Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Materials (Basel) ; 17(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38930270

RESUMO

Prolamins, proteins derived from plants, have extensive applications in pharmaceutics and food science. Jiuzao is a byproduct of the Baijiu brewing industry, and is a great source of prolamin. Despite its importance, knowledge regarding the extraction techniques and the properties of prolamin derived from Baijiu Jiuzao (PBJ) remains limited. Reverse micelles (RMs) extraction offers an efficient and cost-effective method for purifying proteins. In the present study, prolamin was extracted from Baijiu Jiuzao using RMs extraction and subsequently characterized in terms of its secondary structure, morphology, and particle size distribution. Our findings indicate that the purified prolamin extracted using further RMs extraction possessed higher α-helix content (+13.25%), forming a large-scale protein network, and narrower particle size distributions compared to the crude prolamin obtained by NaOH-ethanol method. This research suggests that RMs extraction has potential applications in extracting prolamin from brewing industry byproducts, offering an environmentally friendly approach to Baijiu Jiuzao recycling.

2.
J Sci Food Agric ; 104(9): 5565-5576, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38372364

RESUMO

BACKGROUND: Distiller's grains (DGs), which are rich in natural ingredients such as prolamins, are often used as low-value feed or discarded directly, resulting in great environmental pollution and resource waste. Prolamins from DGs (PDGs) were found to be a potential material for the construction of biopolymer films due to their good film-forming properties. In this study, extrusion processing was conducted to modify the physicochemical and structural properties of PDGs to facilitate the construction of biopolymer films with superior characteristics. RESULTS: Results indicated that extrusion led to improved solubility (17.91% to 39.95%) and increased disulfide bonds (1.46 to 6.13 µmol g-1) in PDGs. The total and sulfur amino acid contents of extruded PDGs were increased by 13.26% and 38.83%, respectively. New aggregation patterns were formed after extrusion according to the results of scanning electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction. Extrusion resulted in reduced surface hydrophobicity of PDGs (10 972 to 3632), sufficient evidence for which could be also found from structure analyses of PDGs. Finally, PDGs extruded at 110 °C were found to facilitate the forming of biopolymer films with superior mechanical properties, water resistance and thermal stability. CONCLUSIONS: Physicochemical and structural properties of PDGs were effectively modified by extrusion processing, and extrusion modification of PDGs could be a great way to facilitate the construction of biopolymer films with superior characteristics. It could provide more possibilities to extend the applications of DGs to alleviate the problems of environmental pollution and resource waste. © 2024 Society of Chemical Industry.


Assuntos
Prolaminas , Solubilidade , Biopolímeros/química , Prolaminas/química , Grão Comestível/química , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Resistência à Tração
3.
Molecules ; 28(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38067529

RESUMO

Foods are susceptible to deterioration and sour due to external environmental influences during production and storage. Coating can form a layer of physical barrier on the surface of foods to achieve the purpose of food preservation. Because of its good barrier properties and biocompatibility, prolamin-based film has been valued as a new green and environment-friendly material in the application of food preservation. Single prolamin-based film has weaknesses of poor toughness and stability, and it is necessary to select appropriate modification methods to improve the performance of film according to the application requirements. The practical application effect of film is not only affected by the raw materials and the properties of the film itself, but also affected by the selection of preparation methods and processing techniques of film-forming liquid. In this review, the properties and selection of prolamins, the forming mechanisms and processes of prolamin-based coatings, the coating techniques, and the modifications of prolamin-based coatings were systematically introduced from the perspective of food coating applications. Moreover, the defects and deficiencies in the research and development of prolamin-based coatings were also reviewed in order to provide a reference for the follow-up research on the application of prolamin-based coatings in food preservation.


Assuntos
Filmes Comestíveis , Prolaminas , Conservação de Alimentos/métodos , Embalagem de Alimentos , Alimentos
4.
Foods ; 12(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37959088

RESUMO

Hydrolysates of coix seed prolamins (CHPs) have an excellent hypoglycemic effect and can effectively inhibit α-glucosidase, which is the therapeutic target enzyme for type 2 diabetes mellitus. However, its hypoglycemic components and molecular mechanisms remain unclear, and its stability in food processing needs to be explored. In this study, four potential α-glucosidase inhibitory peptides (LFPSNPLA, FPCNPLV, HLPFNPQ, LLPFYPN) were identified and screened from CHPs using LC-MS/MS and virtual screening techniques. The results of molecular docking showed that the four peptides mainly inhibited α-glucosidase activity through hydrogen bonding and hydrophobic interactions, with Pro and Leu in the peptides playing important roles. In addition, CHPs can maintain good activity under high temperatures (40~100 °C) and weakly acidic or weakly alkaline conditions (pH 6.0~8.0). The addition of glucose (at 100 °C) and NaCl increased the inhibitory activity of α-glucosidase in CHPs. The addition of metal ions significantly decreased the inhibitory activity of α-glucosidase by CHPs, and their effects varied in magnitude with Cu2+ having the largest effect followed by Zn2+, Fe3+, K+, Mg2+, and Ca2+. These results further highlight the potential of CHPs as a foodborne hypoglycemic ingredient, providing a theoretical basis for the application of CHPs in the healthy food industry.

5.
J Dairy Sci ; 106(12): 8710-8722, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37641327

RESUMO

Zeins are commercially important proteins found in corn endosperms. The objective of this study was to evaluate the effect of altering zein levels in corn inbred lines carrying endosperm mutations with differential allelic dosage and analyze the effects on the composition, nutritive value, and starch digestibility of whole-plant corn silage (WPCS) at 5 storage lengths. Three inbred lines carrying 3 different endosperm modifiers (opaque-2 [o2], floury-2 [fl2], and soft endosperm-1 [h1]) were pollinated with 2 pollen sources to form pairs of near-isogenic lines with either 2 or 3 doses of the mutant allele for each endosperm modifier. The experiment was designed as a split-plot design with 3 replications. Pollinated genotype was the main plot factor, and storage length was the subplot-level factor. Agronomic precautions were taken to mimic hybrid WPCS to the extent possible. Samples were collected at approximately 30% dry matter (DM) using a forage harvester and ensiled in heat-sealed plastic bags for 0, 30, 60, 120, and 240 d. Thus, the experiment consisted of 30 treatments (6 genotypes × 5 storage lengths) and 90 ensiling units (3 replications per treatment). Measurements included nutrient analysis, including crude protein, soluble crude protein, amylase-treated neutral detergent fiber, acid detergent fiber, lignin, starch, fermentation end products, zein concentration, and in vitro starch digestibility (ivSD). The nutritional profile of the inbred-based silage samples was similar to hybrid values reported in literature. Significant differences were found in fresh (unfermented) sample kernels for endosperm vitreousness and zein profiles between and within isogenic pairs. The o2 homozygous (3 doses of mutant allele) had the highest reduction in vitreousness level (74.5 to 38%) and zein concentration (6.2 to 4.7% of DM) compared with the heterozygous counterpart (2 doses of mutant allele). All genotypes showed significant reduction of total zeins and α-zeins during progressive storage length. In vitro starch digestibility increased with storage length and had significant effects of genotype and storage length but not for genotype by storage length interaction, which suggests that the storage period did not attenuate the difference in ivSD between near-isogenic pairs caused by zeins in WPCS. Both total zeins and α-zeins showed a strong negative correlation with ivSD, which agrees with the general hypothesis that the degradation of zeins increases ruminal starch degradability. Homozygous o2 was the only mutant with significantly higher ivSD compared with the heterozygous version, which suggests that, if all other conditions remain constant in a WPCS systems, substantial reductions in endosperm α-zeins are required to significantly improve ivSD in the silo.


Assuntos
Silagem , Zeína , Animais , Silagem/análise , Amido/metabolismo , Endosperma/metabolismo , Zea mays/metabolismo , Zeína/metabolismo , Fermentação , Nitrogênio/metabolismo , Detergentes/metabolismo , Rúmen/metabolismo , Digestão
6.
Molecules ; 28(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37513208

RESUMO

The composition, structure, and functionalities of prolamins from highland barley were investigated. These parameters were compared with those of the commonly applied prolamins (zein). There are more charged and hydrophilic amino acids in highland barely prolamins than zein. The molecular weight of highland barely prolamins was between 30 and 63 kDa, which was larger than that of zein (20 and 24 kDa). The main secondary structure of highland barely prolamins was ß-turn helices, while α-helical structures were the main secondary structure in zein. The water holding capacity, thermal stability, emulsifying capacity, and stability of prolamins from highland barley were significantly higher than in zein, while the opposite results were observed for oil absorption capacity between the two. The diameter of fibers prepared using highland barely prolamins was almost six times that of zein, while highland barely prolamins formed ribbon structures instead of fibers. Therefore, the results provide guidance for applications of prolamins from highland barley.


Assuntos
Hordeum , Zeína , Prolaminas/química , Prolaminas/metabolismo , Zeína/química , Hordeum/metabolismo , Estrutura Secundária de Proteína , Aminoácidos
7.
Foods ; 12(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37444238

RESUMO

Dipeptidyl peptidase-IV (DPP-IV) is a key target for the treatment of type 2 diabetes mellitus. It is possible that peptides that precisely regulate DPP-IV could be released from coix seed prolamins (CSP), but whether this happens has not yet been investigated. We performed the in silico digestion of CSP and predicted the bioactivity, absorption, transport, toxicity, and allergenicity of the resulting peptides. The simulation predicted that 47 non-toxic bioactive peptides would be released. After screening these, we found that 64.58% of them could possess DPP-IV inhibitory activity. The effect of thermal processing on the amino acid composition and structural properties of CSP was determined, and the DPP-IV inhibitory activity of its digestion-derived peptides was also assessed. The results showed that processing could change the flavour of coix seed and the supply of amino acids. After processing, the spatial conformation of CSP changed from ordered to disordered, and the peptide content and the DPP-IV inhibitory activity of its digestion products significantly increased by 19.89-30.91% and 36.84-42.02%, respectively. These results support the hypothesis that processing can change the protein structure and increase the probability that bioactive peptides will be released. They also have important implications for the development of bioactive peptides and the intensive processing of coix seeds.

8.
Ultrason Sonochem ; 98: 106526, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37515909

RESUMO

The self-assembled structures of coix seeds affected the enzymatic efficiency and doesn't facilitate the release of more active peptides. The influence of heating combined with ultrasound pretreatment (HT + US) on the structure, enzymatic properties and hydrolysates (CHPs) of coix seed prolamin was investigated. Results showed that the structural of coix seed prolamins has changed after HT + US, including increased surface hydrophobicity, reduced α-helix and random coil content, and a decrease in particle size. So that, leads to changes in thermodynamic parameters such as an increase in the reaction rate constant and a decrease in activation energy, enthalpy and enthalpy. The fractions of <1000 Da, degree of hydrolysis and α-glucosidase inhibitory were increased in the HT + US group compared to single pretreatment by 0.68%-17.34%, 12.69%-34.43% and 30.00%-53.46%. The peptide content and α-glucosidase inhibitory activity of CHPs could be maintained at 72.21 % and 57.97 % of the initial raw materials after in vitro digestion. Thus, the findings indicate that HT + US provides a feasible and efficient approach to can effectively enhance the enzymatic hydrolysis efficiency and hypoglycaemic efficacy of CHPs.


Assuntos
Coix , Prolaminas/análise , Prolaminas/química , Hidrólise , Coix/química , Temperatura Alta , alfa-Glucosidases , Peptídeos/farmacologia , Peptídeos/química , Sementes/química
9.
Foods ; 12(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37048364

RESUMO

In recent years, brewer's spent grain (BSG) has gained attention as a plant-based protein source because it occurs in large quantities as a by-product of beer brewing. BSG can contribute to future food requirements and support the development of a circular economy. In light of the dynamic developments in this area, this review aims to understand the proteins present in BSG, and the effect of extraction techniques and conditions on the composition, physicochemical, and techno-functional properties of the obtained protein extracts. The water-insoluble hordeins and glutelins form the major protein fractions in BSG. Depending on the beer brewing process, the extraction technique, and conditions, the BSG protein isolates predominantly contain B, C, and ϒ hordeins, and exhibit a broad molecular weight distribution ranging between <5 kDa and >250 kDa. While the BSG isolates obtained through chemical extraction methods seem promising to obtain gelled food products, physical and enzymatic modifications of BSG proteins through ultrasound and proteolytic hydrolysis offer an effective way to produce soluble and functional protein isolates with good emulsifying and foaming capabilities. Specifically tailored protein extracts to suit different applications can thus be obtained from BSG, highlighting that it is a highly valuable protein source.

10.
J Food Sci ; 88(5): 1969-1978, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37023022

RESUMO

The differences in proteins in structural characteristics are reported to affect their physicochemical and functional properties. In this study, three types of prolamins (γ-, α-, and ß-coixin) derived from coix seed separately distributed among fractions 1-3 extracts. They were studied respecting molecular weight, amino acid composition, secondary structure, microstructure, surface hydrophobicity, solubility, water holding capacity, and oil holding capacity. Results showed that the molecular weights of those three fractions were between 10 and 40 kDa. The secondary structure of those fractions was almost the same, mainly based on ß-sheet and irregular structure. The microstructure of α- and γ-coixin presented an irregular shape, whereas ß-coixin presented a regular spherical shape. Those three fractions exhibited species of abundant essential amino acids with the same amino acid composition but different contents. The ß-coixin fraction had the highest content of hydrophobic amino acids (238.39 mg/g) followed by the α-coixin fraction (235.05 mg/g), whereas the γ-coixin fraction had the lowest content (33.27 mg/g). The γ-coixin fraction has the maximum surface hydrophobicity, whereas the ß-coixin fraction has the highest solubility. In addition, the good amphiphilicity of ß-coixin fraction made it possible to be used as a surfactant. The excellent functional properties of the ß-coixin fraction presented in this research would widen the applications of coix seed prolamins. PRACTICAL APPLICATION: The molecular weights of those three fractions were between 10 and 40 kDa. The secondary structure was almost the same, mainly based on ß-sheet and irregular structure. Those three fractions exhibited species of abundant essential amino acids with the same amino acid composition but different contents. The WHC and OHC of ß-coixin were the best, indicating its potential as a surfactant and forming stable lotion.


Assuntos
Coix , Prolaminas/metabolismo , Sequência de Bases , Proteínas de Plantas/química , Zea mays/metabolismo , Sementes/metabolismo , Aminoácidos/metabolismo , Aminoácidos Essenciais/metabolismo , Tensoativos
11.
Adv Mater ; 35(2): e2207397, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36271729

RESUMO

Cultivating meat from muscle stem cells in vitro requires 3D edible scaffolds as the supporting matrix. Electrohydrodynamic (EHD) printing is an emerging 3D-printing technology for fabricating ultrafine fibrous scaffolds with high precision microstructures for biomedical applications. However, edible EHD-printed scaffolds remain scarce in cultured meat (CM) production partly due to special requirements with regard to the printability of ink. Here, hordein or secalin is mixed, which are cereal prolamins extracted from barley or rye, with zein to produce pure prolamin-based inks, which exhibit favorable printability similar to common polycaprolactone ink. Zein/hordein and zein/secalin scaffolds with highly ordered tessellated structures are successfully fabricated after optimizing printing conditions. The prolamin scaffolds demonstrated good water stability and in vitro degradability due to the porous fiber surface, which is spontaneously generated by culturing muscle cells for 1 week. Moreover, mouse skeletal myoblasts (C2C12) and porcine skeletal muscle satellite cells (PSCs) can adhere and proliferate on the fibrous matrix, and a CM slice is produced by culturing PSCs on prolamin scaffolds with high tissue similarity. The upregulation of myogenic proteins shows that the differentiation process is triggered in the 3D culture, demonstrating the great potential of prolamin scaffolds in CM production.


Assuntos
Carne , Impressão Tridimensional , Técnicas de Cultura de Tecidos , Alicerces Teciduais , Zeína , Animais , Camundongos , Glutens , Prolaminas , Suínos , Engenharia Tecidual , Alicerces Teciduais/química , Manipulação de Alimentos
12.
Crit Rev Food Sci Nutr ; : 1-28, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36004584

RESUMO

Prolamins are a group of storage proteins (zeins, kafirins, hordeins, secalins, gliadins, glutenins, and avenins) found in the endosperm of cereal grains and characterized by high glutamine and proline content. With the high proportion of nonpolar amino acids (40-80%) and peculiar solubility (alcohol (60-90%), acetic acid, and alkaline solutions), prolamins exhibit tunable self-assembly behaviors. In recent years, research practices of utilizing prolamins as green building materials of functional delivery vehicles to improve the health benefits of bioactive compounds have surged due to their attractive advantages (e.g. sustainability, biocompatibility, fabrication potential, and cost-competitiveness). This article covers the recent advances in self-assembly behaviors leading to the fabrication of nanoparticles, fibers, and films in the bulk water phase, at the air-liquid interface, and under the electrostatic field. Different fabrication methods, including antisolvent precipitation, evaporation induced self-assembly, thermal treatment, pH-modulation, electrospinning, and solvent casting for assembling nanoarchitectures as functional delivery vehicles are highlighted. Emerging industrial applications by mapping patents, including encapsulation and delivery of bioactive compounds and probiotics, active packaging, Pickering emulsions, and as functional additives to develop safer, healthier, and sustainable food products are discussed. A future perspective concerning the fabrication of prolamins as advanced materials to promote their commercial food applications is proposed.

13.
J Integr Plant Biol ; 64(4): 821-835, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35142108

RESUMO

A central role of the endoplasmic reticulum (ER) is the synthesis, folding and quality control of secretory proteins. Secretory proteins usually exit the ER to enter the Golgi apparatus in coat protein complex II (COPII)-coated vesicles before transport to different subcellular destinations. However, in plants there are specialized ER-derived vesicles (ERDVs) that carry specific proteins but, unlike COPII vesicles, can exist as independent organelles or travel to the vacuole in a Golgi-independent manner. These specialized ERDVs include protein bodies and precursor-accumulating vesicles that accumulate storage proteins in the endosperm during seed development. Specialized ERDVs also include precursor protease vesicles that accumulate amino acid sequence KDEL-tailed cysteine proteases and ER bodies in Brassicales plants that accumulate myrosinases that hydrolyzes glucosinolates. These functionally specialized ERDVs act not only as storage organelles but also as platforms for signal-triggered processing, activation and deployment of specific proteins with important roles in plant growth, development and adaptive responses. Some specialized ERDVs have also been exploited to increase production of recombinant proteins and metabolites. Here we discuss our current understanding of the functional diversity, evolutionary mechanisms and biotechnological application of specialized ERDVs, which are associated with some of the highly remarkable characteristics important to plants.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório , Complexo de Golgi , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Plantas/genética , Transporte Proteico
14.
Foods ; 12(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36613365

RESUMO

The observed increase in the prevalence of gluten-related disorders has prompted the development of novel immunological systems for gluten detection in foodstuff. The innovation on these methods relies on the generation of new antibodies, which might alternatively be obtained by molecular evolution methods such as phage display. This work presents a novel approach for the generation of a Fab library by merging semi-synthetic heavy chains built-up from a pre-existent recombinant antibody fragment (dAb8E) with an immune light chain set derived from celiac donors. From the initial phage population (107 candidates) and after three rounds of selection and amplification, four different clones were isolated for further characterization. The phage Fab8E-4 presented the best features to be applied in an indirect ELISA for the detection of gluten in foods, resulting in improved specificity and sensitivity.

15.
BMC Genomics ; 22(1): 864, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34852761

RESUMO

BACKGROUND: Prolamins, unique to Gramineae (grasses), play a key role in the human diet. Thinopyrum elongatum (syn. Agropyron elongatum or Lophopyrum elongatum), a grass of the Triticeae family with a diploid E genome (2n = 2x = 14), is genetically well-characterized, but little is known about its prolamin genes and the relationships with homologous loci in the Triticeae species. RESULTS: In this study, a total of 19 α-gliadin, 9 γ-gliadin, 19 ω-gliadin, 2 high-molecular-weight glutenin subunit (HMW-GS), and 5 low-molecular-weight glutenin subunit (LMW-GS) genes were identified in the Th. elongatum genome. Micro-synteny and phylogenetic analysis revealed dynamic changes of prolamin gene regions and genetic affinities among Th. elongatum, Triticum aestivum, T. urartu and Aegilops tauschii. The Th. elongatum genome, like the B subgenome of T. aestivum, only contained celiac disease epitope DQ8-glia-α1/DQ8.5-glia-α1, which provided a theoretical basis for the low gluten toxicity wheat breeding. The transcriptome data of Th. elongatum exhibited differential expression in quantity and pattern in the same subfamily or different subfamilies. Dough rheological properties of T. aestivum-Th. elongatum disomic substitution (DS) line 1E(1D) showed higher peak height values than that of their parents, and DS6E(6D) exhibited fewer α-gliadins, which indicates the potential usage for wheat quality breeding. CONCLUSIONS: Overall, this study provided a comprehensive overview of the prolamin gene family in Th. elongatum, and suggested a promising use of this species in the generation of improved wheat breeds intended for the human diet.


Assuntos
Melhoramento Vegetal , Poaceae , Prolaminas , Filogenia , Poaceae/genética , Prolaminas/genética , Triticum/genética
16.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34884476

RESUMO

Prolamins constitute a unique class of seed storage proteins, present only in grasses. In the lumen of the endoplasmic reticulum (ER), prolamins form large, insoluble heteropolymers termed protein bodies (PB). In transgenic Arabidopsis (Arabidopsis thaliana) leaves, the major maize (Zea mays) prolamin, 27 kDa γ-zein (27γz), assembles into insoluble disulfide-linked polymers, as in maize endosperm, forming homotypic PB. The 16 kDa γ-zein (16γz), evolved from 27γz, instead forms disulfide-bonded dispersed electron-dense threads that enlarge the ER lumen without assembling into PB. We have investigated whether the peculiar features of 16γz are also maintained during transgenic seed development. We show that 16γz progressively changes its electron microscopy appearance during transgenic Arabidopsis embryo maturation, from dispersed threads to PB-like, compact structures. In mature seeds, 16γz and 27γz PBs appear very similar. However, when mature embryos are treated with a reducing agent, 27γz is fully solubilized, as expected, whereas 16γz remains largely insoluble also in reducing conditions and drives insolubilization of the ER chaperone BiP. These results indicate that 16γz expressed in the absence of the other zein partners forms aggregates in a storage tissue, strongly supporting the view that 16γz behaves as the unassembled subunit of a large heteropolymer, the PB, and could have evolved successfully only following the emergence of the much more structurally self-sufficient 27γz.


Assuntos
Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Sementes/metabolismo , Zea mays/metabolismo , Zeína/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Endosperma/genética , Endosperma/crescimento & desenvolvimento , Endosperma/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento , Zea mays/genética , Zeína/genética
17.
Adv Neurobiol ; 24: 377-394, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32006365

RESUMO

The grain group is small, hard, dry seeds, known to be more durable than other staple foods. They have been a part of the human diet for tens of thousands of years. The two foremost types of commercial grain crops are cereals and legumes or pulses, discussed in Chapter 13 "Seeds." A low intake of whole grains is actually the leading dietary risk factor for death and disease in the USA. Few healthy grains are discussed in this chapter that can help prevent health problems like heart diseases, diabetes, and cancers.


Assuntos
Dieta Saudável , Grão Comestível/química , Grão Comestível/classificação , Valor Nutritivo , Dieta Saudável/estatística & dados numéricos , Fibras na Dieta/análise , Doença , Humanos , Fatores de Risco , Estados Unidos/epidemiologia
18.
Front Plant Sci ; 10: 1470, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798614

RESUMO

Celiac disease (CD) is an immunogenic disorder that affects the small intestine. It is caused by the ingestion of gluten, a protein network formed by prolamins and glutelins from cereals such as wheat, barley, rye and, possibly, oats. For predisposed people, gluten presents epitopes able to stimulate T-cells causing symptoms like nausea, vomiting, diarrhea, among others unrelated to the gastrointestinal system. The only treatment for CD is to maintain a gluten-free diet, not exceeding 20 mg/kg of gluten, what is generally considered the safe amount for celiacs. Due to this context, it is very important to identify and quantify the gluten content of food products. ELISA is the most commonly used method to detect gluten traces in food. However, by detecting only prolamins, the results of ELISA tests may be underestimated. For this reason, more reliable and sensitive assays are needed to improve gluten quantification. Because of high sensitivity and the ability to detect even trace amounts of peptides in complex matrices, the most promising approaches to verify the presence of gluten peptides in food are non-immunological techniques, like liquid chromatography coupled to mass spectrometry. Different methodologies using this approach have been developed and described in the last years, ranging from non-targeted and exploratory analysis to targeted and specific methods depending on the purpose of interest. Non-targeted analyses aim to define the proteomic profile of the sample, while targeted analyses allow the search for specific peptides, making it possible to quantify them. This review aims to gather and summarize the main proteomic techniques used in the identification and quantitation of gluten peptides related to CD-activity and gluten-related allergies.

19.
Nutrients ; 11(12)2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31810336

RESUMO

Celiac disease, wheat sensitivity, and allergy represent three different reactions, which may occur in genetically predisposed individuals on the ingestion of wheat and derived products with various manifestations. Improvements in the disease diagnostics and understanding of disease etiology unveiled that these disorders are widespread around the globe affecting about 7% of the population. The only known treatment so far is a life-long gluten-free diet, which is almost impossible to follow because of the contamination of allegedly "gluten-free" products. Accidental contamination of inherently gluten-free products could take place at any level from field to shelf because of the ubiquity of these proteins/grains. Gluten contamination of allegedly "gluten-free" products is a constant threat to celiac patients and a major health concern. Several detection procedures have been proposed to determine the level of contamination in products for celiac patients. The present article aims to review the advantages and disadvantages of different gluten detection methods, with emphasis on the recent technology that allows identification of the immunogenic-gluten peptides without the use of antibodies. The possibility to detect gluten contamination by different approaches with similar or better detection efficiency in different raw and processed foods will guarantee the safety of the foods for celiac patients.


Assuntos
Doença Celíaca/dietoterapia , Dieta Livre de Glúten/métodos , Inocuidade dos Alimentos/métodos , Glutens/análise , Exposição Dietética/análise , Exposição Dietética/prevenção & controle , Humanos
20.
Colomb. med ; 49(4): 273-279, Oct.-Dec. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-984308

RESUMO

Abstract Introduction: Although the association between diabetes mellitus type 1 (T1DM) and celiac disease (CD) is well established; there are only a few studies that focus on South American children, haplotypes and their possible associations. Objective: To determine the prevalence of CD markers in a group of children with T1DM and to analyze the associated clinical, immunological and genetic manifestations. Methods: A prevalence study focusing on children with T1DM who were assessed based on variables including sociodemographics, anthropometric information, disease characteristics, laboratory results and family medical history. In partitipants a positive tTG2 (Ig A anti-transglutaminase), a duodenal biopsy and genotype were performed. The proportion of children with T1DM and CD was estimated (CI 95%). Determinations of central tendency, univariate and bivariate analysis, were also performed; p <0.05 was considered significant. Results: Thirteen (8.4%) of the 155 children (53.6% girls, 11.0 ±3.6 years, 2-18 years) with T1DM were tTG2 positive, four had CD (2.6%), seven had potential CD (4.5%) and nine were HLA DQ2/DQ8 positive (5.8%). Children with T1DM and CD had their last ketoacidotic episode (21.5 ±30.4 months versus 69.5 ±38.8 months, p= 0.0260) earlier than children with T1DM and potential CD. There were no differences with anthropometry or with the laboratory results regarding glycemic control. Conclusions: The prevalence of CD in these children with T1DM is higher than that reported in other South American countries. The prevalence of CD was found to be associated with the time of presentation of T1DM and its main allele, the DQ2/DQ8. These findings are different from what has been described in other places around the world.


Resumen Introducción: A pesar que la asociación entre diabetes mellitus tipo 1 (DMT1) y enfermedad celíaca (EC) está bien establecida; hay pocos estudios en niños suramericanos sobre haplotipos y sus posibles asociaciones. Objetivo: Determinar la prevalencia de marcadores de EC en un grupo de niños con DMT1, analizando las manifestaciones clínicas, inmunológicas y genéticas. Métodos: Estudio de prevalencia en niños con DMT1 a quienes se les tomaron variables sociodemográficas, antropométricas, de la enfermedad, paraclínicas y familiares metabólicas. A los niños con IgA anti-transglutaminasa (tTG2) positivos, se les realizó biopsia duodenal y genotipo. Se estimó la proporción de niños con DMT1 y EC y su IC 95%; medidas de tendencia central, análisis univariado y bivariado, siendo significativa una p <0.05. Resultados: Trece (8.4%) de los 155 niños (53.6% niñas, de 11.0 ±3.6 años, 2-18 años) con DMT1 fueron tTG2 positivos, cuatro presentaron EC (2.6%), siete EC potencial (4.5%) y nueve HLA DQ2/DQ8 (5.8%). Los niños con DMT1 y EC presentaron más pronto su último episodio cetoacidótico (21.5 ±30.4 meses versus 69.5 ±38.8 meses, p= 0.0260) que los niños con DMT1 y EC potencial. No hubo diferencias con la antropometría ni con los paraclínicos del control glicémico. Conclusiones: La prevalencia de EC en estos niños con DMT1 es superior a la de otros países suramericanos; estando asociada al tiempo de presentación de la DMT1 y su principal alelo el DQ2/DQ8, hallazgos diferentes a lo descrito a nivel mundial.


Assuntos
Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Antígenos HLA-DQ/genética , Doença Celíaca/epidemiologia , Diabetes Mellitus Tipo 1/complicações , Fatores de Tempo , Biomarcadores/metabolismo , Doença Celíaca/diagnóstico , Doença Celíaca/genética , Prevalência , Cetoacidose Diabética/epidemiologia , Colômbia/epidemiologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/epidemiologia , Alelos , Genótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...