Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Biomolecules ; 14(8)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39199399

RESUMO

Dropping during transportation is a critical issue for tomato fruits, as it triggers ethylene production and affects quality parameters, leading to lower quality and a reduced storage life. Thus, this study was conducted to assess the physiological alterations in tomato fruits subjected to dropping. This study involved tomatoes harvested at green and red stages, subjected to the following five dropping treatments: 0 cm, 10 cm, 30 cm, 50 cm, and 100 cm. The results revealed that dropping from 100 cm induced the highest ethylene production, particularly in green fruits, where production began within one hour and peaked within 48 h. Red fruits exhibited a dose-dependent response to mechanical stress, with a notable decrease in ethylene production starting from the second week post-dropping, suggesting a regulatory mechanism. CO2 production peaked at 350.1 µL g-1 h-1 in green fruits and 338.2 µL g-1 h-1 in red fruits one day after dropping from 100 cm. Dropping also significantly influenced fruit color, firmness, electrolyte leakage, and vitamin C content. Principal component analysis (PCA) revealed distinct changes in metabolite profiles, with methionine and ACC (1-aminocyclopropane-1-carboxylate), key ethylene precursors, increasing in response to dropping, particularly in red fruits. These findings underscore the critical role of mechanical stress in modulating fruit physiology, with implications for post-harvest handling practices aimed at enhancing fruit quality and shelf life.


Assuntos
Etilenos , Frutas , Solanum lycopersicum , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiologia , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Etilenos/metabolismo , Armazenamento de Alimentos/métodos , Ácido Ascórbico/metabolismo , Dióxido de Carbono/metabolismo
2.
Compr Rev Food Sci Food Saf ; 23(4): e13417, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39072989

RESUMO

Strawberries spoil rapidly after harvest due to factors such as the ripening process, weight loss, and, most importantly, microbial contamination. Traditionally, several methods are used to preserve strawberries after harvest and extend their shelf life, including thermal, plasma, radiation, chemical, and biological treatments. Although these methods are effective, they are a concern from the perspective of safety and consumer acceptance of the treated food. To address these issues, more advanced environment-friendly technologies have been developed over the past decades, including modified and controlled atmosphere packaging, active biopolymer-based packaging, or edible coating formulations. This method can not only significantly extend the shelf life of fruit but also solve safety concerns. Some studies have shown that combining two or more of these technologies can significantly extend the shelf life of strawberries, which could significantly contribute to expanding the global supply chain for delicious fruit. Despite the large number of studies underway in this field of research, no systematic review has been published discussing these advances. This review aims to cover important information about postharvest physiology, decay factors, and preservation methods of strawberry fruits. It is a pioneering work that integrates, relates, and discusses all information on the postharvest fate and handling of strawberries in one place. Additionally, commercially used techniques were discussed to provide insight into current developments in strawberry preservation and suggest future research directions in this field of study. This review aims to enrich the knowledge of academic and industrial researchers, scientists, and students on trends and developments in postharvest preservation and packaging of strawberry fruits.


Assuntos
Embalagem de Alimentos , Conservação de Alimentos , Fragaria , Frutas , Fragaria/microbiologia , Fragaria/crescimento & desenvolvimento , Conservação de Alimentos/métodos , Embalagem de Alimentos/métodos , Frutas/microbiologia , Armazenamento de Alimentos/métodos
3.
Foods ; 12(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38137223

RESUMO

The promotion of industrial-mode production of Codonopsis pilosula Nannf. var. modesta (Nannf.) L. T. Shen (C. pilosula) has expanded the demand for the postharvest storage of fresh roots. Further research is needed to establish comprehensive methods to evaluate the impact of storage conditions. This study simulated the storage process of roots at near-freezing temperature [NFT (-1 °C)] and traditional low temperatures (-6 °C, 4 °C and 9 °C) for 40 days. At different storage stages, correlation analysis was conducted using quantitative data on 20 parameters, including sensory quality, active components, antioxidant capacity and physiological changes. Appearance and principal component analysis could distinguish between fresh and stored samples, while NFT samples on the 40th day of storage were similar to fresh ones. Correlation analysis indicated that NFT storage could maintain the sensory quality by increasing the antioxidant enzyme activity and active components, reducing the accumulation of reactive oxygen species and malondialdehyde and reducing the activity of browning-related enzymes and cell-wall-degrading enzymes. These findings highlight the importance of the overall quality evaluation of fresh roots and emphasize the potential to improve fresh root and dried medicinal material quality by regulating storage conditions such as temperature.

4.
Crit Rev Food Sci Nutr ; : 1-25, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37128783

RESUMO

Sulfur dioxide (SO2) are a category of chemical compounds widely used as additives in food industry. So far, the use of SO2 in fruit and vegetable industry has been indispensable although its safety concerns have been controversial. This article comprehensively reviews the chemical interactions of SO2 with the components of fruit and vegetable products, elaborates its mechanism of antimicrobial, anti-browning, and antioxidation, discusses its roles in regulation of sulfur metabolism, reactive oxygen species (ROS)/redox, resistance induction, and quality maintenance in fruits and vegetables, summarizes the application technology of SO2 and its safety in human (absorption, metabolism, toxicity, regulation), and emphasizes the intrinsic metabolism of SO2 and its consequences for the postharvest physiology and safety of fresh fruits and vegetables. In order to fully understand the benefits and risks of SO2, more research is needed to evaluate the molecular mechanisms of SO2 metabolism in the cells and tissues of fruits and vegetables, and to uncover the interaction mechanisms between SO2 and the components of fruits and vegetables as well as the efficacy and safety of bound SO2. This review has important guiding significance for adjusting an applicable definition of maximum residue limit of SO2 in food.

5.
Foods ; 12(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36981255

RESUMO

Loquat (Eriobotrya japonica Lindl.) fruit is a rich source of carotenoids, flavonoids, phenolics, sugars, and organic acids. Although it is classified as a non-climacteric fruit, susceptibility to mechanical and physical bruising causes its rapid deterioration by moisture loss and postharvest decay caused by pathogens. Anthracnose, canker, and purple spot are the most prevalent postharvest diseases of loquat fruit. Cold storage has been used for quality management of loquat fruit, but the susceptibility of some cultivars to chilling injury (CI) consequently leads to browning and other disorders. Various techniques, including cold storage, controlled atmosphere storage, hypobaric storage, modified atmosphere packaging, low-temperature conditioning, heat treatment, edible coatings, and postharvest chemical application, have been tested to extend shelf life, mitigate chilling injury, and quality preservation. This review comprehensively focuses on the recent advances in the postharvest physiology and technology of loquat fruit, such as harvest maturity, fruit ripening physiology, postharvest storage techniques, and physiological disorders and diseases.

6.
Food Chem X ; 17: 100555, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36845505

RESUMO

This study aimed to explore the impacts of slightly acidic electrolyzed water (SAEW) treatment on the physiology, quality, and storage properties of postharvest carambola. The carambolas were immersed in SAEW with a pH value of 6.0, ORP of 1340 mV and ACC of 80 mg/L. Results demonstrated that SAEW could significantly reduce the respiration rate, inhibit the increase in cell membrane permeability, and delay apparent color change. Relatively higher contents of bioactive compounds and nutritional components, such as flavonoids, polyphenols, reducing sugars, sucrose, vitamin C, total soluble sugar, and total soluble solid, as well as higher titratable acidity were maintained in SAEW-treated carambola. In addition, SAEW-treated carambola exhibited a higher commercial acceptability rate and a higher firmness, but lower weight loss and peel browning index than control fruits. Our results indicated that SAEW treatment achieved high fruit quality and nutritional values, potentially contributing to improve storage properties of harvested carambola.

7.
Front Plant Sci ; 13: 1021161, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212302

RESUMO

Bamboo shoot is one of nutritious vegetables in China. However, the edible quality of fresh bamboo shoots deteriorates easily after harvest. Here, morphological, physiological, transcriptomic and microRNA sequencing analyses were conducted to investigate the postharvest characteristics of moso bamboo (Phyllostachys edulis) shoots. Rapid decreases of soluble sugars, structural polysaccharides and hydrolyzed tannins, and increases of lignin and condensed tannins were observed in the postharvest bamboo shoots. Differentially expressed genes (DEGs) and miRNAs with opposite trends were mainly enriched in structural polysaccharide metabolism, starch and sucrose metabolism and glycolysis pathways, which were consistent with the changes of carbohydrates. A co-expression network of carbohydrate metabolism was constructed, which was verified by qPCR and yeast one-hybrid (Y1H) assay. Furthermore, the function of one hub glycosyltransferase gene was validated in Arabidopsis, which confirmed that it was involved in xylan biosynthesis. These results are of great significance for revealing the carbohydrate metabolism mechanisms of postharvest bamboo shoots and provide a potential candidate gene for molecular breeding related to xylan in the future.

8.
Front Plant Sci ; 13: 856499, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35774809

RESUMO

Papaya is the fourth most favored tropical fruit in the global market; it has rich nutrition and can be used for medicine and food processing. However, it will soften and mature in a short time after harvest, resulting in a lot of economic losses. In this study, papaya fruits were soaked in 0, 12.5, 25, 50, and 100 ml/L ethanol solutions for 2 h and stored at 25°C for 14 days, by which we explored the effects of ethanol treatment in papaya after harvest. At an optimal concentration of ethanol treatment, color changing of the papaya fruits was delayed for 6 days, and decay incidence and average firmness of the fruits were shown as 20% and 27.7 N, respectively. Moreover, the effect of ethanol treatment on antioxidant systems in the papaya fruits was explored. It was observed that ethanol treatment contributed to diminish the development of malondialdehyde (MDA), ethylene, and superoxide anions. Furthermore, the activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) were promoted than those of control group, while the activities of peroxidase (POD), phenylalanine ammonia-lyase (PAL), and polyphenol oxidase (PPO) were brought down. In addition, the principal component analysis (PCA) showed that PAL, ethylene, and superoxide anions were the main contributors for the maturity and senescence of postharvest papaya. In this experiment, ethanol treatment had the potential of delaying the ripening and maintaining the storage quality of papaya fruits.

9.
J Sci Food Agric ; 102(11): 4425-4434, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35089595

RESUMO

BACKGROUND: Epidermal wax is an important factor affecting the storage quality of fruits and vegetables. Previous studies have shown that the epidermal wax of fruits undergoes significant changes during storage, but there are few studies on the effects of different storage methods on the changes in waxes and the relationship with storage quality. To investigate the effect of cuticular wax on the postharvest physiology in fragrant pear, equal numbers of fragrant pear fruits were stored in room temperature storage (control), cold storage and controlled atmosphere (CA) storage environs, respectively. RESULTS: Gas chromatography-mass spectrometry analysis revealed that the prevailing compositions of cuticular wax of fragrant pear were alkanes, alkenes, alcohols, aldehydes, esters and fatty acids. Compared with the control, cold storage and CA storage significantly inhibited changes in postharvest physiology, total wax contents and wax compositions of fragrant pear, and the effects of CA storage were more pronounced than cold storage. Under different storage methods, total wax contents and wax compositions show different correlations with various physiological indicators. CONCLUSION: The results obtained in the present study indicate that cold storage and CA storage altered the fragrant pear cuticular wax contents and constituents, thus changing the postharvest physiology quality. The changes in the metabolism of wax components caused by the changes in storage environment mainly affect the changes in the hardness of fragrant pears. The present study provides a theoretical basis for the preservation and storage of fruits. © 2022 Society of Chemical Industry.


Assuntos
Pyrus , Frutas/química , Cromatografia Gasosa-Espectrometria de Massas , Odorantes , Pyrus/química , Ceras/química
10.
Food Chem ; 374: 131731, 2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-34896958

RESUMO

The chitosan (CTS) solutions supplemented with chitosan-montmorillonite (CTS-MMT) nanocomposites at various concentrations were prepared for free-standing films by the casting technique. Incorporating 2% CTS-MMT nanocomposites into the free-standing CTS films could improve the water-resistance and oxygen barrier of the film. For the postharvest experiment, CTS and CTS supplemented with CTS-MMT nanocomposite solutions were applied as banana fruit coating by the dipping technique. The CTS supplemented with 2% CTS-MMT showed a significant retarding in peel color change, reduced electrolyte leakage, and MDA content, while CTS coating could maintain fruit firmness and reduce plasma membrane destruction for only the first few days. In addition, the CTS supplemented with 2% CTS-MMT coating could reduce ethylene production and respiration rate of the banana fruit. Overall results suggest that the CTS supplemented with 2% CTS-MMT nanocomposites is a novel coating material for maintaining the postharvest quality of 'Hom Thong' banana fruit.


Assuntos
Quitosana , Musa , Nanocompostos , Bentonita , Frutas
11.
Food Chem ; 339: 127981, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32916399

RESUMO

The objective of the present study was to explore the effect of folic acid on the postharvest physiology of broccoli placed in storage. Broccoli heads were immersed in 5 mg L-1 folic acid for 10 min, then stored at 20 ± 1 °C for 4 days. Results indicated that the postharvest treatment of broccoli with folic acid decreased the rate of flower opening and yellowing, inhibited weight loss, reduced the level of respiration, as well as ethylene generation. Folic acid-treated broccoli maintained their level of chlorophyll, total soluble solids, vitamin C, total phenolics, flavonoids, glucosinolate, and folic acid. Treated broccoli also exhibited reduced accumulation of malondialdehyde (MDA) and reactive oxygen species (ROS). Concomitantly, antioxidant enzyme activity and corresponding gene expression were also enhanced. In contrast, chlorophyll-degrading enzyme gene expression was suppressed. These results indicated that folic acid treatment of broccoli could be used to prolong shelf-life.


Assuntos
Brassica/efeitos dos fármacos , Ácido Fólico/farmacologia , Armazenamento de Alimentos/métodos , Antioxidantes/metabolismo , Ácido Ascórbico/análise , Brassica/fisiologia , Catalase/genética , Catalase/metabolismo , Etilenos/metabolismo , Flavonoides/análise , Ácido Fólico/química , Expressão Gênica/efeitos dos fármacos , Malondialdeído/metabolismo , Peroxidases/genética , Peroxidases/metabolismo , Fenóis/análise , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Temperatura
12.
Molecules ; 25(20)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066412

RESUMO

Pomegranate peel has substantial amounts of phenolic compounds, such as hydrolysable tannins (punicalin, punicalagin, ellagic acid, and gallic acid), flavonoids (anthocyanins and catechins), and nutrients, which are responsible for its biological activity. However, during processing, the level of peel compounds can be significantly altered depending on the peel processing technique used, for example, ranging from 38.6 to 50.3 mg/g for punicalagins. This review focuses on the influence of postharvest processing factors on the pharmacological, phytochemical, and nutritional properties of pomegranate (Punica granatum L.) peel. Various peel drying strategies (sun drying, microwave drying, vacuum drying, and oven drying) and different extraction protocols (solvent, super-critical fluid, ultrasound-assisted, microwave-assisted, and pressurized liquid extractions) that are used to recover phytochemical compounds of the pomegranate peel are described. A total phenolic content of 40.8 mg gallic acid equivalent (GAE)/g DM was recorded when sun drying was used, but the recovery of the total phenolic content was higher at 264.3 mg TAE/g when pressurised liquid extraction was performed. However, pressurised liquid extraction is costly due to the high initial investment costs and the limited possibility of carrying out selective extractions of organic compounds from complex peel samples. The effects of these methods on the phytochemical profiles of pomegranate peel extracts are also influenced by the cultivar and conditions used, making it difficult to determine best practice. For example, oven drying at 60 °C resulted in higher levels of punicalin of 888.04 mg CE/kg DM compared to those obtained 40 °C of 768.11 mg CE/kg DM for the Wonderful cultivar. Processes that are easy to set up, cost-effective, and do not compromise the quality and safety aspects of the peel are, thus, more desirable. From the literature survey, we identified a lack of studies testing pretreatment protocols that may result in a lower loss of the valuable biological compounds of pomegranate peels to allow for full exploitation of their health-promoting properties in potentially new value-added products.


Assuntos
Indústria de Processamento de Alimentos/métodos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Punica granatum/química , Fracionamento Químico/métodos , Liofilização , Frutas/química , Humanos , Ayurveda , Micro-Ondas , Valor Nutritivo , Solventes/química , Luz Solar , Vácuo , Resíduos
13.
Foods ; 9(6)2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580403

RESUMO

For fresh-cut salad production, hot-water treatment (HWT) needs optimization in terms of temperature and duration to guarantee a gentle and non-stressing processing to fully retain product quality besides an effective sanitation. One major initial target of heat treatment is photosynthesis, making it a suitable and sensitive marker for HWT effects. Chlorophyll fluorescence imaging (CFI) is a rapid and non-invasive tool to evaluate respective plant responses. Following practical applications in fruit salad production, apples of colored and of green-ripe cultivars ('Braeburn', 'Fuji', 'Greenstar', 'Granny Smith'), obtained from a local fruit salad producer, were hot-water treated from 44 to 70 °C for 30 to 300 s. One day after HWT and after 7 days of storage at 4 °C, CFI and remission spectroscopy were applied to evaluating temperature effects on photosynthetic activity, on contents of fruit pigments (chlorophylls, anthocyanins), and on various relevant quality parameters of intact apples. In 'Braeburn' apples, short-term HWT at 55 °C for 30 to 120 s avoided any heat injuries and quality losses. The samples of the other three cultivars turned out to be less sensitive and may be short-term heat-treated at temperatures of up to 60 °C for the same time. CFI proved to be a rapid, sensitive, and effective tool for process optimization of apples, closely reflecting the cultivar- or batch-specificity of heat effects on produce photosynthesis.

14.
Genomics ; 112(5): 3075-3088, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32454168

RESUMO

Tobacco (Nicotiana tabacum) is extensively cultivated all over the world for its economic value. During curing and storage, senescence occurs, which is associated with physiological and biochemical changes in postharvest plant organs. However, the molecular mechanisms involved in accelerated senescence due to high temperatures in tobacco leaves during curing need further elaboration. We studied molecular mechanisms of senescence in tobacco leaves exposed to high temperature during curing (Fresh, 38 °C and 42 °C), revealed by isobaric tags for relative and absolute quantification (iTRAQ) for the proteomic profiles of cultivar Bi'na1. In total, 8903 proteins were identified, and 2034 (1150 up-regulated and 1074 down-regulated) differentially abundant proteins (DAPs) were obtained from tobacco leaf samples. These DAPs were mainly involved in posttranslational modification, protein turnover, energy production and conversion. Sugar- and energy-related metabolic biological processes and pathways might be critical regulators of tobacco leaves exposed to high temperature during senescence. High-temperature stress accelerated tobacco leaf senescence mainly by down-regulating photosynthesis-related pathways and degrading cellular constituents to maintain cell viability and nutrient recycling. Our findings provide a valuable inventory of novel proteins involved in senescence physiology and elucidate the protein regulatory network in postharvest organs exposed to high temperatures during flue-curing.


Assuntos
Temperatura Alta , Nicotiana/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Clorofila/metabolismo , Malondialdeído/metabolismo , Fenótipo , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Proteômica , Nicotiana/anatomia & histologia , Nicotiana/metabolismo
15.
Int J Mol Sci ; 21(7)2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244294

RESUMO

Tobacco (Nicotiana tabacum), is a world's major non-food agricultural crop widely cultivated for its economic value. Among several color change associated biological processes, plastid pigment metabolism is of trivial importance in postharvest plant organs during curing and storage. However, the molecular mechanisms involved in carotenoid and chlorophyll metabolism, as well as color change in tobacco leaves during curing, need further elaboration. Here, proteomic analysis at different curing stages (0 h, 48 h, 72 h) was performed in tobacco cv. Bi'na1 with an aim to investigate the molecular mechanisms of pigment metabolism in tobacco leaves as revealed by the iTRAQ proteomic approach. Our results displayed significant differences in leaf color parameters and ultrastructural fingerprints that indicate an acceleration of chloroplast disintegration and promotion of pigment degradation in tobacco leaves due to curing. In total, 5931 proteins were identified, of which 923 (450 up-regulated, 452 down-regulated, and 21 common) differentially expressed proteins (DEPs) were obtained from tobacco leaves. To elucidate the molecular mechanisms of pigment metabolism and color change, 19 DEPs involved in carotenoid metabolism and 12 DEPs related to chlorophyll metabolism were screened. The results exhibited the complex regulation of DEPs in carotenoid metabolism, a negative regulation in chlorophyll biosynthesis, and a positive regulation in chlorophyll breakdown, which delayed the degradation of xanthophylls and accelerated the breakdown of chlorophylls, promoting the formation of yellow color during curing. Particularly, the up-regulation of the chlorophyllase-1-like isoform X2 was the key protein regulatory mechanism responsible for chlorophyll metabolism and color change. The expression pattern of 8 genes was consistent with the iTRAQ data. These results not only provide new insights into pigment metabolism and color change underlying the postharvest physiological regulatory networks in plants, but also a broader perspective, which prompts us to pay attention to further screen key proteins in tobacco leaves during curing.


Assuntos
Nicotiana/genética , Nicotiana/metabolismo , Pigmentos Biológicos/metabolismo , Folhas de Planta/metabolismo , Plastídeos/metabolismo , Proteômica/métodos , Clorofila/metabolismo , Cor , Regulação da Expressão Gênica de Plantas , Redes e Vias Metabólicas , Folhas de Planta/ultraestrutura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma , Xantofilas/metabolismo
16.
Food Chem ; 298: 125019, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31260984

RESUMO

This study aims to investigate the postharvest physiology and texture of garlic cloves packaged in polyethylene terephthalate (PET), polyethylene (PE), aluminized kraft paper (AKP), single kraft paper (SKP), and mesh bag. Germination rate, electrical conductivity, respiration intensity, water content, and texture were determined during 180 d storage at -2 °C. Results showed that the germination of garlic cloves packaged in PET, PE, and AKP was effectively inhibited during storage. PE effectively reduced the degree of damage to the cell membranes of the garlic cloves. PE and SKP significantly inhibited respiratory intensity during storage. Garlic cloves water content did not change significantly in 90 d storage which packaged in PE and SKP. PE exhibited better effect on the texture and freshness of garlic cloves than the other materials. In conclusion, PE is the best packaging material for maintaining the quality attributes and extending the shelf lives of garlic cloves.


Assuntos
Embalagem de Alimentos , Alho/fisiologia , Polietileno , Condutividade Elétrica , Armazenamento de Alimentos , Germinação , Polietilenotereftalatos , Refrigeração , Água/análise
17.
Foods ; 8(7)2019 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-31252678

RESUMO

There is a large potential in Europe for valorization in the vegetable food supply chain. For example, there is occasionally overproduction of tomatoes for fresh consumption, and a fraction of the production is unsuited for fresh consumption sale (unacceptable color, shape, maturity, lesions, etc.). In countries where the facilities and infrastructure for tomato processing is lacking, these tomatoes are normally destroyed, used as landfilling or animal feed, and represent an economic loss for producers and negative environmental impact. Likewise, there is also a potential in the tomato processing industry to valorize side streams and reduce waste. The present paper provides an overview of tomato production in Europe and the strategies employed for processing and valorization of tomato side streams and waste fractions. Special emphasis is put on the four tomato-producing countries Norway, Belgium, Poland, and Turkey. These countries are very different regards for example their climatic preconditions for tomato production and volumes produced, and represent the extremes among European tomato producing countries. Postharvest treatments and applications for optimized harvest time and improved storage for premium raw material quality are discussed, as well as novel, sustainable processing technologies for minimum waste and side stream valorization. Preservation and enrichment of lycopene, the primary health promoting agent and sales argument, is reviewed in detail. The European volume of tomato postharvest wastage is estimated at >3 million metric tons per year. Together, the optimization of harvesting time and preprocessing storage conditions and sustainable food processing technologies, coupled with stabilization and valorization of processing by-products and side streams, can significantly contribute to the valorization of this underutilized biomass.

18.
Crit Rev Biotechnol ; 39(6): 759-778, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31167574

RESUMO

Applications of biotechnological tools in food preservation have shown promising results in minimizing food spoilage. Design and development of highly efficient food preservatives are one of the key success factors in this application field. However, due to the inherent shortcomings of the bulk forms of such preservatives, research was in progress to find suitable alternatives to replace conventional modalities. The intervention of nanotechnology has made this approach feasible in almost every aspect of food preservation. This interface domain of nanobiotechnology has been very well explored in the last few decades and vast literature has been reported. Researchers have developed efficient nanopreservatives (NPRs) for diverse applications. However, the literature available on nano-based food preservation is not inclusive of molecular perspectives involved in food preservation. There is a large knowledge gap in the interface domain concerning the physics of intermolecular and interfacial forces and nanotechnology which play decisive roles in designing edible coatings (ECs). There is an urgent need for identifying the nano and molecular level contributing factors for developing efficient NPRs. Moreover, it is imperative to understand the possible health impact of NPRs in public interest and concern. This review revisits the fundamental aspects of food preservation and navigates through the applicability, safety, molecular aspects and future direction of NPRs.


Assuntos
Biotecnologia , Conservação de Alimentos , Nanotecnologia , Conservantes de Alimentos
19.
Plant Physiol Biochem ; 127: 478-484, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29705568

RESUMO

Sweet cherry, a non-climacteric and highly perishable fruit, is usually cold-stored during post-harvest period to prevent senescence; therefore, metabolic profiling in response to cold storage in sweet cherry is of economic and scientific interest. In the present work, metabolic analysis was performed in fruit and stem tissues to determine the metabolic dynamics associated with cold storage in response to 1-methylcyclopropene (1-MCP), an ethylene-action inhibitor, and modified atmosphere packaging (MAP). Fruit (cv. Regina) following harvest were treated with 1-MCP and then cold-stored (0 °C, relative humidity 95%) for 1 month in the presence or in the absence of MAP and subsequently maintained at 20 °C for up to 2 days. Physiological analysis suggested that cold storage stimulated anthocyanin production, respiration rate and stem browning. Cherry stem exposed to 1-MCP displayed senescence symptoms as demonstrated by the higher stem browning and the lower stem traction force while MAP treatment considerably altered these features. The metabolic profile of fruits and stems just following cold storage was distinctly different from those analyzed at harvest. Marked tissue-specific differences were also detected among sweet cherries exposed to individual and to combined 1-MCP and MAP treatments, notably for amino acid biosynthesis. The significance of some of these metabolites as cold storage hallmarks is discussed in the context of the limited knowledge on the 1-MCP and MAP response mechanisms at the level of cherry fruit and stem tissues. Overall, this study provides the first steps toward understanding tissue-specific postharvest behavior in sweet cherry under various conditions.


Assuntos
Temperatura Baixa , Ciclopropanos/farmacologia , Conservação de Alimentos , Frutas/metabolismo , Metabolômica , Caules de Planta/metabolismo , Prunus avium/metabolismo
20.
BMC Genomics ; 19(1): 125, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29415652

RESUMO

BACKGROUND: Zucchini fruit is susceptible to chilling injury (CI), but the response to low storage temperature is cultivar dependent. Previous reports about the response of zucchini fruit to chilling storage have been focused on the physiology and biochemistry of this process, with little information about the molecular mechanisms underlying it. In this work, we present a comprehensive analysis of transcriptomic changes that take place after cold storage in zucchini fruit of two commercial cultivars with contrasting response to chilling stress. RESULTS: RNA-Seq analysis was conducted in exocarp of fruit at harvest and after 14 days of storage at 4 and 20 °C. Differential expressed genes (DEGs) were obtained comparing fruit stored at 4 °C with their control at 20 °C, and then specific and common up and down-regulated DEGs of each cultivar were identified. Functional analysis of these DEGs identified similarities between the response of zucchini fruit to low temperature and other stresses, with an important number of GO terms related to biotic and abiotic stresses overrepresented in both cultivars. This study also revealed several molecular mechanisms that could be related to chilling tolerance, since they were up-regulated in cv. Natura (CI tolerant) or down-regulated in cv. Sinatra (CI sensitive). These mechanisms were mainly those related to carbohydrate and energy metabolism, transcription, signal transduction, and protein transport and degradation. Among DEGs belonging to these pathways, we selected candidate genes that could regulate or promote chilling tolerance in zucchini fruit including the transcription factors MYB76-like, ZAT10-like, DELLA protein GAIP, and AP2/ERF domain-containing protein. CONCLUSIONS: This study provides a broader understanding of the important mechanisms and processes related to coping with low temperature stress in zucchini fruit and allowed the identification of some candidate genes that may be involved in the acquisition of chilling tolerance in this crop. These genes will be the basis of future studies aimed to identify markers involved in cold tolerance and aid in zucchini breeding programs.


Assuntos
Temperatura Baixa , Cucurbita/genética , Frutas/genética , Preservação Biológica , Transcriptoma , Adaptação Fisiológica , Biologia Computacional/métodos , Cucurbita/metabolismo , Metabolismo Energético , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Anotação de Sequência Molecular , Preservação Biológica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA