Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Integr Zool ; 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38880782

RESUMO

Adaptation or acclimation of thermal requirements to environmental conditions can reduce thermoregulation costs and increase fitness, especially in ectotherms, which rely heavily on environmental temperatures for thermoregulation. Insight into how thermal niches have shaped thermal requirements across evolutionary history may help predict the survival of species during climate change. The lizard genus Sceloporus has a widespread distribution and inhabits an ample variety of habitats. We evaluated the effects of geographical gradients (i.e. elevation and latitude) and local environmental temperatures on thermal requirements (i.e. preferred body temperature, active body temperature in the field, and critical thermal limits) of Sceloporus species using published and field-collected data and performing phylogenetic comparative analyses. To contrast macro- and micro-evolutional patterns, we also performed intra-specific analyses when sufficient reports existed for a species. We found that preferred body temperature increased with elevation, whereas body temperature in the field decreased with elevation and increased with local environmental temperatures. Critical thermal limits were not related to the geographic gradient or environmental temperatures. The apparent lack of relation of thermal requirements to geographic gradient may increase vulnerability to extinction due to climate change. However, local and temporal variations in thermal landscape determine thermoregulation opportunities and may not be well represented by geographic gradient and mean environmental temperatures. Results showed that Sceloporus lizards are excellent thermoregulators, have wide thermal tolerance ranges, and the preferred temperature was labile. Our results suggest that Sceloporus lizards can adjust to different thermal landscapes, highlighting opportunities for continuous survival in changing thermal environments.

2.
J Therm Biol ; 92: 102665, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32888568

RESUMO

Locomotor and physiological performance of ectotherms are affected by temperature. Thermoregulation is achieved by changes in behavior and the selection of micro-habitats with adequate temperatures to maintain the body temperature (Tb) within a range of preference. Apart from this temperature dependence at spatial scales, ectotherms are also affected by temperature at temporal scale. For instance, ectotherms can only be active some months of the year, particularly in temperate environments. Tarantulas are ectotherms that live in burrows most of their life. Nevertheless, after the sexual maturation molt, males leave their refugia and start a wandering life searching for females to mate. The reproductive period varies among species. In some species walking males are seen in late spring or early summer, while in other species males are only seen during fall or winter. Apart from the differences in lifestyles after maturation, tarantulas exhibit sexual dimorphisms in longevity and body mass, having smaller, shorter-lived males. Thus, to optimize energetic budgets, decreasing thermoregulation costs, we hypothesize and examine a putative correlation between an individual's preferred body temperature (Tpref) and the environmental temperature during the reproductive period. Hence, we characterize Tpref in seven tarantula species and analyze which factors (i.e., time of day, body mass, and sex) correlated with it. Furthermore, we assess putative correlated evolution of Tpref with ambient temperature (minima, mean, and maxima) during the reproductive period by means of phylogenetic independent contrasts. We did not find differences in thermal preferences between sexes; and only one species, Acanthoscurria suina, exhibited diel differences in Tpref. We found evidence of correlated evolution between Tpref and minimum temperature during the reproductive period among all seven species studied herein. Our results show that the reproductive period is constrained by thermal preferences, dictating when males can start their wandering life to mate.


Assuntos
Aranhas/fisiologia , Aclimatação , Animais , Temperatura Corporal , Regulação da Temperatura Corporal , Ecossistema , Feminino , Masculino , Filogenia , Reprodução , Aranhas/genética , Temperatura
3.
Artigo em Inglês | MEDLINE | ID: mdl-32711161

RESUMO

Ectothermic organisms depend primarily on external heat sources and behavioural adjustments to regulate body temperature. Under controlled conditions, in a thermal gradient, body temperature often clusters around a more or less defined range of preferred body temperatures (Tpref). However, Tpref may be modified in response to environmental parameters and/or physiological state. For example, meal ingestion is sometimes followed by a post-prandial thermophilic response leading to a transient increment in Tpref. Although thought to optimize digestive processes, its occurrence, magnitude, and possible determinants remains scarcely documented for anuran amphibians. Herein, we investigated whether the Cururu toad, Rhinella diptycha, exhibits a post-prandial thermophilic response by monitoring the body temperature of fasting and fed toads while they were maintained in a thermal gradient. We found that the toads' Tpref increased by about 13% from day 2 to 4 after feeding, in comparison with the Tpref recorded under fasting. Also, fed animals exhibited a broader range for Tpref at days 2 and 3 post-prandial, which reflects a greater level of locomotor activity compared to fasting individuals. We conclude that R. diptycha is capable to exhibit a post-prandial thermophilic response under the controlled conditions of a thermal gradient. Although this thermoregulatory adjustment is thought to optimize meal digestion yielding important energetic and ecological benefits, its occurrence in anuran amphibians in nature remains uncertain.


Assuntos
Ração Animal , Regulação da Temperatura Corporal/fisiologia , Temperatura Corporal/fisiologia , Aclimatação , Animais , Bufonidae/fisiologia , Comportamento Alimentar , Feminino , Masculino
4.
J Therm Biol ; 74: 77-83, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29801654

RESUMO

As ectotherms, amphibians may exhibit changes in their thermal biology associated with spatial and temporal environmental contingencies. However, our knowledge on how amphibian´s thermal biology responds to seasonal changes in the environment is restricted to a few species, mostly from temperate regions, in a marked contrast with the high species diversity found in the Neotropics. We investigated whether or not the seasonal variation in climatic parameters from a high-montane ombrophilous forest in the Brazilian Atlantic Forest could lead to concurrent adjustments in the thermal biology of the terrestrial toad Rhinella icterica. We measured active body temperature (Tb) in the field, and preferred body temperature (Tpref) and thermal tolerance (critical thermal minimum, CTmin, and maximum, CTmax) in the laboratory, for toads collected at two distinct seasons: warm/wet and cold/dry. We also measured operative environmental temperatures (Te) using agar toad models coupled with dataloggers distributed in different microhabitats in the field to estimate accuracy (db) and effectiveness (E) of thermoregulation of the toads for both seasons. Toads had higher Tpref in the warm/wet season compared to the cold/dry season, even though no seasonal change occurred in field Tb's. In the warm/wet season, toads decreased the accuracy of thermoregulation and avoided thermally favorable microhabitats, while in the cold/dry season they increased the accuracy of thermoregulation and exhibited high degree of thermoconformity. This result may encompass thermoregulatory adjustments to seasonal changes in Te's, but may also reflect seasonal differences in compromises between Tb regulation and other ecologically relevant activities (reproduction, foraging). Toads did not exhibit changes in CTmin or CTmax, which indicates a low risk of exposure to extreme temperatures in this particular habitat, at both seasons, possibly combined with a low flexibility of this trait. Overall, our study shows seasonal acclimatization in some aspects of the thermal biology of the toad, R. icterica.


Assuntos
Aclimatação , Regulação da Temperatura Corporal , Bufonidae/fisiologia , Animais , Brasil , Feminino , Florestas , Masculino , Estações do Ano , Temperatura , Termotolerância
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA