Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.962
Filtrar
1.
Heliyon ; 10(16): e35801, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39220917

RESUMO

Camel milk is a nutrient-rich diet and fermentation affects its nutritional value and probiotic function. In this study, sour camel milk and oat jujube sour camel milk were prepared using fermentation bacteria agent TR1, and the metabolites of camel milk, sour camel milk and oat jujube sour camel milk were detected using a non-targeted metabolomics approach using liquid chromatography-mass spectrometry (LC-MS).The results showed that the partial least squares discriminant analysis (PLS-DA) with 100 % accuracy and good predictive power detected 343 components in positive ion mode and 220 components in negative ion mode. The differential metabolites were mainly organic acids, amino acids, esters, vitamins and other substances contained in camel milk.It showed that there were significant differences in the metabolites of camel milk, sour camel milk and oat jujube sour camel milk. Based on the pathway enrichment analysis of the three dairy products in the KEGG database, 12 metabolic pathways mainly involved in the positive ion mode and 20 metabolic pathways mainly involved in the negative ion mode were identified. The main biochemical metabolic pathways and signal transduction pathways of the differential metabolites of the three dairy products were obtained. This study provides theoretical support for improving the nutritional quality and probiotic function of camel milk and fermented camel milk products and provides a basis for the development of relevant processing technologies and products for camel milk and fermented camel milk.

2.
Heliyon ; 10(16): e36339, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39253206

RESUMO

Recent research has promoted considerable interest in the potential health benefits of the new generation of probiotics. Despite the abundance of probiotic supplements, their adhesion and thereby colonization in the intestinal tract of the host, a determining factor of probiotic efficacy, remains questionable. Indeed, the gastrointestinal tract, a multi-component and complex system, obscures the comprehensive understanding of the probiotic adhesion mechanism. This study aimed to investigate the adhesion capacity of probiotic bacteria using two ex-vivo approaches that were specifically developed to investigate the bacteria-mucus agglomeration and the viable adhesion to intestinal mucus. Five probiotic bacterial strains including Escherichia coli, Lactiplantibacillus plantarum, Faecalibacterium duncaniae, Bifidobacterium longum, and Bifidobacterium longum str. infantis were selected for the investigation. In that context, higher adhesion to mucus was demonstrated by E. coli, L. plantarum, and B. infantis, emphasizing strain-specific differences. While total agglomeration capacity ranged from 8 % to 82 %, actual viable adhesion to mucus remained rather low (0.6 %-2.9 %). SEM images revealed that morphological characteristics, chain and/or cluster forming ability, as well as the presence of surface exopolysaccharides, might have an impact on bacterial adhesion. This study contributes knowledge on probiotic adhesion as well as simple and effective ex-vivo approaches to investigate the bacterial adhesion to the intestinal mucus, which is prerequisite for further colonization in the gut of the host.

3.
Heliyon ; 10(16): e36183, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39253228

RESUMO

This paper presents an in vitro evaluation of antitumor properties through producing short-chain fatty acids and inducing interleukin 12. In addition, it offers the most important and functional probiotic properties of 24 Lactobacillus gasseri, Lactiplantibacillus plantarum, Lactobacillus acidophilus, and Limosilactobacillus fermentum strains isolated from humans, foods, and fermented foods. To this end, survival in an acidic environment (pH = 2.5), tolerance in bile salt, viability in the presence of pepsin-pancreatin, adhesion percentage, antibiotic resistance, auto-aggregation, and potential percentage of co-aggregation are studied in contact with three human intestinal pathogens. These pathogens are Escherichia coli O157: H7 NCTC 12900, Salmonella enterica subsp. enterica ATCC 13076, and Listeria monocytogenes ATTC 7644. Also, in vitro induction amount of IL-12 in mouse splenocytes is investigated to evaluate antitumor properties by 19 strains of L. gasseri and L. plantarum along with the development of short-chain fatty acids (SCFA) by 5 strains of L. fermentum and L. acidophilus. Gas Chromatography Flame Ionization Detector (GC-FID) and enzyme-linked immunosorbent assay (ELISA) were used to measure short-chain fatty acids and IL-12, respectively. All strains had high viability under acidic conditions. The highest levels of pancreatin and pepsin resistance were found in strains LF56, LF57, LF55, OF, and F and strains LF56, LF57, and A7, respectively. All strains except LF56 had high resistance to bile salts. L. gasseri 54C had the highest average adhesion score (hydrophobicity) of 62.9 % among 19 strains. Despite the susceptibility of different strains of L. plantarum to the tested antibiotics, M8 and M11, S2G, A7, LF55, LF57, and 5G were resistant to kanamycin and chloramphenicol, respectively. Also, 21G was resistant to ampicillin, LF56 to tetracycline and M8, and M11, LF56, and 21G to Erythromycin. In addition, L. gasseri showed moderate resistance to ampicillin, erythromycin, and tetracycline, while L. fermentum ATCC 9338 showed good resistance to ampicillin, erythromycin, and chloramphenicol. In this respect, L. plantarum LF56 and gasseri 54C had the highest average auto-aggregation and co-aggregation against three pathogenic bacteria, respectively. The highest and lowest levels of acetic acid as short-chain fatty acids were produced by L. fermentum 19SH isolated from Horre 41.62 and L. fermentum 21SH from fermented seeds 27.047, respectively. Moreover, L. fermentum, with the OF code of traditional-fermented food origin, produced the most isobutyric acid, butyric acid, and valeric acid, with values of 0.6828, 0.74165, and 0.49915 mmol, respectively. L. fermentum isolated from the human origin with code F produced the most isovaleric acid of 1.1874 mmol. All the tested strains produced good propionic acid except L. fermentum 21SH from fermented seeds. Among strains, L. plantarum M11 isolated from milk and L. gasseri 52B from humans had the highest in vitro induction of IL-12, which is probably related to their cell wall compositions and structure.

4.
Anim Nutr ; 18: 133-144, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39263443

RESUMO

Considerable research has been conducted into the efficacy of individual probiotics in broiler production, however information on the most effective combinations of synergistic Bacillus probiotic is lacking. This study investigated the impact of different Bacillus strain combinations in broiler chickens, as well as in vitro enzyme production. In experiment one, a total of 576 Ross 308 broilers at 1 d old were grown for 21 d across 6 treatments of maize-soybean diets (n = 12 pens per treatment) to compare three different strain combinations (formulation 1 [F1]: 3 strains Bacillus amyloliquefaciens; F2: Bacillus coagulans and 2 strains B. amyloliquefaciens; F3: B. coagulans, Bacillus licheniformis and 2 strains B. amyloliquefaciens; F5: Bacillus subtilis, B. licheniformis and 2 strains B. amyloliquefaciens), positive control (PC), and a negative control antibiotic treatment group (NC). In Exp. 2, a total of 360 one-day-old ROSS308 broilers were used to test five treatments (n = 9) including PC, NC, F1 and F5 (selected from Exp. 1), and F4 (Bacillus pumilis and 2 strains B. amyloliquefaciens) in a maize-soybean diet. B. amyloliquefaciens F1 demonstrated a significant improvement in feed conversion ratio (FCR) compared to F2 at d 14 (1.49 vs 2.10; P = 0.038) and the body weight (BW) at d 21 (847.0 g vs 787.4 g) compared to other combinations (P = 0.027). The FCR at d 21 tended to be lower in birds fed F1 (1.46 vs 1.66) compared to the control (P = 0.068). Probiotic treatments had significantly improved nutrient digestibility compared to the PC and NC. Also, probiotic treatments supported the growth of Streptococcus, a common commensal genus and reduced the abundance of genera that correlated with low weight gain such as Akkermansia. Experiment two revealed that F4 improved FCR (P < 0.001) and BW at 28 d (P = 0.014). In vitro testing showed a high production of protease and amylase by Bacillus. Thus, the addition of Bacillus probiotics, particularly containing B. amyloliquefaciens strains and Bacillus pumilus, into the diet of broiler chickens improves production performance, nutrient digestibility, and allows the proliferation of beneficial gut microbiota.

5.
Sci Rep ; 14(1): 20333, 2024 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223205

RESUMO

Association between metabolic syndrome (MetS) and oxidative stress has been shown in numerous studies. It has been shown that probiotics could be the effective treatment strategy in improving oxidative stress. This study aimed to determine the effects of a new developed synbiotic yogurt on oxidative stress status in adults with MetS. Forty-four individuals were assigned into two groups and given 300 g of synbiotic yogurt containing Lactobacillus plantarum, Lactobacillus pentosus, and Chloromyces marcosianos yeast or regular yogurt for 12 weeks in this randomized, placebo-controlled clinical trial. Before and after the intervention, biochemical parameters were assessed. Daily consumption of synbiotic yogurt in adults with MetS showed a statistically significant improvement in the level of glutathione peroxidase (p = 0.01) and total oxidant status (p = 0.006) compared to the regular yogurt. Total Antioxidant Capacity and superoxide dismutase levels increased significantly (p = 0.002 and p = 0.02, respectively) in the intervention group compared to the baseline levels. In adults with MetS, daily consumption of the synbiotic yogurt containing native strains of Lactobacillus plantarum, Lactobacillus pentosus, and Chloromyces marcosianos yeast for 12 weeks was associated with improvements in oxidative stress status.Trial registration number: Iranian Registry of Clinical Trials (IRCT20220426054667N1) (18/05/2022).


Assuntos
Síndrome Metabólica , Estresse Oxidativo , Simbióticos , Iogurte , Humanos , Iogurte/microbiologia , Masculino , Feminino , Síndrome Metabólica/dietoterapia , Síndrome Metabólica/terapia , Síndrome Metabólica/microbiologia , Pessoa de Meia-Idade , Adulto , Antioxidantes/metabolismo , Lactobacillus plantarum , Probióticos/uso terapêutico , Probióticos/administração & dosagem , Superóxido Dismutase/metabolismo , Glutationa Peroxidase/metabolismo
6.
Appl Environ Microbiol ; : e0119724, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39240119

RESUMO

Some strains of lactic acid bacteria can regulate the host's intestinal immune system. Bacterial cells and membrane vesicles (MVs) of Limosilactobacillus antri JCM 15950T promote immunoglobulin A (IgA) production in murine Peyer's patch cells via toll-like receptor (TLR) 2. This study aimed to investigate the role of lipoteichoic acid (LTA), a ligand of TLR2, in the immunostimulatory activity of these bacterial cells and their MVs. LTA extracted from bacterial cells was purified through hydrophobic interaction chromatography and then divided into fractions LTA1 and LTA2 through anion-exchange chromatography. LTA1 induced greater interleukin (IL)-6 production from macrophage-like RAW264 cells than LTA2, and the induced IL-6 production was suppressed by TLR2 neutralization using an anti-TLR2 antibody. The LTAs in both fractions contained two hexose residues in the glycolipid anchor; however, LTA1 was particularly rich in triacyl LTA. The free hydroxy groups in the glycerol phosphate (GroP) repeating units were substituted by d-alanine (d-Ala) and α-glucose in LTA1, but only by α-glucose in LTA2. The dealanylation of LTA1 slightly suppressed IL-6 production in RAW264 cells, whereas deacylation almost completely suppressed IL-6 production. Furthermore, IL-6 production induced by dealanylated LTA1 was markedly higher than that induced by dealanylated LTA2. These results indicated that the critical moieties for the immunostimulatory activity of L. antri-derived LTA were the three fatty acid residues rather than the substitution with d-Ala in GroP. LTA was also detected in MVs, suggesting that the triacyl LTA, but not the diacyl LTA, translocated to the MVs and conferred immunostimulatory activity. IMPORTANCE: Some lactic acid bacteria activate the host intestinal immune system via toll-like receptor (TLR) 2. Lipoteichoic acid (LTA) is a TLR2 ligand; however, the moieties of LTA that determine its immunostimulatory activity remain unclear because of the wide diversity of LTA partial structures. We found that Limosilactobacillus antri JCM 15950T has three types of LTAs (triacyl, diacyl, and monoacyl LTAs). Specifically, structural analysis of the LTAs revealed that triacyl LTA plays a crucial role in immunostimulation and that the fatty acid residues are essential for the activity. The three acyl residues are characteristic of LTAs from many lactic acid bacteria, and our findings can explain the immunostimulatory mechanisms widely exhibited by lactic acid bacteria. Furthermore, the immunostimulatory activity of membrane vesicles released by L. antri JCM 15950T is due to the transferred LTA, demonstrating a novel mechanism of membrane vesicle-mediated immunostimulation.

7.
Sci Prog ; 107(3): 368504241276259, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39223984

RESUMO

OBJECTIVES: The present research was accomplished to characterize probiotics from broiler gastrointestinal tract (GIT) by profiling biochemical, antimicrobial, and antibiotic sensitivity properties. Eventually, probiotic potentiality was evaluated as a substitute for antibiotic supplements in broiler focusing growth performance, carcass characteristics, and serum lipid profile. METHODS: Probiotic bacteria were characterized based on morphological, physiological, and several biochemical tests. Antibacterial activity against a broad spectrum of antibiotics and bacterial pathogens was detected. An in vivo trial was conducted on 40-day-old Ross 308 broiler strains during 21 days in an in vivo trial. The chicks were divided into total of five groups, a control group and four experimental groups (Antibiotic1, Antibiotic2, Probiotic1, and Probiotic2) in a completely randomized design. Probiotic was supplemented in broiler feed (2× 109 CFU/g feed) or by direct oral gavage (1× 109 CFU/chick). The variables of production performance like body weight (BW), average daily gain (ADG), feed intake (FI), and feed conversion ratio (FCR), carcass characteristics and serum lipid profile were measured. RESULTS: 10 probiotic bacteria were presumptively identified as Lactobacillus sp. based on the morphological, physiological, and strong resistance properties in several biochemical tests. The mixture of Lactobacillus had favorable effects on productive performance of broilers regarding BW, ADG, and FCR (p < .05) compared with chickens that had no additive or had antibiotic during overall period of in vivo trial. Additionally, noteworthy efficacy on carcass characteristics and serum lipid profile were found (p < .05) in Lactobacillus mixture fed chicken groups of in vivo trial. CONCLUSION: Mixed Lactobacillus sp. can be considered as a potential additive for broiler diet attributable to noteworthy efficacy on growth performance, carcass characteristics, and serum lipid profile. Accordingly, the research highlights the need for suitable alteration of antibiotics through probiotic characterization and proper inclusion in broiler diet.


Assuntos
Antibacterianos , Galinhas , Lipídeos , Probióticos , Animais , Probióticos/farmacologia , Probióticos/administração & dosagem , Galinhas/microbiologia , Galinhas/crescimento & desenvolvimento , Antibacterianos/farmacologia , Lipídeos/sangue , Ração Animal , Lactobacillus/efeitos dos fármacos , Suplementos Nutricionais
8.
Gut Microbes ; 16(1): 2397874, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39229962

RESUMO

Recently, the mounting integration of probiotics into human health strategies has gathered considerable attention. Although the benefits of probiotics have been widely recognized in patients with gastrointestinal disorders, immune system modulation, and chronic-degenerative diseases, there is a growing need to evaluate their potential risks. In this context, new concerns have arisen regarding the safety of probiotics as some strains may have adverse effects in humans. Among these strains, Escherichia coli Nissle 1917 (EcN) exhibited traits of concern due to a pathogenic locus in its genome that produces potentially genotoxic metabolites. As the use of probiotics for therapeutic purposes is increasing, the effects of potentially harmful probiotics must be carefully evaluated. To this end, in this narrative review article, we reported the findings of the most relevant in vitro and in vivo studies investigating the expanding applications of probiotics and their impact on human well-being addressing concerns arising from the presence of antibiotic resistance and pathogenic elements, with a focus on the polyketide synthase (pks) pathogenic island of EcN. In this context, the literature data here discussed encourages a thorough profiling of probiotics to identify potential harmful elements as done for EcN where potential genotoxic effects of colibactin, a secondary metabolite, were observed. Specifically, while some studies suggest EcN is safe for gastrointestinal health, conflicting findings highlight the need for further research to clarify its safety and optimize its use in therapy. Overall, the data here presented suggest that a comprehensive assessment of the evolving landscape of probiotics is essential to make evidence-based decisions and ensure their correct use in humans.


