RESUMO
PURPOSE: Knowledge of the complex anatomy of the lateral ankle ligaments is essential to understand its function, pathophysiology and treatment options. This study aimed to assess the lateral ligaments and their relationships through a 3D view achieved by digitally marking their footprints. METHODS: Eleven fresh-frozen ankle specimens were dissected. The calcaneus, talus and fibula were separated, maintaining the lateral ligament footprints. Subsequently, each bone was assessed by a light scanner machine. Finally, all the scans were converted to 3D polygonal models. The footprint areas of the talus, calcaneus and fibula were selected, analysed and the surface area was quantified in cm2. RESULTS: After scanning the bones, the anterior talofibular ligament inferior fascicle (ATFLif), calcaneofibular ligament (CFL) and posterior talofibular ligament (PTFL) footprints were continuous at the medial side of the fibula, corresponding to a continuous footprint with a mean area of 4.8 cm2 (± 0.7). The anterior talofibular ligament (ATFL) footprint on the talus consisted of 2 parts in 9 of the 11 feet, whilst there was a continuous insertion in the other 2 feet. The CFL insertion on the calcaneus was one single footprint in all cases. CONCLUSION: The tridimensional analysis of the lateral ligaments of the ankle demonstrates that the ATFLif, CFL and PTFL have a continuous footprint at the medial side of the fibula in all analysed specimens. These data can assist the surgeon in interpreting the ligament injuries, improving the imaging assessment and guiding the surgeon to repair and reconstruct the ligaments in an anatomical position.