Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Gels ; 10(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38920910

RESUMO

Nanocomposite gels consist of nanoparticles dispersed in a gel matrix. The main aim of this work was to develop nanocomposite gels for topical delivery of Flurbiprofen (FB) for humans and farm animals. Nanocomposite gels were prepared stemming from nanoparticles (NPs) freeze-dried with two different cryoprotectants, D-(+)-trehalose (NPs-TRE) and polyethylene glycol 3350 (NPs-PEG), sterilized by gamma (γ) irradiation, and gelled with Sepigel® 305. Nanocomposite gels with FB-NPs-TRE and FB-NPs-PEG were physiochemically characterized in terms of appearance, pH, morphological studies, porosity, swelling, degradation, extensibility, and rheological behavior. The drug release profile and kinetics were assessed, as well as, the ex vivo permeation of FB was assessed in human, porcine and bovine skin. In vivo studies in healthy human volunteers were tested without FB to assess the tolerance of the gels with nanoparticles. Physicochemical studies demonstrated the suitability of the gel formulations. The ex vivo skin permeation capacity of FB-NPs nanocomposite gels with different cryoprotectants allowed us to conclude that these formulations are suitable topical delivery systems for human and veterinary medicine. However, there were statistically significant differences in the permeation of each formulation depending on the skin. Results suggested that FB-NPs-PEG nanocomposite gel was most suitable for human and porcine skin, and the FB-NPs-TRE nanocomposite gel was most suitable for bovine skin.

2.
Fungal Genet Biol ; 173: 103898, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38815692

RESUMO

The skin and its microbiome function to protect the host from pathogen colonization and environmental stressors. In this study, using the Wisconsin Miniature Swine™ model, we characterize the porcine skin fungal and bacterial microbiomes, identify bacterial isolates displaying antifungal activity, and use whole-genome sequencing to identify biosynthetic gene clusters encoding for secondary metabolites that may be responsible for the antagonistic effects on fungi. Through this comprehensive approach of paired microbiome sequencing with culturomics, we report the discovery of novel species of Corynebacterium and Rothia. Further, this study represents the first comprehensive evaluation of the porcine skin mycobiome and the evaluation of bacterial-fungal interactions on this surface. Several diverse bacterial isolates exhibit potent antifungal properties against opportunistic fungal pathogens in vitro. Genomic analysis of inhibitory species revealed a diverse repertoire of uncharacterized biosynthetic gene clusters suggesting a reservoir of novel chemical and biological diversity. Collectively, the porcine skin microbiome represents a potential unique source of novel antifungals.

3.
Food Chem X ; 22: 101250, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38440057

RESUMO

Herein, six types of polyphenol-crosslinked gelatin conjugates (PGCs) with ≥ two gelatin molecules were prepared using a covalent crosslinking method with two types of polyphenols (tannic acid and caffeic acid) and three types of gelatins (bovine bone gelatin, cold water fish skin gelatin, and porcine skin gelatin) for the emulsion stabilization. The structural and functional properties of the PGCs were dependent on both polyphenol and gelatin types. The storage stability of the conjugate-stabilized emulsions was dependent on the polyphenol crosslinking, NaCl addition, and heating pretreatment. In particular, NaCl addition promoted the liquid-gel transition of the emulsions: 0.2 mol/L > 0.1 mol/L > 0.0 mol/L. Moreover, NaCl addition also increased the creaming stability of the emulsions stabilized by PGCs except tannic acid-crosslinked bovine bone gelatin conjugate. All the results provided useful knowledge on the effects of molecular modification and physical processing on the properties of gelatins.

4.
Int J Pharm ; 655: 124071, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38554738

RESUMO

In vitro permeation studies play a crucial role in early formulation optimisation before extensive animal model investigations. Biological membranes are typically used in these studies to mimic human skin conditions accurately. However, when focusing on protein and peptide transdermal delivery, utilising biological membranes can complicate analysis and quantification processes. This study aims to explore Parafilm®M and Strat-M® as alternatives to dermatomed porcine skin for evaluating protein delivery from dissolving microarray patch (MAP) platforms. Initially, various MAPs loaded with different model proteins (ovalbumin, bovine serum albumin and amniotic mesenchymal stem cell metabolite products) were prepared. These dissolving MAPs underwent evaluation for insertion properties and in vitro permeation profiles when combined with different membranes, dermatomed porcine skin, Parafilm®M, and Strat-M®. Insertion profiles indicated that both Parafilm®M and Strat-M® showed comparable insertion depths to dermatomed porcine skin (in range of 360-430 µm), suggesting promise as membrane substitutes for insertion studies. In in vitro permeation studies, synthetic membranes such as Parafilm®M and Strat-M® demonstrated the ability to bypass protein-derived skin interference, providing more reliable results compared to dermatomed neonatal porcine skin. Consequently, these findings present valuable tools for preliminary screening across various MAP formulations, especially in the transdermal delivery of proteins and peptides.


Assuntos
Parafina , Absorção Cutânea , Animais , Suínos , Recém-Nascido , Humanos , Parafina/metabolismo , Membranas Artificiais , Pele/metabolismo , Administração Cutânea , Preparações Farmacêuticas/metabolismo
5.
Lasers Surg Med ; 56(3): 288-297, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38334177

RESUMO

BACKGROUND AND OBJECTIVE: Fractional radiofrequency microneedling (FRM) is widely used as an option for skin rejuvenation, however there is a lack of histological evidence for the various energy delivery systems available. The objective was to assess thermal denaturation of tissue and the wound healing response in monopolar mode versus bipolar mode. Histological analysis was performed to demonstrate the efficacy of automatic impedance feedback system in monopolar mode. STUDY DESIGN AND METHODS: In this study, the acute thermal effects caused by monopolar FRM treatment to the dorsal skin of pigs were assessed histologically by hematoxylin & eosin (H&E) staining. Then, one session of either monopolar or bipolar FRM was used to treat one or the other side of the pig using varying power levels and pulse widths. The acute and chronic tissue reactions were assessed using H&E, immunofluorescence, and western blot analysis at 0, 14, 30, and 90 days after treatment. The efficacy of the impedance feedback system was also monitored histologically. RESULTS: High-energy FRM treatment produced tissue loss and necrosis. The power level and pulse duration significantly affected the coagulation amount. Histopathology at 0, 14, 30, and 90 days showed that the skin tissue reaction was more pronounced for bipolar compared to monopolar FRM. Immunofluorescence showed the expression of TGF-ß, Ki67, MMP3, and elastin increased dramatically with both modes, but were higher in the bipolar FRM treated side. The automatic impedance feedback system could effectively adjust the output energy. CONCLUSIONS: We found that bipolar FRM produced greater thermal effects, more collagen coagulation, and more pronounced molecular changes compared with monopolar mode in a porcine animal model.


Assuntos
Indução Percutânea de Colágeno , Ondas de Rádio , Suínos , Animais , Necrose , Colágeno , Cicatrização
6.
Int J Pharm ; 649: 123612, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37992980

RESUMO

Sildenafil citrate is an approved drug used for the treatment of erectile dysfunction and premature ejaculation. Despite a widespread application, sildenafil citrate shows numerous adverse cardiovascular effects in high-risk patients. Local transdermal drug delivery of this drug is therefore being explored as an interesting and noninvasive alternative administration method that avoids adverse effects arised from peak plasma drug concentrations. Although human and animal skin represents the most reliable models to perform penetration studies, they involve a series of ethical issues and restrictions. For these reasons new in vitro approaches based on artificially reconstructed human skin or "human skin equivalents" are being developed as possible alternatives for transdermal testing. There is little information, however, on the efficiency of such new in vitro methods on cutaneous penetration of active ingredients. The objective of the current study was to investigate the sildenafil citrate loaded in three commercial transdermal vehicles using 3D full-thickness skin equivalent and compare the results with the permeability experiments using porcine skin. Our results demonstrated that, while the formulation plays an imperative role in an appropriate dermal uptake of sildenafil citrate, the D coefficient results obtained by using the 3D skin equivalent are comparable to those obtained by using the porcine skin when a simple drug suspension is applied (1.17 × 10-10 ± 0.92 × 10-10 cm2/s vs 3.5 × 102 ± 3.3 × 102 cm2/s), suggesting that in such case, this 3D skin model can be a valid alternative for ex-vivo skin absorption experiments.


Assuntos
Prepúcio do Pênis , Pele , Masculino , Animais , Suínos , Humanos , Citrato de Sildenafila/farmacologia , Citrato de Sildenafila/uso terapêutico , Pele/metabolismo , Absorção Cutânea , Administração Cutânea
7.
Microbiol Resour Announc ; 12(12): e0051923, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37921491

RESUMO

We have shown previously that an isolate of Desemzia incerta from porcine skin has antimicrobial activity against methicillin-resistant Staphylococcus aureus. We present here the complete D. incerta genome containing one circular chromosome and five circular plasmids.

8.
Pharmaceutics ; 15(11)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38004623

RESUMO

The influence of size, particle concentration and applied dose (finite vs. infinite dose) on the dermal penetration efficacy of curcumin was investigated in this study. For this, curcumin suspensions with different particle sizes (approx. 20 µm and approx. 250 nm) were produced in different concentrations (0.625-5% (w/w)). The dermal penetration efficacy was determined semi-quantitatively on the ex vivo porcine ear model. The results demonstrated that the presence of particles increases the dermal penetration efficacy of the active compounds being dissolved in the water phase of the formulation. The reason for this is the formation of an aqueous meniscus that develops between particles and skin due to the partial evaporation of water from the vehicle after topical application. The aqueous meniscus contains dissolved active ingredients, and therefore creates a small local spot with a locally high concentration gradient that leads to improved dermal penetration. The increase in penetration efficacy depends on the number of particles in the vehicle, i.e., higher numbers of particles and longer contact times lead to higher penetration efficacy. Therefore, nanocrystals with a high particle concentration were found to be the most suitable formulation principle for efficient and deep dermal penetration of poorly water-soluble active ingredients.

9.
Int J Pharm ; 648: 123562, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37907142

RESUMO

Subcutaneous administration is used to deliver systemically-acting biotherapeutics, e.g. antibodies, and locally-acting biomacromolecules, e.g. hyaluronic acid. However, few preclinical models are available to evaluate post-injection behaviour in the tissue microenvironment. In vivo animal studies are costly, time-consuming, and raise obvious ethical concerns. In vitro models are cost-efficient, high-throughput solutions, but cannot simulate complex skin structure and biological function. An ex vivo model (containing hypodermis) with an extended culture period that enabled longitudinal studies would be of great interest for both the pharmaceutical and cosmeceutical industries. We describe the development of one such ex vivo model, using viable full-thickness porcine skin. Structural integrity was evaluated using a histological scoring system: spongiosis and epidermal detachment were identified as discriminating parameters. Ki67 and Claudin-1 expression reported on epidermal cell proliferation and barrier function, respectively and their expression decreased as a function of incubation time. After optimization, the system was used to investigate the fate/impact of subcutaneously administered hyaluronic acid (HA) formulations. The results showed that HA was localized at the injection site and adjacent adipocytes were well preserved during 5 days' incubation and confirmed that the full-thickness ex vivo porcine skin model could provide a platform for preclinical evaluation of subcutaneously injected biomacromolecules.


Assuntos
Ácido Hialurônico , Pele , Suínos , Animais , Ácido Hialurônico/química , Tela Subcutânea , Injeções , Composição de Medicamentos
10.
Cells ; 12(16)2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37626923

RESUMO

Although melanoma accounts for only 5.3% of skin cancer, it results in >75% of skin-cancer-related deaths. To avoid disfiguring surgeries on the head and neck associated with surgical excision, there is a clear unmet need for other strategies to selectively remove cutaneous melanoma lesions. Mohs surgery is the current treatment for cutaneous melanoma lesions and squamous and basal cell carcinoma. While Mohs surgery is an effective way to remove melanomas in situ, normal tissue is also excised to achieve histologically negative margins. This paper describes a novel combination therapy of nonthermal plasma (NTP) which emits a multitude of reactive oxygen species (ROS) and the injection of a pharmaceutical agent. We have shown that the effects of NTP are augmented by the DNA-damaging prodrug, tirapazamine (TPZ), which becomes a free radical only in conditions of hypoxemia, which is often enhanced in the tumor microenvironment. In this study, we demonstrate the efficacy of the combination therapy through experiments with B16-F10 and 1205 Lu metastatic melanoma cells both in vitro and in vivo. We also show the safety parameters of the therapy with no significant effects of the therapy when applied to porcine skin. We show the need for the intratumor delivery of TPZ in combination with the surface treatment of NTP and present a model of a medical device to deliver this combination therapy. The importance of functional gap junctions is indicated as a mechanism to promote the therapeutic effect. Collectively, the data support a novel therapeutic combination to treat melanoma and the development of a medical device to deliver the treatment in situ.


Assuntos
Melanoma , Neoplasias Cutâneas , Suínos , Animais , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Tirapazamina/farmacologia , Terapia Combinada , Microambiente Tumoral , Melanoma Maligno Cutâneo
11.
mSphere ; 8(4): e0017723, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37404023

RESUMO

The microbiota mediate multiple aspects of skin barrier function, including colonization resistance to pathogens such as Staphylococcus aureus. The endogenous skin microbiota limits S. aureus colonization via competition and direct inhibition. Novel mechanisms of colonization resistance are promising therapeutic targets for drug-resistant infections, such as those caused by methicillin-resistant S. aureus (MRSA). Here, we developed and characterized a swine model of topical microbiome perturbation and MRSA colonization. As in other model systems, topical antimicrobial treatment had a little discernable effect on community diversity though the overall microbial load was sensitive to multiple types of intervention, including swabbing. In parallel, we established a porcine skin culture collection and screened 7,700 isolates for MRSA inhibition. Using genomic and phenotypic criteria, we curated three isolates to investigate whether prophylactic colonization would inhibit MRSA colonization in vivo. The three-member consortium together, but not individually, provided protection against MRSA colonization, suggesting cooperation and/or synergy among the strains. Inhibitory isolates were represented across all major phyla of the pig skin microbiota and did not have a strong preference for inhibiting closely related species, suggesting that relatedness is not a condition of antagonism. These findings reveal the porcine skin as an underexplored reservoir of skin commensal species with the potential to prevent MRSA colonization and infection. IMPORTANCE The skin microbiota is protective against pathogens or opportunists such as S. aureus, the most common cause of skin and soft tissue infections. S. aureus can colonize normal skin and nasal passages, and colonization is a risk factor for infection, especially on breach of the skin barrier. Here, we established a pig model to study the competitive mechanisms of the skin microbiota and their role in preventing colonization by MRSA. This drug-resistant strain is also a livestock pathogen, and swine herds can be reservoirs of MRSA carriage. From 7,700 cultured skin isolates, we identified 37 unique species across three phyla that inhibited MRSA. A synthetic community of three inhibitory isolates provided protection together, but not individually, in vivo in a murine model of MRSA colonization. These findings suggest that antagonism is widespread in the pig skin microbiota, and these competitive interactions may be exploited to prevent MRSA colonization.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Microbiota , Infecções Estafilocócicas , Animais , Suínos , Camundongos , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus/genética , Cavidade Nasal , Infecções Estafilocócicas/prevenção & controle , Infecções Estafilocócicas/veterinária
12.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36835390

RESUMO

Skin plays an important role in protection, metabolism, thermoregulation, sensation, and excretion whilst being consistently exposed to environmental aggression, including biotic and abiotic stresses. During the generation of oxidative stress in the skin, the epidermal and dermal cells are generally regarded as the most affected regions. The participation of reactive oxygen species (ROS) as a result of environmental fluctuations has been experimentally proven by several researchers and is well known to contribute to ultra-weak photon emission via the oxidation of biomolecules (lipids, proteins, and nucleic acids). More recently, ultra-weak photon emission detection techniques have been introduced to investigate the conditions of oxidative stress in various living systems in in vivo, ex vivo and in vitro studies. Research into two-dimensional photon imaging is drawing growing attention because of its application as a non-invasive tool. We monitored spontaneous and stress-induced ultra-weak photon emission under the exogenous application of a Fenton reagent. The results showed a marked difference in the ultra-weak photon emission. Overall, these results suggest that triplet carbonyl (3C=O∗) and singlet oxygen (1O2) are the final emitters. Furthermore, the formation of oxidatively modified protein adducts and protein carbonyl formation upon treatment with hydrogen peroxide (H2O2) were observed using an immunoblotting assay. The results from this study broaden our understanding of the mechanism of the generation of ROS in skin layers and the formation/contribution of various excited species can be used as tools to determine the physiological state of the organism.


Assuntos
Peróxido de Hidrogênio , Pele , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Pele/metabolismo , Estresse Oxidativo , Oxirredução , Proteínas/metabolismo
13.
Int J Pharm ; 635: 122692, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36758884

RESUMO

For permeation studies that use excised skin, experimental data may show variability associated with the use of biological tissues. As a consequence, achieving reproducible results and data interpretation may be challenging. The skin parallel artificial membrane permeability assay (skin PAMPA) model has been proposed as a high-throughput tool for predicting skin permeation of chemicals. A number of skin cleansing wipe formulations for the diaper area of infants contain 2-phenoxyethanol (PE) as a preservative and cetylpyridinium chloride (CPC) as a surfactant with antimicrobial activity. However, information regarding cutaneous absorption of PE and CPC in the scientific literatures is remarkably limited. The main aim of the present study was to assess the suitability of the skin PAMPA model for prediction of skin permeation of PE. A secondary aim was to investigate the influence of CPC on the dermal absorption of PE. PE (1 % w/w) was prepared in two vehicles, namely propylene glycol (PG) and water-PG (WP). Permeability of PE was investigated in vitro using the skin PAMPA membrane, porcine skin and human skin under finite dose conditions. The highest permeation of PE was observed for the water-PG preparation with 0.2 % w/w of CPC. This finding was consistently observed in the skin PAMPA model and in Franz cell studies using porcine skin and human skin. Permeation of CPC was not detected in the three permeation models. However, permeation of PE increased significantly (p < 0.05) in the presence of CPC compared with formulations without CPC. When comparing the skin PAMPA data and the mammalian skin data for the cumulative amount of PE permeated, the r2 values for PAMPA-porcine skin and PAMPA-human skin were 0.84 and 0.89, respectively. The findings in this study demonstrate the capability of the skin PAMPA model to differentiate between various doses and formulations and are encouraging for further applications of this model as a high throughput screening tool in topical formulation development.


Assuntos
Membranas Artificiais , Absorção Cutânea , Suínos , Animais , Humanos , Administração Cutânea , Pele/metabolismo , Propilenoglicol/metabolismo , Permeabilidade , Água/metabolismo , Mamíferos
15.
Eur J Pharm Sci ; 182: 106371, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36621615

RESUMO

Topical therapies for chronic skin diseases suffer from a low patient compliance due to the inconvenient treatment regimens of available products. Dissolvable microneedles (MN) with modified release offer an interesting possibility to increase the compliance by acting as a depot in the skin and thereby decreasing the dosing frequency. Furthermore, the bioavailability can be increased significantly by bypassing the barrier of the skin by the direct penetration of the MN into the skin. In this study the depot effect and skin penetration of an innovative dissolvable MN patch was assessed by insertion in ex vivo human skin and in vivo using minipigs. The MN patches are based on biodegradable polymers and the active pharmaceutical ingredients calcipotriol (Calci) and betamethasone-17-21-dipropionate (BDP) used to treat psoriasis. Using computed tomography (CT) and Coherent anti-Stokes Raman scattering (CARS) microscopy it was possible to visualize the skin penetration and follow the morphology of the MN as function of time in the skin. The depot effect was assessed by studying the modified in vitro release in an aqueous buffer and by comparing the drug release of a single application of a patch both ex vivo and in vivo to daily application of a marketed oleogel containing the same active pharmaceutical ingredients. The CT and CARS images showed efficient penetration of the MN patches into the upper dermis and a slow swelling process of the drug containing tip over a period of 8 days. Furthermore, CARS demonstrated that it can be used as a noninvasive technique with potential applicability in clinical settings. The in vitro release studies show a release of 54% over a time period of 30 days. The pharmacological relevance of MNs was confirmed in human skin explants and in vivo after single application and showed a similar response on calcipotriol and BDP mediated signaling events compared to daily application of the active oleogel. Altogether it was demonstrated that the MN can penetrate the skin and have the potential to provide a depot effect.


Assuntos
Agulhas , Pele , Animais , Humanos , Suínos , Preparações Farmacêuticas/metabolismo , Liberação Controlada de Fármacos , Porco Miniatura , Pele/metabolismo , Administração Cutânea , Sistemas de Liberação de Medicamentos/métodos
16.
Adv Wound Care (New Rochelle) ; 12(10): 546-559, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36394961

RESUMO

Objective: Cerium nitrate (CeN) plus silver sulfadiazine (SSD) cream has been used for 40-plus years to manage burns. CeN produces a hardened eschar believed to resist bacterial colonization/infection. To evaluate this potential mechanism, we treated in vitro skin models or Pseudomonas aeruginosa with CeN and measured mechanical properties of the models and bacterial virulence, respectively. Approach: We treated three-dimensional-collagen matrix and ex-vivo-burned porcine skin with CeN and evaluated stiffness and P. aeruginosa penetration. In addition, we treated P. aeruginosa with CeN and evaluated the bacteria's motility, skin model penetration, susceptibility to be phagocytized by the human monocytic cell line THP-1, and ability to stimulate this cell line to produce cytokines. Results: CeN treatment of skin models stiffened them and made them resistant to P. aeruginosa penetration. Inversely, CeN treatment of P. aeruginosa reduced their motility, penetration through skin models (ex-vivo-burned porcine skin), and ability to stimulate cytokine production (tumor necrosis factor-α [TNF-α] and interleukin 8 [IL-8]) by THP-1 cells. In addition, CeN-treated Pseudomonas was more readily phagocytized by THP-1 cells. Finally, P. aeruginosa inoculated on CeN-treated ex-vivo-burned porcine skin was more susceptible to killing by a silver dressing. Innovation: In vitro skin models offer a platform for screening drugs that interfere with bacterial penetration into wounded tissue. Conclusion: CeN treatment reduced P. aeruginosa virulence, altered the mechanical properties of ex-vivo-burned porcine skin and collagen matrix, retarded penetration of P. aeruginosa through the skin models, and resulted in increased vulnerability of P. aeruginosa to killing by antimicrobial wound dressings. These data support the use of CeN in burn management.


Assuntos
Infecções Bacterianas , Queimaduras , Humanos , Animais , Suínos , Pseudomonas aeruginosa , Virulência , Sulfadiazina de Prata/uso terapêutico , Pele/patologia , Infecções Bacterianas/patologia , Queimaduras/terapia
17.
Pharmaceutics ; 16(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38258047

RESUMO

BGP-15 is an active ingredient with many advantages, e.g., beneficial cardiovascular and anti-inflammatory effects. The transdermal administration of BGP-15 has great potential, which has not been investigated yet, despite the fact that it is a non-invasive and safe form of treatment. The aim of our study was to formulate transdermal patches containing BGP-15 and optimize the production with the Box-Behnken design of experiment. The most optimal formulation was further combined with penetration enhancers to improve bioavailability of the active ingredient, and the in vitro drug release and in vitro permeation of BGP-15 from the patches were investigated. FTIR spectra of BGP-15, the formulations and the components were also studied. The most optimal formulation based on the tested parameters was dried for 24 h, with 67% polyvinyl alcohol (PVA) content and low ethanol content. The selected penetration enhancer excipients were not cytotoxic on HaCaT cells. The FTIR measurements and SEM photography proved the compatibility of the active substance and the vehicle; BGP-15 was present in the polymer matrix in dissolved form. The bioavailability of BGP-15 was most significantly enhanced by the combination of Transcutol and Labrasol. The in vitro permeation study confirmed that the formulated patches successfully enabled the transdermal administration of BGP-15.

18.
Pharmaceutics ; 14(12)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36559216

RESUMO

Transdermal drug administration is an elegant method to overcome various side effects of oral or parenteral drug administration. Nevertheless, due to an effective skin barrier, which is provided by the stratum corneum, transdermal drug delivery is sometimes very slow and ineffective. Thus, the effect of a medical device (DERMADROP TDA) for transdermal penetration of drugs in conjunction with a special vehicle emulsion on percutaneous permeation of several substances (with different physicochemical properties) was investigated in Franz-type diffusion cells with porcine skin over 28 h. This medical device disperses pharmaceutical agents via oxygen flow through an application system, which is used in conjunction with specially developed vehicle substances. Substance permeation of various substances with different physicochemical properties (diclofenac, enrofloxacin, flufenamic acid, indomethacin, and salicylic acid) was examined after application with a pipette and with the medical device. Therefore, acceptor media samples were collected up to 28 h after drug administration. Drug concentration in the acceptor medium was determined via high-performance liquid chromatography. Enhanced permeation was observed for diclofenac, enrofloxacin, flufenamic acid, indomethacin, and salicylic acid after oxygen-based administration. This correlates negatively with the molecular weight. Thus, drug administration can effectively be enhanced by a medical device using oxygen.

19.
Int J Pharm ; 628: 122266, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36228883

RESUMO

Human skin remains the most reliable model for studying the transdermal permeation of active compounds. Due to the limited source, porcine skin has been used extensively for performing penetration tests. Performing penetration studies by using human and animal skin, however, would also involve a series of ethical issues and restrictions. For these reasons, new biomimetic artificial barriers are being developed as possible alternatives for transdermal testing. If appropriately optimized, such products can be cost-effective, easily standardized across laboratories, precisely controlled in specific experimental conditions, or even present additional properties compared to the human and animal skin models such as negligible variability between replicates. In this current work we use the skin mimicking barrier (SMB) for drug permeability tests. The aim was to evaluate the suitability of the new barrier for studying the percutaneous absorption of the lipophilic extract of the plant Zingiber officinale Roscoe in vitro and compare its permeability ability with the artificial membrane Permeapad® and porcine skin. Our results showed that the permeability values obtained through the SMB are comparable are comparable to those obtained by using the porcine skin, suggesting that the new barrier may be an acceptable in vitro model for conducting percutaneous penetration experiments.


Assuntos
Biomimética , Absorção Cutânea , Animais , Suínos , Humanos , Administração Cutânea , Pele/metabolismo , Permeabilidade
20.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142211

RESUMO

The present study sought to establish the mitotically stable adult cutaneous fibroblast cell (ACFC) lines stemming from hFUT2×hGLA×HLA-E triple-transgenic pigs followed by trichostatin A (TSA)-assisted epigenetically modulating the reprogrammability of the transgenes permanently incorporated into the host genome and subsequent comprehensive analysis of molecular signatures related to proteomically profiling the generated ACFC lines. The results of Western blot and immunofluorescence analyses have proved that the profiles of relative abundance (RA) noticed for both recombinant human α-galactosidase A (rhα-Gal A) and human leukocyte antigen-E (HLA-E) underwent significant upregulations in tri-transgenic (3×TG) ACFCs subjected to TSA-mediated epigenetic transformation as compared to not only their TSA-unexposed counterparts but also TSA-treated and untreated non-transgenic (nTG) cells. The RT-qPCR-based analysis of porcine tri-genetically engineered ACFCs revealed stable expression of mRNA fractions transcribed from hFUT2, hGLA and HLA-E transgenes as compared to a lack of such transcriptional activities in non-transgenic ACFC variants. Furthermore, although TSA-based epigenomic modulation has given rise to a remarkable increase in the expression levels of Galα1→3Gal (α-Gal) epitopes that have been determined by lectin blotting analysis, their semi-quantitative profiles have dwindled profoundly in both TSA-exposed and unexposed 3×TG ACFCs as compared to their nTG counterparts. In conclusion, thoroughly exploring proteomic signatures in such epigenetically modulated ex vivo models devised on hFUT2×hGLA×HLA-E triple-transgenic ACFCs that display augmented reprogrammability of translational activities of two mRNA transcripts coding for rhα-Gal A and HLA-E proteins might provide a completely novel and powerful research tool for the panel of further studies. The objective of these future studies should be to multiply the tri-transgenic pigs with the aid of somatic cell nuclear transfer (SCNT)-based cloning for the purposes of both xenografting the porcine cutaneous bioprostheses and dermoplasty-mediated surgical treatments in human patients.


Assuntos
Epigenômica , alfa-Galactosidase , Animais , Humanos , alfa-Galactosidase/genética , Animais Geneticamente Modificados , Epigênese Genética , Epitopos , Fibroblastos , Antígenos HLA , Ácidos Hidroxâmicos , Lectinas , Proteômica , RNA Mensageiro , Suínos , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...