Assuntos
Escherichia coli , Peptídeos , Policetídeos , Probióticos , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Policetídeos/metabolismo , Peptídeos/metabolismo , Peptídeos/genética , Animais , Mutagênicos/metabolismo , Mutagênicos/toxicidade , Dano ao DNA , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo
9.
Trop Life Sci Res ; 35(2): 249-269, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39234476

RESUMO

Lactiplantibacillus plantarum is a widely studied species known for its probiotic properties that can help alleviate serum cholesterol levels. Whole-genome sequencing provides genetic information on probiotic attributes, metabolic activities and safety assessment. This study investigates the probiotic properties of strain CRM56-2, isolated from Thai fermented tea leaves, using Whole-Genome Sequencing (WGS) to evaluate the safety, health-promoting genes and functional analysis. Strain CRM56-2 showed bile salt hydrolase (BSH) activity, assimilated cholesterol at a rate of 75.94%, tolerated acidic and bile environments and attached to Caco-2 cells. Based on ANIb (98.9%), ANIm (99.2%), and digital DNA-DNA hybridisation (98.3%), strain CRM56-2 was identified as L. plantarum. In silico analysis revealed that it was not pathogenic and contained no antibiotic-resistance genes or plasmids. L. plantarum CRM56-2 possessed genes linked to several probiotic properties and beneficial impacts. The genome of strain CRM56-2 suggested that L. plantarum CRM56-2 is non-hazardous, with potential probiotic characteristics and beneficial impacts, which could enhance its probiotic application. Consequently, L. plantarum CRM56-2 demonstrated excellent cholesterol-lowering activity and probiotic properties.

10.
J Appl Toxicol ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39252460

RESUMO

Bifidobacterium infantis YLGB-1496, originally isolated from breast milk from a Taiwanese mother, is under study for use as a probiotic. As part of safety assessment, an Ames, in vivo mouse micronucleus, and in vivo mouse spermatocyte chromosome aberration assay were conducted along with a 13-week oral rat toxicity study. B. infantis YLGB-1496 had no activity in any of the genotoxicity assays. Administration of the bacteria to Sprague-Dawley rats at doses ranging from 0 to 1.5 g/kg bw/day had no treatment-related effects on any of the endpoints measured. There appear to be no concerns for translocation or pathogenicity of B. infantis YLGB-1496 based on extensive experience with the species in general. The results of the current investigations support potential use of B. infantis YLGB-1496 as a probiotic in infant formula.

11.
Arch Microbiol ; 206(10): 398, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39254791

RESUMO

Increasing awareness regarding health promotion and disease prevention has driven inclusion of fermented foods and beverages in the daily diet. These are the enormous sources of beneficial microbes, probiotics. This study aims to isolate yeast strains having probiotic potential and effectivity against colitis. Initially, ninety-two yeast strains were isolated from Haria, an ethnic fermented beverage of West Bengal, India. Primary screening was done by their acid (pH 4) and bile salt (0.3%) tolerance ability. Four potent isolates were selected and found effective against Entamoeba histolytica, as this human pathogen is responsible to cause colitis. They were identified as Saccharomyces cerevisiae. They showed luxurious growth even at 37 oC, tolerance up to 5% of NaCl, resistance to gastric juice and high bile salt (2.0%) and oro-gastrointestinal transit tolerance. They exhibited good auto-aggregation and co-aggregation ability and strong hydrophobicity. Finally, heat map and principal component analysis revealed that strain Y-89 was the best candidate. It was further characterised and found to have significant protective effects against DSS-induced colitis in experimental mice model. It includes improvement in colon length, body weight and organ indices; reduction in disease activity index; reduction in cholesterol, LDL, SGPT, SGOT, urea and creatinine levels; improvement in HDL, ALP, total protein and albumin levels; decrease in coliform count and restoration of tissue damage. This study demonstrates that the S. cerevisiae strain Y-89 possesses remarkable probiotic traits and can be used as a potential bio-therapeutic candidate for the prevention of colitis.


Assuntos
Colite , Alimentos Fermentados , Probióticos , Saccharomyces cerevisiae , Probióticos/administração & dosagem , Probióticos/farmacologia , Animais , Camundongos , Índia , Colite/microbiologia , Colite/induzido quimicamente , Colite/prevenção & controle , Alimentos Fermentados/microbiologia , Modelos Animais de Doenças , Bebidas/microbiologia , Masculino , Entamoeba histolytica , Humanos , Fermentação
12.
Sci Rep ; 14(1): 20727, 2024 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237643

RESUMO

Given the growing interest in manipulating microbiota to enhance the fitness of mass-reared insects for biological control, this study investigated the impact of an artificial diet on the microbiota composition and performance of Orius strigicollis. We compared the microbiota of O. strigicollis fed on an artificial diet and moth eggs via culturing and 16S rRNA gene amplicon sequencing. Subsequently, we assessed life history traits and immune gene expression of O. strigicollis fed on the artificial diet supplemented with Pantoea dispersa OS1. Results showed that microbial diversity remained largely unaffected by the artificial diet, with similar microbiota compositions in both diet groups. OS1, a minor member of the microbiota but significantly enriched in bugs fed on the artificial diet, improved nymphal survival rates and shifted adult longevity-reproduction life history in females. Additionally, OS1 supplementation elevated the transcription of antimicrobial peptide diptericin. According to population parameters, the group receiving OS1 only during the nymphal stage showed higher population growth potential compared to the group supplemented across all life stages. These findings reveal the resilience of O. strigicollis microbiota under distinct dietary conditions and highlight the potential of using natural symbionts and specific supplementation regimes to improve Orius rearing for future biocontrol programs.


Assuntos
Microbiota , Animais , Feminino , Heterópteros/microbiologia , Dieta , Suplementos Nutricionais , RNA Ribossômico 16S/genética , Pantoea/fisiologia , Pantoea/genética , Ninfa/microbiologia , Ninfa/crescimento & desenvolvimento , Mariposas/microbiologia , Mariposas/crescimento & desenvolvimento , Masculino , Ração Animal , Longevidade
13.
Food Chem ; 462: 141030, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39241685

RESUMO

The human milk fat globule membrane (hMFGM) and Lactobacillus modulate the infant's gut and benefit health. Hence, the current study assesses the probiotic potential of Lactiplantibacillus plantarum (MRK3), Limosilactobacillus ferementum (MK1) isolated from infant feces, and its interaction with hMFGM during conditions mimicking infant digestive tract. Both strains showed high tolerance to gastrointestinal conditions, cell surface hydrophobicity, and strong anti-pathogen activity against Staphylococcus aureus. During digestion, hMFGM significantly exhibited xanthine oxidase activity, membrane roughness, and surface topography. In the presence of hMFGM, survival of MRK3 was higher than MK1, and electron microscopic observation revealed successful entrapment of MRK3 in the membrane matrix throughout digestion. Interestingly, probiotic-membrane matrix interaction showed significant synergy to alleviate oxidative stress and damage induced by cell-free supernatant of Escherichia coli in Caco-2 cells. Our results show that a probiotic-encapsulated membrane matrix potentially opens the functional infant formula development pathway.

14.
Int J Pharm ; : 124670, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39244071

RESUMO

The rapid acceleration of microbiome research has identified many potential Next Generation Probiotics (NGPs). Conventional formulation processing methods are non-compatible, leading to reduced viability and unconfirmed incorporation into intestinal microbial communities; consequently, demand for more bespoke formulation strategies of such NGPs is apparent. In this study, Akkermansia muciniphila (A.muciniphila) as a candidate NGP was investigated for its growth and metabolism properties, based on which a novel microcomposite-based oral formulation has been formed. Initially, a chitosan-based microcomposite is coated with mucin to establish surface culture of A.muciniphila. This was followed by 'double encapsulation' with pectin (PEC) using a novel Entrapment Deposition by Prilling method to create core-shell double-encapsulated microcapsules. The formulation of A.muciniphila was verified to require no oxygen-restriction properties, and additionally, biopolymers were selected (including carboxymethylcellulose (CMC)) that support and enhance its growth; consequently, a high viability (6 log CFU/g) of A.muciniphila microencapsulated in PEC-CMC double-encapsulates was obtained. Subsequently, the high stability of the PEC-CMC double-encapsulates was verified in simulated gastric fluid, successfully protecting and then releasing the A.muciniphila within intestinal conditions. Finally, employing a model of gastrointestinal transit and faecal-inoculated colonic bioreactors, significant alterations in microbial communities following administration and successful establishment of A.muciniphila were demonstrated.

