox reaction pathways in PS-NP-induced effects on the proliferation and viability of GC-2spd(ts) cells. Furthermore, metabolomics analysis identified major changes in amino acid metabolism, cyanoamino acid metabolism, and purine and pyrimidine metabolism following PS-NP exposure. CONCLUSION: Our integrated approach, combining metabolomics and transcriptomics profiles with phenotype data, enhances our understanding of the adverse effects of PS-NPs on germ cells.

2.
Chemosphere ; : 142777, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971444

RESUMO

As a part of industrial or commercial discharge, the influx of nanoplastics (NPs) to the wastewater treatment plants is inevitable. Consequently, it has become a must to understand the effects of these NPs on different unit processes. This study aimed to investigate the impact of three different concentrations of polystyrene nano plastics (PsNPs) on the fermentation of primary sludge (PrS), implemented in batch anaerobic bioreactors, at pH 5 and 10, considering the pH-dependent nature of the fermentation process. The results showed that PsNPs stimulated hydrogen gas production at a lower dose (50 µg/L), while a significant gas suppression was denoted at higher concentrations (150 µg/L, 250 µg/L). In both acidic and alkaline conditions, propionic and acetic acid predominated, respectively, followed by n-butyric acid. Under both acidic and alkaline conditions, exposure to PsNPs boosted the propagation of various antibiotic resistance genes (ARGs), including tetracycline, macrolide, ß-lactam and sulfonamide resistance genes, and integrons. Notably, under alkaline condition, the abundance of sul2 gene in the 250 µg PsNPs/L batch exhibited a 2.4-fold decrease compared to the control batch. The response of the microbial community to PsNPs exposure exhibited variations at different pH values. Bacteroidetes prevailed at both pH conditions, with their relative abundance increasing after PsNPs exposure, indicating a positive impact of PsNPs on PrS solubilization. Adverse impacts, however, were detected in Firmicutes, Chloroflexi and Actinobacteria. The observed variations in the survival rates of various microbes stipulate that they do not have the same tolerance levels under different pH conditions.

3.
Ecotoxicol Environ Saf ; 282: 116749, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39024942

RESUMO

Excessive nanoplastics not only pose a direct threat to the environment but also have the propensity to adsorb and interact with other pollutants, exacerbating their impact. The coexistence of nanoplastics and heavy metals in soils is a prevalent phenomenon. However, limited research existed about the joint effects of the two contaminants on soil organisms. In this paper, we ascertained the combined toxicity of polystyrene nanoplastics (PS-NPs) and copper (Cu2+) on soil organisms (Caenorhabditis elegans) at quantities that were present in the environment, further exploring whether the two toxicants were synergistic or antagonistic. The outcomes manifested that single exposure to low-dose PS-NPs (1 µg/L) would not cause significant damage to nematodes. After treatment with PS-NPs and Cu2+, the locomotion ability of nematode was impaired, accompanied by an elevation in reactive oxygen species (ROS) level and a biphasic response in antioxidant enzyme activity. Moreover, combined exposure to PS-NPs and Cu2+ induced the mRNA up-regulation of vit-6, cyp-35a2, hsp-16.2, age-1, and cep-1, both of which were stress-related genes. The comparative analysis between groups (with or without PS-NPs) revealed that the combined exposure group resulted in significantly greater toxic effects on nematodes compared with Cu2+ exposure alone. Furthermore, the addition of PS-NPs influenced the metabolic profiles of Caenorhabditis elegans under Cu2+ stress, with numerous differential metabolites associated with oxidative damage or defense mechanism. Overall, these findings manifested that PS-NPs at the expected environmental concentration elevated Cu2+ toxicity on nematodes.

4.
Ecotoxicol Environ Saf ; 282: 116760, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39029223

RESUMO

The study on the influence of Natural Organic Matter (NOM) over the individual and combined effects of different nanomaterials on marine species is pertinent. The current study explores the role of Extracellular Polymeric Substances (EPS) in influencing the individual and combined toxic effects of polystyrene nanoplastics (PSNPs) viz. aminated (NH2-PSNPs), carboxylated (COOH-PSNPs), and plain PSNPs and TiO2 NPs in the marine crustacean, Artemia salina. A. salina was interacted with pristine PSNPs, pristine TiO2 NPs, EPS incubated PSNPs, EPS incubated TiO2 NPs, binary mixture of PSNPs and TiO2 NPs, and EPS adsorbed binary mixture of PSNPs and TiO2 NPs for 48 h. The present study proves that, when compared to the pristine toxicity of PSNPs and TiO2 NPs, the coexposure of TiO2 NPs with PSNPs resulted in increased toxicity. The adsorption of algal EPS on the NMs (both in their pristine and combined forms) significantly increased the toxic nature of the NMs against A. salina. It was observed that with an increase in the hydrodynamic diameter of the particles, the mortality, oxidative stress, and ingestion of the NMs by A. salina increased. The uptake of Ti by A. salina from 8 mg/L TiO2 NPs, EPS adsorbed 8 mg/L TiO2 NPs, 8 mg/L TiO2 NPs + NH2-PSNPs and the EPS adsorbed mixture of 8 mg/L TiO2 NPs, 8 mg/L TiO2 NPs + NH2-PSNPs was observed to be 0.043, 0.047, 0.186, and 0.307 mg/g of A. salina. The adsorption of algal EPS on the NMs (both in their pristine and combined forms) significantly increased the toxic nature of the NMs against A. salina. The major outcomes from the current study highlight the role of EPS in exacerbating the toxicity of NMs in marine crustaceans.

5.
Plant Physiol Biochem ; 214: 108946, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39032448

RESUMO

There are great concerns for the accumulation in the environment of small dimension plastics, such as micro- and nanoplastics. Due to their small size, which facilitates their uptake by organisms, nanoplastics are of particular concern. The toxic effects of nanoplastics on plants are already reported in the literature, however nothing is known, to date, about the possible effects of climate change, in particular of increasing temperatures, on their toxicity for plants. To address this issue, plants of the water fern Azolla filiculoides were grown at optimal (25 °C) or high (35 °C) temperature, with or without polystyrene nanoplastics, and the effects of these stressors were assessed using a multidisciplinary approach. Green fluorescent polystyrene nanoplastics were used to track their possible uptake by A. filiculoides. The development and physiology of our model plant was adversely affected by both nanoplastics and high temperatures. Overall, histological, morphological, and photosynthetic parameters worsened under co-treatment, in accordance with the increased uptake of nanoplastics under higher temperature, as observed by fluorescence images. Based on our findings, the concern regarding the potential for increased toxicity of pollutants, specifically nanoplastics, at high temperatures is well-founded and warrants attention as a potential negative consequence of climate change. Additionally, there is cause for concern regarding the increase in nanoplastic uptake at high temperatures, particularly if this phenomenon extends to food and feed crops, which could lead to greater entry into the food chain.

6.
Front Plant Sci ; 15: 1391751, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863538

RESUMO

Polystyrene nanoplastics and titanium dioxide nanoparticles are widely spread in all environments, often coexisting within identical frameworks. Both these contaminants can induce negative effects on cell and plant physiology, giving concerns on their possible interaction which could increase each other's harmful effects on plants. Despite the urgency of this issue, there is very little literature addressing it. To evaluate the potential risk of this co-contamination, lentil seeds were treated for five days with polystyrene nanoplastics and titanium dioxide nanoparticles (anatase crystalline form), alone and in co-presence. Cytological analyses, and histochemical and biochemical evaluation of oxidative stress were carried out on isolated shoots and roots. TEM analysis seemed to indicate the absence of physical/chemical interactions between the two nanomaterials. Seedlings under cotreatment showed the greatest cytotoxic and genotoxic effects and high levels of oxidative stress markers associated with growth inhibition. Even if biochemical data did not evidence significant differences between materials treated with polystyrene nanoplastics alone or in co-presence with titanium dioxide nanoparticles, histochemical analysis highlighted a different pattern of oxidative markers, suggesting a synergistic effect by the two nanomaterials. In accordance, the fluorescence signal linked to nanoplastics in root and shoot was higher under cotreatment, perhaps due to the well-known ability of titanium dioxide nanoparticles to induce root tissue damage, in this way facilitating the uptake and translocation of polystyrene nanoplastics into the plant body. In the antioxidant machinery, peroxidase activity showed a significant increase in treated roots, in particular under cotreatment, probably more associated with stress-induced lignin synthesis than with hydrogen peroxide detoxification. Present results clearly indicate the worsening by metal nanoparticles of the negative effects of nanoplastics on plants, underlining the importance of research considering the impact of cotreatments with different nanomaterials, which may better reflect the complex environmental conditions.

7.
ACS Nano ; 18(27): 17509-17520, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38918939

RESUMO

There is growing concern about the distribution of nanoplastics (NPs) in the central nervous system (CNS), whereas intrusion is poorly understood. In this study, fluorescent-labeled polystyrene NPs (PS-NPs) were microinjected into different areas of zebrafish embryo to mimic different routes of exposure. PS-NPs were observed in the brain, eyes, and spinal cord through gametal exposure. It indicated that maternally derived PS-NPs were specially distributed in the CNS of zebrafish during early development. Importantly, these NPs were stranded in the CNS but not transferred to other organs during development. Furthermore, using neuron GFP-labeled transgenic zebrafish, colocalization between NPs and the neuron cells revealed that NPs were mostly enriched in the CNS surrounded but not the neurons. Even so, the intrusion of NPs into the CNS induced the significant upregulation of some neurotransmitter receptors, leading to an inhibited effect on the movement of zebrafish larvae. This work provides insights into understanding the intrusion and distribution of NPs in the CNS and the subsequent potential adverse effects.


Assuntos
Sistema Nervoso Central , Poliestirenos , Peixe-Zebra , Animais , Peixe-Zebra/embriologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/efeitos dos fármacos , Poliestirenos/química , Nanopartículas/química , Nanopartículas/metabolismo , Animais Geneticamente Modificados , Microplásticos/toxicidade
8.
ACS Appl Mater Interfaces ; 16(27): 34524-34537, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38926154

RESUMO

In recent years, the study of microplastics (MPs) and nanoplastics (NPs) and their effects on human health has gained significant attention. The impacts of NPs on lipid metabolism and the specific mechanisms involved remain poorly understood. To address this, we utilized high-throughput sequencing and molecular biology techniques to investigate how endoplasmic reticulum (ER) stress might affect hepatic lipid metabolism in the presence of polystyrene nanoplastics (PS-NPs). Our findings suggest that PS-NPs activate the PERK-ATF4 signaling pathway, which in turn upregulates the expression of genes related to lipid synthesis via the ATF4-PPARγ/SREBP-1 pathway. This activation leads to an abnormal accumulation of lipid droplets in the liver. 4-PBA, a known ER stress inhibitor, was found to mitigate the PS-NPs-induced lipid metabolism disorder. These results demonstrate the hepatotoxic effects of PS-NPs and clarify the mechanisms of abnormal lipid metabolism induced by PS-NPs.


Assuntos
Fator 4 Ativador da Transcrição , Poliestirenos , Transdução de Sinais , eIF-2 Quinase , Poliestirenos/química , Poliestirenos/toxicidade , Poliestirenos/farmacologia , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , Animais , Camundongos , Transdução de Sinais/efeitos dos fármacos , eIF-2 Quinase/metabolismo , eIF-2 Quinase/genética , Transtornos do Metabolismo dos Lipídeos/metabolismo , Transtornos do Metabolismo dos Lipídeos/induzido quimicamente , Transtornos do Metabolismo dos Lipídeos/tratamento farmacológico , Nanopartículas/química , Nanopartículas/toxicidade , Microplásticos/toxicidade , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Camundongos Endogâmicos C57BL
9.
J Hazard Mater ; 474: 134823, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38852254

RESUMO

Nanoplastics (NPs) pollution has become a global environmental problem, raising numerous health concerns. However, the cardiotoxicity of NPs exposure and the underlying mechanisms have been understudied to date. To address this issue, we comprehensively evaluated the cardiotoxicity of polystyrene nanoplastics (PS-NPs) in both healthy and pathological states. Briefly, mice were orally exposed to four different concentrations (0 mg/day, 0.1 mg/day, 0.5 mg/day, and 2.5 mg/day) of 100-nm PS-NPs for 6 weeks to assess their cardiotoxicity in a healthy state. Considering that individuals with underlying health conditions are more vulnerable to the adverse effects of pollution, we further investigated the cardiotoxic effects of PS-NPs on pathological states induced by isoprenaline. Results showed that PS-NPs induced cardiomyocyte apoptosis, cardiac fibrosis, and myocardial dysfunction in healthy mice and exacerbated cardiac remodeling in pathological states. RNA sequencing revealed that PS-NPs significantly upregulated homeodomain interacting protein kinase 2 (HIPK2) in the heart and activated the P53 and TGF-beta signaling pathways. Pharmacological inhibition of HIPK2 reduced P53 phosphorylation and inhibited the activation of the TGF-ß1/Smad3 pathway, which in turn decreased PS-NPs-induced cardiotoxicity. This study elucidated the potential mechanisms underlying PS-NPs-induced cardiotoxicity and underscored the importance of evaluating nanoplastics safety, particularly for individuals with pre-existing heart conditions.


Assuntos
Cardiotoxicidade , Poliestirenos , Proteínas Serina-Treonina Quinases , Proteína Smad3 , Fator de Crescimento Transformador beta1 , Proteína Supressora de Tumor p53 , Regulação para Cima , Animais , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/genética , Proteína Smad3/metabolismo , Proteína Smad3/genética , Cardiotoxicidade/etiologia , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Poliestirenos/toxicidade , Regulação para Cima/efeitos dos fármacos , Masculino , Transdução de Sinais/efeitos dos fármacos , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Apoptose/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Nanopartículas/toxicidade , Miocárdio/metabolismo , Miocárdio/patologia
10.
Birth Defects Res ; 116(6): e2368, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38873958

RESUMO

BACKGROUND: Nanoplastics can be considered a novel contaminant for the environment because of their extensive applications in modern society, which represents a possible threat to humans. Nevertheless, the negative effect of polystyrene nanoplastics (PS-NPs) on male reproduction, fertility, and progeny outcomes is not well known. Thus, the aim of the present work was to calculate the median lethal dose (LD50) and investigate the consequences of exposure to PS-NPs (25 nm) on male reproductive toxicity. METHODS: This investigation first determined the LD50 of PS-NPs in male Wistar rats, and then in a formal study, 24 rats were distributed into three groups (n = 8): the control group; the low-dose group (3 mg/kg bw); and the high-dose group (10 mg/kg bw) of PS-NPs administered orally for 60 days. On the 50th day of administration, the fertility test was conducted. RESULTS: The LD50 was determined to be 2500 mg/kg. PS-NP administration induced significant alternations, mainly indicating mortality in the high-dose group, a significant elevation in body weight gain, declined sperm quality parameters, altered reproductive hormonal levels, thyroid endocrine disruption, an alternation of the normal histo-architecture and the histo-morphometric analysis of the testes, and impaired male fertility. CONCLUSION: Altogether, the current findings provide novel perspectives on PS-NP general toxicity with specific reference to male reproductive toxicity.


Assuntos
Poliestirenos , Ratos Wistar , Reprodução , Testículo , Animais , Masculino , Testículo/efeitos dos fármacos , Testículo/metabolismo , Poliestirenos/toxicidade , Ratos , Reprodução/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Administração Oral , Fertilidade/efeitos dos fármacos , Nanopartículas/toxicidade , Microplásticos/toxicidade , Dose Letal Mediana , Hormônios/metabolismo , Espermatozoides/efeitos dos fármacos
11.
Sci Total Environ ; 940: 173575, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-38823712

RESUMO

Decabromodiphenyl ethane (DBDPE) and polystyrene nanoplastics (PS-NPs) are emerging pollutants that seriously threaten the ecological safety of the aquatic environment. However, the hepatotoxicity effect of their combined exposure on aquatic organisms has not been reported to date. In, this study, the effects of single or co-exposure of DBDPE and PS-NPs on grass carp hepatocytes were explored and biomarkers related to oxidative stress, ferroptosis, and inflammatory cytokines were evaluated. The results show that both single and co-exposure to DBDPE and PS-NPs caused oxidative stress. Oxidative stress was induced by increasing the contents of pro-oxidation factors (ROS, MDA, and LPO), inhibiting the activity of antioxidant enzymes (CAT, GPX, T-SOD, GSH, and T-AOC), and downregulating the mRNA expressions of antioxidant genes (GPX1, GSTO1, SOD1, and CAT); the effects of combined exposure were stronger overall. Both single and co-exposure to DBDPE and PS-NPs also elevated Fe2+ content, promoted the expressions of TFR1, STEAP3, and NCOA4, and inhibited the expressions of FTH1, SLC7A11, GCLC, GSS, and GPX4; these effects resulted in iron overload-induced ferroptosis, where co-exposure had stronger adverse effects on ferroptosis-related biomarkers than single exposure. Moreover, single or co-exposure enhanced inflammatory cytokine levels, as evidenced by increased mRNA expressions of IL-6, IL-12, IL-17, IL-18, IL-1ß, TNF-α, IFN-γ, and MPO. Co-exposure exhibited higher expression of pro-inflammatory cytokines compared to single exposure. Interestingly, the ferroptosis inhibitor ferrostatin-1 intervention diminished the above changes. In brief, the results suggest that DBDPE and PS-NPs trigger elevated levels of inflammatory cytokines in grass crap hepatocytes. This elevation is achieved via oxidative stress and iron overload-mediated ferroptosis, where cytotoxicity was stronger under co-exposure compared to single exposure. Overall, the findings contribute to elucidating the potential hepatotoxicity mechanisms in aquatic organisms caused by co-exposure to DBDPE and PS-NPs.


Assuntos
Bromobenzenos , Carpas , Ferroptose , Hepatócitos , Estresse Oxidativo , Poliestirenos , Poluentes Químicos da Água , Animais , Estresse Oxidativo/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Carpas/fisiologia , Poluentes Químicos da Água/toxicidade , Hepatócitos/efeitos dos fármacos , Poliestirenos/toxicidade , Bromobenzenos/toxicidade , Inflamação/induzido quimicamente , Retardadores de Chama/toxicidade
12.
Ecotoxicol Environ Saf ; 280: 116533, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38850697

RESUMO

The widespread utilization of plastic products ineluctably leads to the ubiquity of nanoplastics (NPs), causing potential risks for aquatic environments. Interactions of NPs with mineral surfaces may affect NPs transport, fate and ecotoxicity. This study aims to investigate systematically the deposition and aggregation behaviors of carboxylated polystyrene nanoplastics (COOH-PSNPs) by four types of clay minerals (illite, kaolinite, Na-montmorillonite, and Ca-montmorillonite) under various solution chemistry conditions (pH, temperature, ionic strength and type). Results demonstrate that the deposition process was dominated by electrostatic interactions. Divalent cations (i.e., Ca2+, Mg2+, Cd2+, or Pb2+) were more efficient for screening surface negative charges and compressing the electrical double layer (EDL). Hence, there were significant increases in deposition rates of COOH-PSNPs with clay minerals in suspension containing divalent cations, whereas only slight increases in deposition rates of COOH-PSNPs were observed in monovalent cations (Na+, K+). Negligible deposition occurred in the presence of anions (F-, Cl-, NO3-, CO32-, SO42-, or PO43-). Divalent Ca2+ could incrementally facilitate the deposition of COOH-PSNPs through Ca2+-assisted bridging with increasing CaCl2 concentrations (0-100 mM). The weakened deposition of COOH-PSNPs with increasing pH (2.0-10.0) was primarily attributed to the reduce in positive charge density at the edges of clay minerals. In suspensions containing 2 mM CaCl2, increased Na+ ionic strength (0-100 mM) and temperature (15-55 ◦C) also favored the deposition of COOH-PSNPs. The ability of COOH-PSNPs deposited by four types of clay minerals followed the sequence of kaolinite > Na-montmorillonite > Ca-montmorillonite > illite, which was related to their structural and surface charge properties. This study revealed the deposition behaviors and mechanisms between NPs and clay minerals under environmentally representative conditions, which provided novel insights into the transport and fate of NPs in natural aquatic environments.


Assuntos
Cálcio , Argila , Poluentes Químicos da Água , Argila/química , Cálcio/química , Cálcio/análise , Poluentes Químicos da Água/química , Concentração Osmolar , Concentração de Íons de Hidrogênio , Silicatos de Alumínio/química , Poliestirenos/química , Temperatura , Minerais/química , Bentonita/química , Nanopartículas/química , Caulim/química , Eletricidade Estática
13.
J Hazard Mater ; 474: 134644, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38838520

RESUMO

Nanoplastics, as emerging pollutants, have harmful effects on living organisms and the environment, the mechanisms and extent of which remain unclear. Microalgae, as one of the most important biological groups in the food chain and sensitive environmental indicators to various pollutants, are considered a suitable option for investigating the effects of nanoplastics. In this study, the effects of polystyrene nanoplastics on the growth rate, dry weight, chlorophyll a and carotenoid levels, proline, and lipid peroxidation in the Spirulina platensis were examined. Three concentrations of 0.1, 1, and 10 mg L-1 of PSNPs were used alongside a control sample with zero concentration, with four repetitions in one-liter containers for 20 days under optimal temperature and light conditions. Various analyses, including growth rate, dry weight, proline, chlorophyll a and carotenoid levels, and lipid peroxidation, were performed. The results indicated that exposure to PSNP stress led to a significant decrease in growth rate, dry weight, and chlorophyll a and carotenoid levels compared to the control sample. Furthermore, this stress increased the levels of proline and lipid peroxidation in Spirulina platensis. Morphological analysis via microscopy supported these findings, indicating considerable environmental risks associated with PSNPs.


Assuntos
Carotenoides , Clorofila , Peroxidação de Lipídeos , Microalgas , Poliestirenos , Prolina , Spirulina , Spirulina/efeitos dos fármacos , Spirulina/crescimento & desenvolvimento , Spirulina/metabolismo , Poliestirenos/toxicidade , Carotenoides/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Prolina/metabolismo , Clorofila/metabolismo , Microalgas/efeitos dos fármacos , Microalgas/crescimento & desenvolvimento , Clorofila A/metabolismo , Nanopartículas/toxicidade
14.
J Agric Food Chem ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832813

RESUMO

Nanoplastics (NPs) are emerging contaminants having persistent nature, diverse ecological impacts, and potential food safety risks. Here, we examined the ecotoxicity of 80 nm polystyrene nanoplastics (PS-NPs) at environmentally relevant concentrations (ERCs, 10 and 100 µg/L), and sublethal concentrations (SLCs, 500 and 2500 µg/L) in Magallana hongkongensis. Results showed that SLCs significantly (p < 0.05) increased superoxide dismutase (SOD), catalase (CAT), and alkaline phosphatase (AKP) activities and altered tnfα, cat, gst, sod, and se-gpx genetic expressions. Further, PS-NP exposure at both levels reduced beneficial bacteria and increased potentially pathogenic bacteria in the gut. In transcriptomic analysis, 5118 and 4180 differentially expressed genes (DEGs) were identified at ERCs, while 5665 and 4817 DEGs were found at SLCs, respectively. Upregulated DEGs enriched lysosomes, ABC transporters, and apoptosis pathways, while downregulated DEGs enriched ribosomal pathways. Overall, ERCs significantly altered gut microbiota and transcriptomic responses, while SLCs, in addition, also impacted the antioxidant and immune systems.

15.
Environ Sci Technol ; 58(26): 11615-11624, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38887928

RESUMO

Nanoplastics (nP) pose hazards to aquatic animals once they are ingested. Significant knowledge gaps exist regarding the nP translocation across the animal intestine, which is the first barrier between the ingested nP and the animal body. We examined the intestinal barrier crossing behavior of nP in an aquatic animal model (Daphnia magna) and determined the translocation mechanism with the help of model "core-shell" polystyrene nanoplastics (nPS) and confocal surface-enhanced Raman spectroscopy (SERS). The Raman reporter (4-mercaptobenzoic acid)-tagged gold "core" of the model nPS enables sensitive and reliable particle imaging by confocal SERS. This method detected SERS signals of model nPS concentration as low as 4.1 × 109 particles/L (equivalent to 0.27 µg/L PS "shell" concentration). The translocation was observed with the help of multilayer stacked Raman maps of SERS signals of the model nPS. With a higher concentration or longer exposure time of the model nPS, uptake and translocation of the plastic particles increased. In addition, we demonstrated that clathrin-dependent endocytosis and macropinocytosis were two major mechanisms underlying the translocation. This study contributes to a mechanistic understanding of nP translocation by using the pioneering model nPS and an analytical toolkit, which undergird further investigations into nP behavior and health effects in aquatic species.


Assuntos
Daphnia , Análise Espectral Raman , Animais , Daphnia/metabolismo , Intestinos , Poliestirenos , Plásticos , Daphnia magna
16.
Ecotoxicol Environ Saf ; 279: 116461, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38763051

RESUMO

Polystyrene nanoplastics (PS-NPs) have been reported to accumulate in the testes and constitute a new threat to reproductive health. However, the exact effects of PS-NPs exposure on testicular cells and the underlying mechanisms remain largely unknown. The C57BL/6 male mice were orally administered with PS-NPs (80 nm) at different dosages (0, 10, and 40 mg/kg/day) for 60 days, and GC-1 cells were treated with PS-NPs in this study. Enlarged seminiferous tubule lumens and a loose and vacuolated layer of spermatogenic cells were observed in PS-NPs-exposed mice. Spermatogenic cells which may be one of the target cells for this reproductive damage, were decreased in the mice from PS-NPs group. PS-NPs caused spermatogenic cells to undergo senescence, manifested as elevated SA-ß-galactosidase activity and activated senescence-related signaling p53-p21/Rb-p16 pathways, and induced cell cycle arrest. Mechanistically, Gene Ontology (GO) enrichment suggested the key role of reactive oxygen species (ROS) in PS-NPs-induced spermatogenic cell senescence, and this result was confirmed by measuring ROS levels. Moreover, ROS inhibition partially attenuated the senescence phenotype of spermatogenic cells and DNA damage. Using the male health atlas (MHA) database, Sirt1 was filtrated as the critical molecule in the regulation of testicular senescence. PS-NPs induced overexpression of the main ROS generator Nox2, downregulated Sirt1, increased p53 and acetylated p53 in vivo and in vitro, whereas these disturbances were partially restored by pterostilbene. In addition, pterostilbene intervention significantly alleviated the PS-NPs-induced spermatogenic cell senescence and attenuated ROS burst. Collectively, our study reveals that PS-NPs exposure can trigger spermatogenic cell senescence mediated by p53-p21/Rb-p16 signaling by regulating the Sirt1/ROS axis. Importantly, pterostilbene intervention may be a promising strategy to alleviate this damage.


Assuntos
Senescência Celular , Camundongos Endogâmicos C57BL , Poliestirenos , Espécies Reativas de Oxigênio , Sirtuína 1 , Animais , Masculino , Sirtuína 1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Senescência Celular/efeitos dos fármacos , Camundongos , Poliestirenos/toxicidade , Testículo/efeitos dos fármacos , Testículo/patologia , Espermatogênese/efeitos dos fármacos , Nanopartículas/toxicidade , Dano ao DNA , Transdução de Sinais/efeitos dos fármacos
17.
Sci Total Environ ; 935: 173285, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38772488

RESUMO

Dietary pollution of Aflatoxin B1 (AFB1) poses a great threat to global food safety, which can result in serious hepatic injuries. Following the widespread use of plastic tableware, co-exposure to microplastics and AFB1 has dramatically increased. However, whether microplastics could exert synergistic effects with AFB1 and amplify its hepatotoxicity, and the underlying mechanisms are still unelucidated. Here, mice were orally exposed to 100 nm polystyrene nanoplastics (NPs) and AFB1 to investigate the influences of NPs on AFB1-induced hepatic injuries. We found that exposure to only NPs or AFB1 resulted in colonic inflammation and the impairment of the intestinal barrier, which was exacerbated by combined exposure to NPs and AFB1. Meanwhile, co-exposure to NPs exacerbated AFB1-induced dysbiosis of gut microbiota and remodeling of the fecal metabolome. Moreover, NPs and AFB1 co-exposure exhibited higher levels of systemic inflammatory factors compared to AFB1 exposure. Additionally, NPs co-exposure further exacerbated AFB1-induced hepatic fibrosis and inflammation, which could be associated with the overactivation of the TLR4/MyD88/NF-κB pathway. Notably, Spearman's correlation analysis revealed that the exacerbation of NPs co-exposure was closely associated with microbial dysbiosis. Furthermore, microbiota from NPs-exposed mice (NPsFMT) partly reproduced the exacerbation of NPs on AFB1-induced systemic and hepatic inflammation, but not fibrosis. In summary, our findings indicate that gut microbiota could be involved in the exacerbation of NPs on AFB1-induced hepatic injuries, highlighting the health risks of NPs.


Assuntos
Aflatoxina B1 , Microbioma Gastrointestinal , Fígado , Microplásticos , Poliestirenos , Aflatoxina B1/toxicidade , Animais , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Poliestirenos/toxicidade , Microplásticos/toxicidade , Fígado/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas , Disbiose/induzido quimicamente , Nanopartículas/toxicidade
18.
Environ Sci Technol ; 58(20): 8665-8674, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38712532

RESUMO

Nanopolystyrene (NPS), a frequently employed nanoplastic, is an emerging environmental contaminant known to cause neurotoxicity in various organisms. However, the potential for transgenerational neurotoxic effects, especially from photoaged NPS (P-NPS), remains underexplored. This study investigated the aging of virgin NPS (V-NPS) under a xenon lamp to simulate natural sunlight exposure, which altered the physicochemical characteristics of the NPS. The parental generation (P0) of Caenorhabditis elegans was exposed to environmental concentrations (0.1-100 µg/L) of V-NPS and P-NPS, with subsequent offspring (F1-F4 generations) cultured under NPS-free conditions. Exposure to 100 µg/L P-NPS resulted in more pronounced deterioration in locomotion behavior in the P0 generation compared to V-NPS; this deterioration persisted into the F1-F2 generations but returned to normal in the F3-F4 generations. Additionally, maternal exposure to P-NPS damaged dopaminergic, glutamatergic, and serotonergic neurons in subsequent generations. Correspondingly, there was a significant decrease in the levels of dopamine, glutamate, and serotonin, associated with reduced expression of neurotransmission-related genes dat-1, eat-4, and tph-1 in the P0 and F1-F2 generations. Further analysis showed that the effects of P-NPS on locomotion behavior were absent in subsequent generations of eat-4(ad572), tph-1(mg280), and dat-1(ok157) mutants, highlighting the pivotal roles of these genes in mediating P-NPS-induced transgenerational neurotoxicity. These findings emphasize the crucial role of neurotransmission in the transgenerational effects of P-NPS on locomotion behavior, providing new insights into the environmental risks associated with exposure to photoaged nanoplastics.


Assuntos
Caenorhabditis elegans , Transmissão Sináptica , Animais , Caenorhabditis elegans/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Locomoção/efeitos dos fármacos
19.
J Hazard Mater ; 472: 134478, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38696962

RESUMO

Previous studies have shown the harmful effects of nanoscale particles on the intestinal tracts of organisms. However, the specific mechanisms remain unclear. Our present study focused on examining the uptake and distribution of polystyrene nanoplastics (PS-NPs) in zebrafish larvae, as well as its toxic effects on the intestine. It was found that PS-NPs, marked with red fluorescence, primarily accumulated in the intestine section. Subsequently, zebrafish larvae were exposed to normal PS-NPs (0.2-25 mg/L) over a critical 10-day period for intestinal development. Histopathological analysis demonstrated that PS-NPs caused structural changes in the intestine, resulting in inflammation and oxidative stress. Additionally, PS-NPs disrupted the composition of the intestinal microbiota, leading to alterations in the abundance of bacterial genera such as Pseudomonas and Aeromonas, which are associated with intestinal inflammation. Metabolomics analysis showed alterations in metabolites that are primarily involved in glycolipid metabolism. Furthermore, MetOrigin analysis showed a significant correlation between bacterial flora (Pedobacter and Bacillus) and metabolites (D-Glycerate 2-phosphate and D-Glyceraldehyde 3-phosphate), which are related to the glycolysis/gluconeogenesis pathways. These findings were further validated through alterations in multiple biomarkers at various levels. Collectively, our data suggest that PS-NPs may impair the intestinal health, disrupt the intestinal microbiota, and subsequently cause metabolic disorders.


Assuntos
Microbioma Gastrointestinal , Glicolipídeos , Larva , Poliestirenos , Peixe-Zebra , Animais , Poliestirenos/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Glicolipídeos/metabolismo , Larva/efeitos dos fármacos , Larva/metabolismo , Nanopartículas/toxicidade , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Microplásticos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade
20.
Sci Total Environ ; 932: 172864, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38697532

RESUMO

The increasing interfacial impacts of polystyrene nanoplastics (PS) and per- and polyfluoroalkyl substances (PFAS) complex aquatic environments are becoming more evident, drawing attention to the potential risks to aquatic animal health and human seafood safety. This study aims to investigate the relative impacts following exposure (7 days) of Crassostrea hongkongensis oysters to the traditional PFAS congener, perfluorooctanoic acid (PFOA) at 50 µg/L, and its novel alternative, hexafluoropropylene oxide dimer acid (HFPO-DA), also known as GenX at 50 µg/L, in conjunction with fluorescent polystyrene nanoplastics (PS, 80 nm) at 1 mg/L. The research focuses on assessing the effects of combined exposure on oxidative stress responses and gut microbiota in the C. hongkongensis. Comparing the final results of PS + GenX (PG) and PS + PFOA (PF) groups, we observed bioaccumulation of PS in both groups, with the former causing more pronounced histopathological damage to the gills and intestines. Furthermore, the content of antioxidant enzymes induced by PG was higher than that of PF, including Superoxide Dismutase (SOD), Catalase (CAT), Glutathione Reductase (GR) and Glutathione Peroxidase (GSH). Additionally, in both PG and PF groups, the expression levels of several immune-related genes were significantly upregulated, including tnfα, cat, stat, tlr-4, sod, and ß-gbp, with no significant difference between these two groups (p > 0.05). Combined exposure induced significant changes in the gut microbiota of C. hongkongensis at its genus level, with a significant increase in Legionella and a notable decrease in Endozoicomonas and Lactococcus caused by PG. These shifts led to beneficial bacteria declining and pathogenic microbes increasing. Consequently, the microbial community structure might be disrupted. In summary, our findings contribute to a deeper understanding of the comparative toxicities of marine bivalves under combined exposure of traditional and alternative PFAS.


Assuntos
Caprilatos , Crassostrea , Fluorocarbonos , Microbioma Gastrointestinal , Estresse Oxidativo , Poliestirenos , Poluentes Químicos da Água , Animais , Fluorocarbonos/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Crassostrea/efeitos dos fármacos , Crassostrea/microbiologia , Poluentes Químicos da Água/toxicidade , Caprilatos/toxicidade , Poliestirenos/toxicidade , Microplásticos/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...