Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.924
Filtrar
1.
Nitric Oxide ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972538

RESUMO

In plants, nitric oxide (NO) has become a versatile signaling molecule essential for mediating a wide range of physiological processes under various biotic and abiotic stress conditions. The fundamental function of NO under various stress scenarios has led to a paradigm shift in which NO is now seen as both a free radical liberated from the toxic product of oxidative metabolism and an agent that aids in plant sustenance. Numerous studies on NO biology have shown that NO is an important signal for germination, leaf senescence, photosynthesis, plant growth, pollen growth, and other processes. It is implicated in defense responses against pathogensas well as adaptation of plants in response to environmental cues like salinity, drought, and temperature extremes which demonstrates its multifaceted role. NO can carry out its biological action in a variety of ways, including interaction with protein kinases, modifying gene expression, and releasing secondary messengers. In addition to these signaling events, NO may also be in charge of the chromatin modifications, nitration, and S-nitrosylation-induced posttranslational modifications (PTM) of target proteins. Deciphering the molecular mechanism behind its essential function is essential to unravel the regulatory networks controlling the responses of plants to various environmental stimuli. Taking into consideration the versatile role of NO, an effort has been made to interpret its mode of action based on the post-translational modifications and to cover shreds of evidence for increased growth parameters along with an altered gene expression.

2.
Methods Mol Biol ; 2829: 185-194, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38951334

RESUMO

Insect cell expression has been successfully used for the production of viral antigens as part of commercial vaccine development. As expression host, insect cells offer advantage over bacterial system by presenting the ability of performing post-translational modifications (PTMs) such as glycosylation and phosphorylation thus preserving the native functionality of the proteins especially for viral antigens. Insect cells have limitation in exactly mimicking some proteins which require complex glycosylation pattern. The recent advancement in insect cell engineering strategies could overcome this limitation to some extent. Moreover, cost efficiency, timelines, safety, and process adoptability make insect cells a preferred platform for production of subunit antigens for human and animal vaccines. In this chapter, we describe the method for producing the SARS-CoV2 spike ectodomain subunit antigen for human vaccine development and the virus like particle (VLP), based on capsid protein of porcine circovirus virus 2 (PCV2d) antigen for animal vaccine development using two different insect cell lines, SF9 & Hi5, respectively. This methodology demonstrates the flexibility and broad applicability of insect cell as expression host.


Assuntos
Antígenos Virais , Baculoviridae , Glicoproteína da Espícula de Coronavírus , Animais , Baculoviridae/genética , Antígenos Virais/genética , Antígenos Virais/imunologia , Células Sf9 , Humanos , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Proteínas Recombinantes/genética , Linhagem Celular , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/biossíntese , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Glicosilação , Insetos/genética , Spodoptera , Vacinas contra COVID-19/genética , Vacinas contra COVID-19/imunologia
3.
J Inflamm Res ; 17: 4315-4330, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979436

RESUMO

Background: Post-translational modifications (PTM) significantly influence the pathogenesis and progression of diverse neoplastic conditions. Nevertheless, there has been limited research focusing on the potential of PTM-related genes (PTMRGs) as tumor biomarkers for predicting the survival of specific patients. Methods: The datasets utilized in this research were obtained from the TARGET and GEO repositories, respectively. The gene signature was constructed through the utilization of LASSO Cox regression method. GSEA and GO was used to identify hub pathways associated with risk genes. The functionality of risk genes in osteosarcoma (OS) cell lines was verified through the implementation of the CCK-8 assay, cell cycle analysis, and immunofluorescence assay. Results: Two distinct PTM patterns and gene clusters were finally determined. Significant differences in the prognosis of patients were found among two different PTM patterns and gene clusters, so were in the function enrichment and the landscape of TME immune cell infiltration. Moreover, we examined two external immunotherapy cohorts and determining that patients in the low-risk group was more likely to profit from immunotherapy. In addition, we mapped the expression of the genes in the signature in distinct cells using single-cell analysis. Finally, CCK-8 assay, cell cycle analysis, and immunofluorescence assay were utilized to confirm that RAD21 was expressed and functioned in OS. Conclusion: In conclusion, this study elucidated the potential link between PTM and immune infiltration landscape of OS for the first time and provided a new assessment protocol for the precise selection of treatment strategies for patients with advanced OS.

4.
Adv Exp Med Biol ; 1445: 73-88, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38967751

RESUMO

Immunoglobulin (Ig) has been widely acknowledged to be produced solely by B-lineage cells. However, growing evidence has demonstrated the expression of Ig in an array of cancer cells, as well as normal cells including epithelial cells, epidermal cells, mesangial cells, monocytes, and neutrophils. Ig has even been found to be expressed in non-B cells at immune-privileged sites such as neurons and spermatogenic cells. Despite these non-B cell-derived Igs (non-B-Igs) sharing the same symmetric structures with conventional Igs (B-Igs), further studies have revealed unique characteristics of non-B-Ig, such as restricted variable region and aberrant glycosylation. Moreover, non-B-Ig exhibits properties of promoting malignant behaviours of cancer cells, therefore it could be utilised in the clinic as a potential therapeutic biomarker or target. The elucidation of the generation and regulation of non-B-Ig will certainly broaden our understanding of immunology.


Assuntos
Imunoglobulinas , Humanos , Animais , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , Imunoglobulinas/imunologia , Glicosilação , Linfócitos B/imunologia , Linfócitos B/metabolismo , Neoplasias/imunologia , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo
5.
Curr Atheroscler Rep ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958925

RESUMO

PURPOSE OF REVIEW: Major Depressive Disorder (MDD) is characterized by persistent symptoms such as fatigue, loss of interest in activities, feelings of sadness and worthlessness. MDD often coexist with cardiovascular disease (CVD), yet the precise link between these conditions remains unclear. This review explores factors underlying the development of MDD and CVD, including genetic, epigenetic, platelet activation, inflammation, hypothalamic-pituitary-adrenal (HPA) axis activation, endothelial cell (EC) dysfunction, and blood-brain barrier (BBB) disruption. RECENT FINDINGS: Single nucleotide polymorphisms (SNPs) in the membrane-associated guanylate kinase WW and PDZ domain-containing protein 1 (MAGI-1) are associated with neuroticism and psychiatric disorders including MDD. SNPs in MAGI-1 are also linked to chronic inflammatory disorders such as spontaneous glomerulosclerosis, celiac disease, ulcerative colitis, and Crohn's disease. Increased MAGI-1 expression has been observed in colonic epithelial samples from Crohn's disease and ulcerative colitis patients. MAGI-1 also plays a role in regulating EC activation and atherogenesis in mice and is essential for Influenza A virus (IAV) infection, endoplasmic reticulum stress-induced EC apoptosis, and thrombin-induced EC permeability. Despite being understudied in human disease; evidence suggests that MAGI-1 may play a role in linking CVD and MDD. Therefore, further investigation of MAG-1 could be warranted to elucidate its potential involvement in these conditions.

6.
Cell Mol Neurobiol ; 44(1): 53, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38960968

RESUMO

Parkinsons disease (PD) is a neurodegenerative disorder characterized by dopaminergic neuron loss and alpha-synuclein aggregation. This comprehensive review examines the intricate role of post-translational modifications (PTMs) in PD pathogenesis, focusing on DNA methylation, histone modifications, phosphorylation, SUMOylation, and ubiquitination. Targeted PTM modulation, particularly in key proteins like Parkin, DJ1, and PINK1, emerges as a promising therapeutic strategy for mitigating dopaminergic degeneration in PD. Dysregulated PTMs significantly contribute to the accumulation of toxic protein aggregates and dopaminergic neuronal dysfunction observed in PD. Targeting PTMs, including epigenetic strategies, addressing aberrant phosphorylation events, and modulating SUMOylation processes, provides potential avenues for intervention. The ubiquitin-proteasome system, governed by enzymes like Parkin and Nedd4, offers potential targets for clearing misfolded proteins and developing disease-modifying interventions. Compounds like ginkgolic acid, SUMO E1 enzyme inhibitors, and natural compounds like Indole-3-carbinol illustrate the feasibility of modulating PTMs for therapeutic purposes in PD. This review underscores the therapeutic potential of PTM-targeted interventions in modulating PD-related pathways, emphasizing the need for further research in this promising area of Parkinsons disease therapeutics.


Assuntos
Doença de Parkinson , Processamento de Proteína Pós-Traducional , Humanos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Doença de Parkinson/metabolismo , Doença de Parkinson/tratamento farmacológico , Animais
7.
Essays Biochem ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994669

RESUMO

Metabolism within an organism is regulated by various processes, including post-translational modifications (PTMs). These types of chemical modifications alter the molecular, biochemical, and cellular properties of proteins and allow the organism to respond quickly to different environments, energy states, and stresses. Malate dehydrogenase (MDH) is a metabolic enzyme that is conserved in all domains of life and is extensively modified post-translationally. Due to the central role of MDH, its modification can alter metabolic flux, including the Krebs cycle, glycolysis, and lipid and amino acid metabolism. Despite the importance of both MDH and its extensively post-translationally modified landscape, comprehensive characterization of MDH PTMs, and their effects on MDH structure, function, and metabolic flux remains underexplored. Here, we review three types of MDH PTMs - acetylation, ADP-ribosylation, and methylation - and explore what is known in the literature and how these PTMs potentially affect the 3D structure, enzymatic activity, and interactome of MDH. Finally, we briefly discuss the potential involvement of PTMs in the dynamics of metabolons that include MDH.

8.
Cells ; 13(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38994965

RESUMO

High-density lipoprotein (HDL) is a group of small, dense, and protein-rich lipoproteins that play a role in cholesterol metabolism and various cellular processes. Decreased levels of HDL and HDL dysfunction are commonly observed in individuals with type 2 diabetes mellitus (T2DM), which is also associated with an increased risk for cardiovascular disease (CVD). Due to hyperglycemia, oxidative stress, and inflammation that develop in T2DM, HDL undergoes several post-translational modifications such as glycation, oxidation, and carbamylation, as well as other alterations in its lipid and protein composition. It is increasingly recognized that the generation of HDL modifications in T2DM seems to be the main cause of HDL dysfunction and may in turn influence the development and progression of T2DM and its related cardiovascular complications. This review provides a general introduction to HDL structure and function and summarizes the main modifications of HDL that occur in T2DM. Furthermore, the potential impact of HDL modifications on the pathogenesis of T2DM and CVD, based on the altered interactions between modified HDL and various cell types that are involved in glucose homeostasis and atherosclerotic plaque generation, will be discussed. In addition, some perspectives for future research regarding the T2DM-related HDL modifications are addressed.


Assuntos
Diabetes Mellitus Tipo 2 , Lipoproteínas HDL , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Humanos , Lipoproteínas HDL/metabolismo , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/patologia , Processamento de Proteína Pós-Traducional
9.
Epigenomics ; : 1-22, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884355

RESUMO

Protein stability is a fundamental prerequisite in both experimental and therapeutic applications. Current advancements in high throughput experimental techniques and functional ontology approaches have elucidated that impairment in the structure and stability of proteins is intricately associated with the cause and cure of several diseases. Therefore, it is paramount to deeply understand the physical and molecular confounding factors governing the stability of proteins. In this review article, we comprehensively investigated the evolution of protein stability, examining its emergence over time, its relationship with organizational aspects and the experimental methods used to understand it. Furthermore, we have also emphasized the role of Epigenetics and its interplay with post-translational modifications (PTMs) in regulating the stability of proteins.


Proteins are essential for life and are used in many medical treatments. Understanding what makes proteins stable can help us use them more effectively. This review looks at how different things like temperature and pH affect protein stability. It also discusses how chemical changes in cells, called epigenetic modifications, can impact protein stability. Understanding these factors can help us develop better treatments and therapies.

10.
Genes (Basel) ; 15(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38927711

RESUMO

The high-throughput proteomics data generated by increasingly more sensible mass spectrometers greatly contribute to our better understanding of molecular and cellular mechanisms operating in live beings. Nevertheless, proteomics analyses are based on accurate genomic and protein annotations, and some information may be lost if these resources are incomplete. Here, we show that most proteomics data may be recovered by interconnecting genomics and proteomics approaches (i.e., following a proteogenomic strategy), resulting, in turn, in an improvement of gene/protein models. In this study, we generated proteomics data from Leishmania donovani (HU3 strain) promastigotes that allowed us to detect 1908 proteins in this developmental stage on the basis of the currently annotated proteins available in public databases. However, when the proteomics data were searched against all possible open reading frames existing in the L. donovani genome, twenty new protein-coding genes could be annotated. Additionally, 43 previously annotated proteins were extended at their N-terminal ends to accommodate peptides detected in the proteomics data. Also, different post-translational modifications (phosphorylation, acetylation, methylation, among others) were found to occur in a large number of Leishmania proteins. Finally, a detailed comparative analysis of the L. donovani and Leishmania major experimental proteomes served to illustrate how inaccurate conclusions can be raised if proteomes are compared solely on the basis of the listed proteins identified in each proteome. Finally, we have created data entries (based on freely available repositories) to provide and maintain updated gene/protein models. Raw data are available via ProteomeXchange with the identifier PXD051920.


Assuntos
Genoma de Protozoário , Leishmania donovani , Proteogenômica , Proteínas de Protozoários , Leishmania donovani/genética , Leishmania donovani/metabolismo , Proteogenômica/métodos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Processamento de Proteína Pós-Traducional/genética , Proteômica/métodos , Proteoma/genética , Anotação de Sequência Molecular
11.
Cell Mol Life Sci ; 81(1): 271, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888668

RESUMO

Cystic Fibrosis (CF) is a genetic disease caused by mutations in CFTR gene expressing the anion selective channel CFTR located at the plasma membrane of different epithelial cells. The most commonly investigated variant causing CF is F508del. This mutation leads to structural defects in the CFTR protein, which are recognized by the endoplasmic reticulum (ER) quality control system. As a result, the protein is retained in the ER and degraded via the ubiquitin-proteasome pathway. Although blocking ubiquitination to stabilize the CFTR protein has long been considered a potential pharmacological approach in CF, progress in this area has been relatively slow. Currently, no compounds targeting this pathway have entered clinical trials for CF. On the other hand, the emergence of Orkambi initially, and notably the subsequent introduction of Trikafta/Kaftrio, have demonstrated the effectiveness of molecular chaperone-based therapies for patients carrying the F508del variant and even showed efficacy against other variants. These treatments directly target the CFTR variant protein without interfering with cell signaling pathways. This review discusses the limits and potential future of targeting protein ubiquitination in CF.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Ubiquitinação , Fibrose Cística/metabolismo , Fibrose Cística/genética , Fibrose Cística/tratamento farmacológico , Fibrose Cística/patologia , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Retículo Endoplasmático/metabolismo , Animais , Mutação , Ubiquitina/metabolismo
12.
J Cell Sci ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896010

RESUMO

Mitochondria, which act as sensors of metabolic homeostasis and metabolite signaling, form a dynamic intracellular network of continuously changing shape, size, and localization to respond to localized cellular energy demands. Mitochondrial dynamics and function depend on interactions with the F-actin cytoskeleton that are poorly understood. Here, we show that SET domain protein 3 (SETD3), a recently described actin histidine methyltransferase, directly methylates actin Histidine-73 and enhances F-actin polymerization on mitochondria. SETD3 is a mechano-sensitive enzyme which is localized on the outer mitochondrial membrane and promotes actin polymerization around mitochondrias. SETD3 loss of function leads to diminished F-actin around mitochondria and a decrease in mitochondrial branch length, branch number, and mitochondrial movement. Our functional analysis revealed that SETD3 is required for oxidative phosphorylation and mitochondrial complex I assembly, and function. Our data further indicate that SETD3 regulates F-actin formation around mitochondria and is essential for maintaining mitochondrial morphology, movement, and function. Finally, we discovered that SETD3 levels are regulated by ECM stiffness and regulate mitochondrial shape in response to changes in ECM stiffness. These findings provide new insight into the mechanism for F-actin polymerization around mitochondria.

13.
Front Mol Neurosci ; 17: 1386735, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38883980

RESUMO

Neurodegenerative diseases (NDs) are characterized by abnormalities within neurons of the brain or spinal cord that gradually lose function, eventually leading to cell death. Upon examination of affected tissue, pathological changes reveal a loss of synapses, misfolded proteins, and activation of immune cells-all indicative of disease progression-before severe clinical symptoms become apparent. Early detection of NDs is crucial for potentially administering targeted medications that may delay disease advancement. Given their complex pathophysiological features and diverse clinical symptoms, there is a pressing need for sensitive and effective diagnostic methods for NDs. Biomarkers such as microRNAs (miRNAs) have been identified as potential tools for detecting these diseases. We explore the pivotal role of miRNAs in the context of NDs, focusing on Alzheimer's disease, Parkinson's disease, Multiple sclerosis, Huntington's disease, and Amyotrophic Lateral Sclerosis. The review delves into the intricate relationship between aging and NDs, highlighting structural and functional alterations in the aging brain and their implications for disease development. It elucidates how miRNAs and RNA-binding proteins are implicated in the pathogenesis of NDs and underscores the importance of investigating their expression and function in aging. Significantly, miRNAs exert substantial influence on post-translational modifications (PTMs), impacting not just the nervous system but a wide array of tissues and cell types as well. Specific miRNAs have been found to target proteins involved in ubiquitination or de-ubiquitination processes, which play a significant role in regulating protein function and stability. We discuss the link between miRNA, PTM, and NDs. Additionally, the review discusses the significance of miRNAs as biomarkers for early disease detection, offering insights into diagnostic strategies.

14.
Cells ; 13(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38891060

RESUMO

Mitochondrial aldehyde dehydrogenase-2 (ALDH2) metabolizes acetaldehyde to acetate. People with ALDH2 deficiency and Aldh2-knockout (KO) mice are more susceptible to alcohol-induced tissue damage. However, the underlying mechanisms behind ALDH2-related gut-associated brain damage remain unclear. Age-matched young female Aldh2-KO and C57BL/6J wild-type (WT) mice were gavaged with binge alcohol (4 g/kg/dose, three doses) or dextrose (control) at 12 h intervals. Tissues and sera were collected 1 h after the last ethanol dose and evaluated by histological and biochemical analyses of the gut and hippocampus and their extracts. For the mechanistic study, mouse neuroblast Neuro2A cells were exposed to ethanol with or without an Aldh2 inhibitor (Daidzin). Binge alcohol decreased intestinal tight/adherens junction proteins but increased oxidative stress-mediated post-translational modifications (PTMs) and enterocyte apoptosis, leading to elevated gut leakiness and endotoxemia in Aldh2-KO mice compared to corresponding WT mice. Alcohol-exposed Aldh2-KO mice also showed higher levels of hippocampal brain injury, oxidative stress-related PTMs, and neuronal apoptosis than the WT mice. Additionally, alcohol exposure reduced Neuro2A cell viability with elevated oxidative stress-related PTMs and apoptosis, all of which were exacerbated by Aldh2 inhibition. Our results show for the first time that ALDH2 plays a protective role in binge alcohol-induced brain injury partly through the gut-brain axis, suggesting that ALDH2 is a potential target for attenuating alcohol-induced tissue injury.


Assuntos
Aldeído-Desidrogenase Mitocondrial , Consumo Excessivo de Bebidas Alcoólicas , Lesões Encefálicas , Camundongos Endogâmicos C57BL , Camundongos Knockout , Animais , Aldeído-Desidrogenase Mitocondrial/metabolismo , Aldeído-Desidrogenase Mitocondrial/genética , Camundongos , Consumo Excessivo de Bebidas Alcoólicas/patologia , Lesões Encefálicas/patologia , Lesões Encefálicas/metabolismo , Etanol/toxicidade , Etanol/farmacologia , Feminino , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Hipocampo/patologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos
15.
Epigenetics Chromatin ; 17(1): 19, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825690

RESUMO

BACKGROUND: Over the past several decades, the use of biochemical and fluorescent tags has elucidated mechanistic and cytological processes that would otherwise be impossible. The challenging nature of certain nuclear proteins includes low abundancy, poor antibody recognition, and transient dynamics. One approach to get around those issues is the addition of a peptide or larger protein tag to the target protein to improve enrichment, purification, and visualization. However, many of these studies were done under the assumption that tagged proteins can fully recapitulate native protein function. RESULTS: We report that when C-terminally TAP-tagged CENP-A histone variant is introduced, it undergoes altered kinetochore protein binding, differs in post-translational modifications (PTMs), utilizes histone chaperones that differ from that of native CENP-A, and can partially displace native CENP-A in human cells. Additionally, these tagged CENP-A-containing nucleosomes have reduced centromeric incorporation at early G1 phase and poorly associates with linker histone H1.5 compared to native CENP-A nucleosomes. CONCLUSIONS: These data suggest expressing tagged versions of histone variant CENP-A may result in unexpected utilization of non-native pathways, thereby altering the biological function of the histone variant.


Assuntos
Proteína Centromérica A , Histonas , Nucleossomos , Processamento de Proteína Pós-Traducional , Humanos , Proteína Centromérica A/metabolismo , Histonas/metabolismo , Nucleossomos/metabolismo , Células HeLa , Cinetocoros/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Ligação Proteica
16.
Biomed Pharmacother ; 177: 116982, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38906019

RESUMO

Lactylation is a novel post-translational modification (PTM) involving proteins that is induced by lactate accumulation. Histone lysine lactylation alters chromatin spatial configuration, influencing gene transcription and regulating the expression of associated genes. This modification plays a crucial role as an epigenetic regulatory factor in the progression of various diseases. Glycolytic reprogramming is one of the most extensively studied forms of metabolic reprogramming, recognized as a key hallmark of cancer cells. It is characterized by an increase in glycolysis and the inhibition of the tricarboxylic acid (TCA) cycle, accompanied by significant lactate production and accumulation. The two processes are closely linked by lactate, which interacts in various physiological and pathological processes. On the one hand, lactylation levels generally correlate positively with the extent of glycolytic reprogramming, being directly influenced by the lactate concentration produced during glycolytic reprogramming. On the other hand, lactylation can also regulate glycolytic pathways by affecting the transcription and structural functions of essential glycolytic enzymes. This review comprehensively outlines the mechanisms of lactylation and glycolytic reprogramming and their interactions in tumor progression, immunity, and inflammation, with the aim of elucidating the relationship between glycolytic reprogramming and lactylation.

17.
Acta Neuropathol Commun ; 12(1): 84, 2024 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822421

RESUMO

Alpha-synuclein (αsyn) is an intrinsically disordered protein that aggregates in the brain in several neurodegenerative diseases collectively called synucleinopathies. Phosphorylation of αsyn at serine 129 (PSER129) was considered rare in the healthy human brain but is enriched in pathological αsyn aggregates and is used as a specific marker for disease inclusions. However, recent observations challenge this assumption by demonstrating that PSER129 results from neuronal activity and can be readily detected in the non-diseased mammalian brain. Here, we investigated experimental conditions under which two distinct PSER129 pools, namely endogenous-PSER129 and aggregated-PSER129, could be detected and differentiated in the mammalian brain. Results showed that in the wild-type (WT) mouse brain, perfusion fixation conditions greatly influenced the detection of endogenous-PSER129, with endogenous-PSER129 being nearly undetectable after delayed perfusion fixation (30-min and 1-h postmortem interval). Exposure to anesthetics (e.g., Ketamine or xylazine) before perfusion did not significantly influence endogenous-PSER129 detection or levels. In situ, non-specific phosphatase calf alkaline phosphatase (CIAP) selectively dephosphorylated endogenous-PSER129 while αsyn preformed fibril (PFF)-seeded aggregates and genuine disease aggregates (Lewy pathology and Papp-Lantos bodies in Parkinson's disease and multiple systems atrophy brain, respectively) were resistant to CIAP-mediated dephosphorylation. The phosphatase resistance of aggregates was abolished by sample denaturation, and CIAP-resistant PSER129 was closely associated with proteinase K (PK)-resistant αsyn (i.e., a marker of aggregation). CIAP pretreatment allowed for highly specific detection of seeded αsyn aggregates in a mouse model that accumulates non-aggregated-PSER129. We conclude that αsyn aggregates are impervious to phosphatases, and CIAP pretreatment increases detection specificity for aggregated-PSER129, particularly in well-preserved biological samples (e.g., perfusion fixed or flash-frozen mammalian tissues) where there is a high probability of interference from endogenous-PSER129. Our findings have important implications for the mechanism of PSER129-accumulation in the synucleinopathy brain and provide a simple experimental method to differentiate endogenous-from aggregated PSER129.


Assuntos
Encéfalo , Camundongos Endogâmicos C57BL , alfa-Sinucleína , Animais , Humanos , Masculino , Camundongos , Fosfatase Alcalina/metabolismo , alfa-Sinucleína/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Camundongos Transgênicos , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Agregados Proteicos/fisiologia , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Sinucleinopatias/metabolismo , Sinucleinopatias/patologia
18.
J Cell Sci ; 137(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38855848

RESUMO

Liquid-liquid phase separation (LLPS) has increasingly been found to play pivotal roles in a number of intracellular events and reactions, and has introduced a new paradigm in cell biology to explain protein-protein and enzyme-ligand interactions beyond conventional molecular and biochemical theories. LLPS is driven by the cumulative effects of weak and promiscuous interactions, including electrostatic, hydrophobic and cation-π interactions, among polypeptides containing intrinsically disordered regions (IDRs) and describes the macroscopic behaviours of IDR-containing proteins in an intracellular milieu. Recent studies have revealed that interactions between 'charge blocks' - clusters of like charges along the polypeptide chain - strongly induce LLPS and play fundamental roles in its spatiotemporal regulation. Introducing a new parameter, termed 'charge blockiness', into physicochemical models of disordered polypeptides has yielded a better understanding of how the intrinsic amino acid sequence of a polypeptide determines the spatiotemporal occurrence of LLPS within a cell. Charge blockiness might also explain why some post-translational modifications segregate within IDRs and how they regulate LLPS. In this Review, we summarise recent progress towards understanding the mechanism and biological roles of charge block-driven LLPS and discuss how this new characteristic parameter of polypeptides offers new possibilities in the fields of structural biology and cell biology.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Humanos , Processamento de Proteína Pós-Traducional , Animais , Eletricidade Estática , Peptídeos/metabolismo , Peptídeos/química , Interações Hidrofóbicas e Hidrofílicas , Extração Líquido-Líquido/métodos , Separação de Fases
19.
Cell Commun Signal ; 22(1): 310, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844908

RESUMO

Liver Kinase B1 (LKB1), encoded by Serine-Threonine Kinase 11 (STK11), is a master kinase that regulates cell migration, polarity, proliferation, and metabolism through downstream adenosine monophosphate-activated protein kinase (AMPK) and AMPK-related kinase signalling. Since genetic screens identified STK11 mutations in Peutz-Jeghers Syndrome, STK11 mutants have been implicated in tumourigenesis labelling it as a tumour suppressor. In support of this, several compounds reduce tumour burden through upregulating LKB1 signalling, and LKB1-AMPK agonists are cytotoxic to tumour cells. However, in certain contexts, its role in cancer is paradoxical as LKB1 promotes tumour cell survival by mediating resistance against metabolic and oxidative stressors. LKB1 deficiency has also enhanced the selectivity and cytotoxicity of several cancer therapies. Taken together, there is a need to develop LKB1-specific pharmacological compounds, but prior to developing LKB1 inhibitors, further work is needed to understand LKB1 activity and regulation. However, investigating LKB1 activity is strenuous as cell/tissue type, mutations to the LKB1 signalling pathway, STE-20-related kinase adaptor protein (STRAD) binding, Mouse protein 25-STRAD binding, splicing variants, nucleocytoplasmic shuttling, post-translational modifications, and kinase conformation impact the functional status of LKB1. For these reasons, guidelines to standardize experimental strategies to study LKB1 activity, associate proteins, spliced isoforms, post-translational modifications, and regulation are of upmost importance to the development of LKB1-specific therapies. Therefore, to assess the therapeutic relevancy of LKB1 inhibitors, this review summarizes the importance of LKB1 in cell physiology, highlights contributors to LKB1 activation, and outlines the benefits and risks associated with targeting LKB1.


Assuntos
Quinases Proteína-Quinases Ativadas por AMP , Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Animais , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais/efeitos dos fármacos
20.
Plant Physiol Biochem ; 214: 108852, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38943878

RESUMO

Abiotic stress such as salt, heavy metals, drought, temperature, and others can affect plants from seed germination to seedling growth to reproductive maturity. Abiotic stress increases reactive oxygen species and lowers antioxidant enzymes in plants resulted the plant tolerance ability against stress conditions decrease. Hydrogen sulfide (H2S) and nitric oxide (NO) are important gasotransmitters involved in seed germination, photosynthesis, growth and development, metabolism, different physiological processes and functions in plants. In plants, various enzymes are responsible for the biosynthesis of both H2S and NO via both enzymatic and non-enzymatic pathways. They also mediate post-translation modification, such as persulfidation, and nitrosylation, which are protective mechanisms against oxidative damage. They also regulate some cellular signalling pathways in response to various abiotic stress. H2S and NO also stimulate biochemical reactions in plants, including cytosolic osmoprotectant accumulation, reactive oxygen species regulation, antioxidant system activation, K+ uptake, and Na+ cell extrusion or vacuolar compartmentation. In this review, we summarize how H2S and NO interact with each other, the function of both H2S and NO, the mechanism of biosynthesis, and post-translational modification under different abiotic stress. Our main emphasis was to find the cross-talk between NO and H2S and how they regulate genes in plants under abiotic stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...