15.
J Cosmet Dermatol ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39248208

RESUMO

BACKGROUND: The complex ecosystem of the skin microbiome is essential for skin health by acting as a primary defense against infections, regulating immune responses, and maintaining barrier integrity. This literature review aims to consolidate existing information on the skin microbiome, focusing on its composition, functionality, importance, and its impact on skin aging. METHODS: An exhaustive exploration of scholarly literature was performed utilizing electronic databases including PubMed, Google Scholar, and ResearchGate, focusing on studies published between 2011 and 2024. Keywords included "skin microbiome," "skin microbiota," and "aging skin." Studies involving human subjects that focused on the skin microbiome's relationship with skin health were included. Out of 100 initially identified studies, 70 met the inclusion criteria and were reviewed. RESULTS: Studies showed that aging is associated with a reduction in the variety of microorganisms of the skin microbiome, leading to an increased susceptibility to skin conditions. Consequently, this underlines the interest in bacteriotherapy, mainly topical probiotics, to reinforce the skin microbiome in older adults, suggesting improvements in skin health and a reduction in age-related skin conditions. Further exploration is needed into the microbiome's role in skin health and the development of innovative, microbe-based skincare products. Biotherapeutic approaches, including the use of phages, endolysins, probiotics, prebiotics, postbiotics, and microbiome transplantation, can restore balance and enhance skin health. This article also addresses regulatory standards in the EU and the USA that ensure the safety and effectiveness of microbial skincare products. CONCLUSION: This review underscores the need to advance research on the skin microbiome's role in cosmetic enhancements and tailored skincare solutions, highlighting a great interest in leveraging microbial communities for dermatological benefits.

16.
World J Microbiol Biotechnol ; 40(10): 314, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39249571

RESUMO

This research propounds an innovative technology focused on sustainability to increase the biomass yield of Akkermansia muciniphila, the next-generation probiotic, using prebiotic sources to replace or reduce animal mucin levels. A series of experimental design approaches were developed aiming to optimize the growth of Akkermansiamuciniphila by incorporating extracts of green leafy vegetables and edible mushroom into the cultivation media. Experiments using kale extract (KE), Brassica oleracea L., associated with lyophilized mushroom extract (LME) of Pleurotus ostreatus were the most promising, highlighting the assays with 0.376% KE and 0.423% LME or 1.05% KE and 0.5% LME, in which 3.5 × 1010 CFU (Colony Forming Units) mL- 1 was achieved - higher than in experiments in optimized synthetic media. Such results enhance the potential of using KE and LME not only as mucin substitutes, but also as a source to increase Akkermansia muciniphila biomass yields and release short-chain fatty acids. The work is relevant to the food and pharmaceutical industries in the preparation of the probiotic ingredient.


Assuntos
Akkermansia , Biomassa , Meios de Cultura , Prebióticos , Probióticos , Verrucomicrobia , Akkermansia/crescimento & desenvolvimento , Meios de Cultura/química , Verrucomicrobia/crescimento & desenvolvimento , Verrucomicrobia/metabolismo , Pleurotus/crescimento & desenvolvimento , Pleurotus/metabolismo , Ácidos Graxos Voláteis/metabolismo , Extratos Vegetais/química , Brassica/crescimento & desenvolvimento , Brassica/microbiologia
17.
Crit Rev Food Sci Nutr ; : 1-15, 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39244761

RESUMO

Probiotic lactic acid bacteria (LAB) must undergo three key stages of testing, including food processing, storage, and gastrointestinal tract environment, their beneficial effects could exert. The biofilm formation of probiotic LAB is helpful for improving their stress resistances, survival rates, and colonization abilities under adverse environmental conditions, laying an important foundation for their probiotic effects. In this review, the formation process, the composition and function of basic components of probiotic LAB biofilm have been summarized. This review focuses on the regulatory mechanism of probiotic LAB biofilm formation. In addition, the characteristics and related mechanisms of probiotics in biofilm state have been analyzed to guide the application of probiotic LAB biofilms in the field of health and food. The biofilm formation of LAB is an extremely complex process involving multiple regulatory factors. Besides quorum sensing (QS), other regulatory factors are not yet fully understood. The probiotic LAB in biofilm state exhibit superior survival rate, adhesion performance, and immunomodulation ability, attribute to various metabolic processes, including stress response, exopolysaccharide (EPS) metabolism, amino acid and protein metabolisms, etc. The understanding about regulatory mechanism of biofilm formation of different probiotic species and strains will accelerate the development and application of probiotics products.

18.
Int J Pharm ; 665: 124667, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39241931

RESUMO

Natural polysaccharide-based active-ingredient carriers have been a source of great concern for a long time. In order to explore potential antibiotics and probiotics carriers, a novel injectable chondroitin sulfate/salecan (CS) hydrogel was constructed by forming dynamic hydrazone bonds. Scanning electron microscope (SEM), proton nuclear magnetic resonance (1H NMR), Fourier transform infrared spectroscopy (FTIR), bacteriostatic test, and rheological experiments were used to investigate the chemical structure, inherent morphology, and enzymatic corruption of the hydrogel in vitro. The resulting hydrogels exhibited ideal probiotics loading capacity, drug release behavior, excellent antimicrobial activity and variable properties. Crucially, owing to its exceptional biocompatibility and reversible crosslinking network, this hydrogel can function as a three-dimensional extracellular matrix for cells, enabling cells to maintain high vitality and proliferation, and promote wound healing. The aforementioned findings indicated that this novel hydrogel can be a promising candidate as an active-ingredient carrier and scaffold material for tissue engineering.

19.
J Food Sci ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223756

RESUMO

Sea buckthorn has lipid-lowering properties and is widely used in the development of functional foods. In this study, a probiotic (Lactobacillus plantarum, Lp10211) with cholesterol-lowering potential and acid and bile salt resistant was screened for the fermentation of sea buckthorn juice. Changes in the active ingredients, such as sugars and phenolics, before and after fermentation, as well as their in vitro lipid-lowering activities, were compared. The contents of reducing and total sugars decreased substantially after fermentation. Lp10211 primarily utilized fructose for growth and reproduction, with a utilization rate of 76.9%. The phenolic compound content of sea buckthorn juice increased by 37.06% after fermentation and protected the phenolic components from degradation (protocatechuic and p-coumaric acids) and produced new polyphenol (shikimic acid). Enhanced inhibition of pancreatic lipase activity (95.42%) and cholesterol micellar solubility (59.15%) was evident. The antioxidant properties of the fermentation broth were improved. Notably, Lp10211 preserved the color and reversed browning in sea buckthorn juice. The collective findings indicate that fermentation of sea buckthorn juice by Lp10211 may enhance the functional components and lipid-lowering activity of sea buckthorn, which may provide a new approach for the development of lipid-lowering foods.

20.
Carbohydr Polym ; 345: 122572, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39227107

RESUMO

Probiotics and polyphenols have multiple bioactivities, and developing co-encapsulated microcapsules (CM) is a novel strategy to enhance their nutritional diversity. However, the development of CMs is challenged by complicated processing, single types, and unclear in vivo effects and applications. In this study, the co-microencapsulations of polyphenol and probiotic were constructed using pectin, alginate (WGCA@LK), and Fu brick tea polysaccharides (WGCF@LK), respectively, with chitosan-whey isolate proteins by layer-by-layer coacervation reaction, and their protective effects, in vivo effectiveness, and application potential were evaluated. WGCA@LK improved the encapsulation rate of polyphenols (42.41 %), and remained high viability of probiotics after passing through gastric acidic environment (8.79 ± 0.04 log CFU/g) and storage for 4 weeks (4.59 ± 0.06 log CFU/g). WGCF@LK exhibited the highest total antioxidant activity (19.40 ± 0.25 µmol/mL) and its prebiotic activity removed the restriction on probiotic growth. WGCA@LK showed strong in vitro colonic adhesion, but WGCF@LK promoted in vivo retention of probiotics at 48 h. WGCF@LK showed excellent anti-inflammatory effects and alleviated symptoms of acute colitis in mice. These findings provide unique insights into the fortification of probiotic-polyphenol CMs by different polysaccharides and the development of novel health foods with rich functional hierarchies and superior therapeutic effects.


Assuntos
Cápsulas , Colite , Polifenóis , Polissacarídeos , Probióticos , Probióticos/administração & dosagem , Probióticos/química , Animais , Polifenóis/química , Polifenóis/farmacologia , Colite/tratamento farmacológico , Colite/induzido quimicamente , Camundongos , Polissacarídeos/química , Polissacarídeos/farmacologia , Alimentos Fortificados , Alginatos/química , Alginatos/farmacologia , Masculino , Pectinas/química , Pectinas/farmacologia , Chá/química , Antioxidantes/química , Antioxidantes/farmacologia , Quitosana/química , Sulfato de Dextrana/química , Composição de Medicamentos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA