Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Hum Pathol ; 150: 74-77, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945374

RESUMO

MLH1 promoter hypermethylation (MPH) analysis is an essential step in the universal tumor testing algorithm for Lynch syndrome, the most common inherited predisposition to colorectal cancer (CRC). MPH usually indicates sporadic CRC. EPM2AIP1 gene shares the same promoter as MLH1, therefore MPH should also silence EPM2AIP1 transcription leading to loss of protein expression on immunohistochemistry (IHC). It has been previously reported that EPM2AIP1 IHC can be used as a surrogate for MPH in endometrial cancer. Our goal was to evaluate the feasibility of EPM2AIP1 IHC as a surrogate for MPH in CRC. 101 microsatellite instable CRC cases were selected, including 19 cases from whole tumor sections and 82 cases from tissue microarrays. 74 cases were with MPH and 27 without MPH. All 74 cases with MPH showed absent MLH1 by IHC, but only 47 (64%) exhibited loss of expression of EPM2AIP1. Of the 27 cases without MPH, 9 (33%) cases had unexpected loss of EPM2AIP1 expression. Of note, 10 cases were MLH1-mutated Lynch syndrome without MPH, and 2 of these cases showed unexpected loss of EPM2AIP1 staining. Of the 6 cases with double somatic mutations of MLH1 gene (without MPH), only 4 cases demonstrated intact expression of EPM2AIP1 as expected. Taken together, EPM2AIP1 loss was 64% sensitive and 67% specific for MPH, with an accuracy of 64%. We conclude that, unless stain quality improves with different clones or platforms, EPM2AIP1 IHC will likely not be useful as a surrogate test for MPH in CRC.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38830238

RESUMO

We aimed to investigate the promoter methylation status of RASSF1A and RASSF2A tumor suppressor genes in endometrial endometrioid carcinomas with p53 wild type and mismatch repair proficient. Genomic DNAs were isolated from 50 specimens (15 formalin-fixed paraffin embedded tumor tissues, 15 paired blood samples and 20 normal endometrial tissues). Bisulfide modification and methylation-specific polymerase chain reaction were performed. As a result of the study, while no significance was found for RASSF1A gene (p = 0.08), a statistically significance was found for RASSF2A gene (p < 0.001), RASSF2A gene methylation status was also found higher in high grade tumors, advanced age (≥50) and nonsmokers groups. Our results indicate that RASSF2A gene may play a role in the carcinogenesis of endometrioid and it could be potential biomarker for early detection for endometrioid carcinoma. Further and larger investigations are needed to confirm our results.

3.
Am J Hum Genet ; 111(5): 896-912, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38653249

RESUMO

Porokeratosis is a clonal keratinization disorder characterized by solitary, linearly arranged, or generally distributed multiple skin lesions. Previous studies showed that genetic alterations in MVK, PMVK, MVD, or FDPS-genes in the mevalonate pathway-cause hereditary porokeratosis, with skin lesions harboring germline and lesion-specific somatic variants on opposite alleles. Here, we identified non-hereditary porokeratosis associated with epigenetic silencing of FDFT1, another gene in the mevalonate pathway. Skin lesions of the generalized form had germline and lesion-specific somatic variants on opposite alleles in FDFT1, representing FDFT1-associated hereditary porokeratosis identified in this study. Conversely, lesions of the solitary or linearly arranged localized form had somatic bi-allelic promoter hypermethylation or mono-allelic promoter hypermethylation with somatic genetic alterations on opposite alleles in FDFT1, indicating non-hereditary porokeratosis. FDFT1 localization was uniformly diminished within the lesions, and lesion-derived keratinocytes showed cholesterol dependence for cell growth and altered expression of genes related to cell-cycle and epidermal development, confirming that lesions form by clonal expansion of FDFT1-deficient keratinocytes. In some individuals with the localized form, gene-specific promoter hypermethylation of FDFT1 was detected in morphologically normal epidermis adjacent to methylation-related lesions but not distal to these lesions, suggesting that asymptomatic somatic epigenetic mosaicism of FDFT1 predisposes certain skin areas to the disease. Finally, consistent with its genetic etiology, topical statin treatment ameliorated lesions in FDFT1-deficient porokeratosis. In conclusion, we identified bi-allelic genetic and/or epigenetic alterations of FDFT1 as a cause of porokeratosis and shed light on the pathogenesis of skin mosaicism involving clonal expansion of epigenetically altered cells.


Assuntos
Metilação de DNA , Epigênese Genética , Queratinócitos , Mosaicismo , Poroceratose , Regiões Promotoras Genéticas , Poroceratose/genética , Poroceratose/patologia , Humanos , Queratinócitos/metabolismo , Queratinócitos/patologia , Regiões Promotoras Genéticas/genética , Masculino , Alelos , Feminino
4.
Funct Integr Genomics ; 24(1): 12, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38228798

RESUMO

Promoter methylation is one of the most studied epigenetic modifications and it is highly relevant to the onset and progression of thyroid carcinoma (THCA). This study investigates the promoter methylation and expression pattern of intercellular adhesion molecule 5 (ICAM5) in THCA. CpG islands with aberrant methylation pattern in THCA, and the expression profiles of the corresponding genes in THCA, were analyzed using bioinformatics. ICAM5 was suggested to have a hypermethylation status, and it was highly expressed in THCA tissues and cells. Its overexpression promoted proliferation, mobility, and tumorigenic activity of THCA cells. As for the downstream signaling, ICAM5 was found to activate the MAPK/ERK and MAPK/JNK signaling pathways. Either inhibition of ERK or JNK blocked the oncogenic effects of ICAM5. DNA methyltransferases 1 (DNMT1) and DNMT3a were found to induce promoter hypermethylation of ICAM5 in THCA cells. Knockdown of DNMT1 or DNMT3a decreased the ICAM5 expression and suppressed malignant properties of THCA cells in vitro and in vivo, which were, however, restored by further artificial ICAM5 overexpression. Collectively, this study reveals that DNMT1 and DNMT3a mediates promoter hypermethylation and transcription activation of ICAM5 in THCA, which promotes malignant progression of THCA through the MAPK signaling pathway.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Neoplasias da Glândula Tireoide , Humanos , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Ativação Transcricional , Metilação de DNA , Neoplasias da Glândula Tireoide/genética , Proteínas do Tecido Nervoso/genética , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo
5.
Clin Epigenetics ; 16(1): 12, 2024 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218889

RESUMO

The mechanism that drives the switch from fetal to adult hemoglobin (Hb) provides a therapeutic target for ß-thalassemia. We have previously identified that hypermethylation of transcription factor ERF promoter reactivated γ-globin expression. To uncover the mechanism underlying the hypermethylation of ERF promoter, we performed RNA sequencing in ß0/ß0-thalassemia patients and identified an upregulated long noncoding RNA (RP11-196G18.23) associated with HbF production. RP11-196G18.23 bound to the ERF promoter and recruited DNA methyltransferase 3A to promote DNA hypermethylation-mediated ERF downregulation, thereby ameliorating ERF-induced γ-globin inactivation. The identification of RP11-196G18.23 provides an epigenetic mechanism for the reactivation of fetal γ-globin expression for ß-hemoglobinopathies.


Assuntos
RNA Longo não Codificante , Talassemia beta , Adulto , Humanos , Talassemia beta/genética , Talassemia beta/terapia , gama-Globinas/genética , gama-Globinas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Hemoglobina Fetal/genética , Metilação de DNA , Proteínas Repressoras/genética
6.
Dig Dis Sci ; 69(2): 502-509, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38135812

RESUMO

BACKGROUND: Promoter hypermethylation of tumor suppressor genes has been demonstrated to be one of the major mechanisms of their epigenetic regulation in various reports. We have studied the promoter methylation status of PEBP1 and evaluated its correlation with gallbladder carcinogenesis. AIMS: PEBP1, an endogenous inhibitor of Raf/MEK/ERK signaling pathway, is a tumor suppressor gene. We aimed to study the expression profile of PEBP1 and understand the mechanism and significance of its deregulation in gallbladder cancer. METHODS: PEBP1 expression analysis and its promoter methylation status were investigated in 77 gallbladder carcinoma (GBC) and tissue biopsies from 28 patients of gallstone disease by RT-PCR and MS-PCR, respectively. RESULTS: Our results of the mRNA expression profiling demonstrate that PEBP1 is down-regulated in 62.3% (48/77), while 31.2% (24/77) of the gallbladder cancer biopsies show no significant change and 6.5% (5/77) show up-regulated expression compared to tissue samples of gallstone diseases. In GBC, 48.1% (N = 37) GBC biopsy samples exhibited significantly heterozygous promoter hypermethylation compared to tissue samples from gallstone diseases which show promoter hypermethylation in 3 (10.7%) samples only. In gallbladder cancer, the PEBP1 methylation is significantly associated with lymph node metastasis and shorter period of survival. CONCLUSION: PEBP1 is frequently down-regulated and hypermethylated in gallbladder cancer and its promoter hypermethylation is a frequent and early inactivating mechanism in GBC.


Assuntos
Carcinoma in Situ , Colelitíase , Neoplasias da Vesícula Biliar , Humanos , Relevância Clínica , Metilação de DNA , Epigênese Genética , Neoplasias da Vesícula Biliar/genética , Regulação Neoplásica da Expressão Gênica , Proteína de Ligação a Fosfatidiletanolamina
7.
Cell Mol Life Sci ; 80(11): 338, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37897534

RESUMO

Induction of DNA damage response (DDR) to ensure accurate duplication of genetic information is crucial for maintaining genome integrity during DNA replication. Cellular senescence is a DDR mechanism that prevents the proliferation of cells with damaged DNA to avoid mitotic anomalies and inheritance of the damage over cell generations. Human WWOX gene resides within a common fragile site FRA16D that is preferentially prone to form breaks on metaphase chromosome upon replication stress. We report here that primary Wwox knockout (Wwox-/-) mouse embryonic fibroblasts (MEFs) and WWOX-knockdown human dermal fibroblasts failed to undergo replication-induced cellular senescence after multiple passages in vitro. Strikingly, by greater than 20 passages, accelerated cell cycle progression and increased apoptosis occurred in these late-passage Wwox-/- MEFs. These cells exhibited γH2AX upregulation and microsatellite instability, indicating massive accumulation of nuclear DNA lesions. Ultraviolet radiation-induced premature senescence was also blocked by WWOX knockdown in human HEK293T cells. Mechanistically, overproduction of cytosolic reactive oxygen species caused p16Ink4a promoter hypermethylation, aberrant p53/p21Cip1/Waf1 signaling axis and accelerated p27Kip1 protein degradation, thereby leading to the failure of senescence induction in Wwox-deficient cells after serial passage in culture. We determined that significantly reduced protein stability or loss-of-function A135P/V213G mutations in the DNA-binding domain of p53 caused defective induction of p21Cip1/Waf1 in late-passage Wwox-/- MEFs. Treatment of N-acetyl-L-cysteine prevented downregulation of cyclin-dependent kinase inhibitors and induced senescence in Wwox-/- MEFs. Our findings support an important role for fragile WWOX gene in inducing cellular senescence for maintaining genome integrity during DDR through alleviating oxidative stress.


Assuntos
Proteína Supressora de Tumor p53 , Raios Ultravioleta , Animais , Humanos , Camundongos , Senescência Celular/genética , DNA/metabolismo , Fibroblastos/metabolismo , Instabilidade Genômica , Células HEK293 , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Oxidorredutase com Domínios WW/genética , Oxidorredutase com Domínios WW/metabolismo
8.
Genes (Basel) ; 14(9)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37761820

RESUMO

The hypermethylation status of the promoter region of the breast cancer 1 (BRCA1), a well-known tumor suppressor gene, has been extensively investigated in the last two decades as a potential biomarker for breast cancer. In this retrospective study, we investigated the prevalence of BRCA1 promoter methylation in 84 human breast tissues, and we correlated this epigenetic silencing with the clinical and histopathological parameters of breast cancer. We used methylation-specific PCR (MSP) to analyze BRCA1 promoter hypermethylation in 48 malignant breast tumors (MBTs), 15 normal adjacent tissues (NATs), and 21 benign breast lesions (BBLs). The results showed that BRCA1 promoter hypermethylation was higher in MBTs (20/48; 41.67%) and NATs (7/15; 46.67%) compared to BBLs (4/21; 19.05%). The high percentage of BRCA1 hypermethylation in the histologically normal adjacent tissues to the tumors (NATs) suggests the involvement of this epigenetic silencing as a potential biomarker of the early genomic instability in NATs surrounding the tumors. The detection of BRCA1 promoter hypermethylation in BBLs reinforces this suggestion, knowing that a non-negligible rate of benign breast lesions was reported to evolve into cancer. Moreover, our results indicated that the BRCA1 promoter hypermethylated group of MBTs exhibited higher rates of aggressive features, as indicated by the SBR III grade (14/19; 73.68%), elevated Ki67 levels (13/16; 81.25%), and Her2 receptor overexpression (5/20; 25%). Finally, we observed a concordance (60%) in BRCA1 promoter hypermethylation status between malignant breast tumors and their paired histologically normal adjacent tissues. This study highlights the role of BRCA1 promoter hypermethylation as a potential useful biomarker of aggressiveness in MBTs and as an early marker of genomic instability in both histological NATs and BBLs.

9.
Environ Res ; 236(Pt 2): 116845, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37558119

RESUMO

Globally, 200 million people are suffering from toxic manifestations of Fluoride(F), dental and skeletal fluorosis; unfortunately, there is no treatment. To unravel the pathogenesis of skeletal fluorosis, we established fluorosis mice by treating environmentally relevant concentration of F (15 ppm NaF) through drinking water for 4 months. As in skeletal fluorosis, locomotor disability, crippling deformities occur and thus, our hypothesis was F might adversely affects collagen which gives the bone tensile strength. This work inevitably had to be carried out on osteoblast cells, responsible for synthesis, deposition, and mineralization of bone matrix. Isolated osteoblast cells were confirmed by ALP activity and mineralized nodules formation. Expression of collagen Col1a1, Col1a2, COL1A1 was significantly reduced in treated mice. Further, a study revealed the involvement of epigenetic regulation by promoter hypermethylation of Col1a1; expressional alterations of transcription factors, calcium channels and other genes e.g., Cbfa-1, Tgf-ß1, Bmp1, Sp1, Sp7, Nf-Kb p65, Bmp-2, Bglap, Gprc6a and Cav1.2 are associated with impairment of collagen synthesis, deposition and decreased mineralization thus, enfeebling bone health. This study indicates the possible association of epigenetic regulation in skeletal fluorosis. However, no association was found between polymorphisms in the Col1a1 (RsaI, HindIII) and Col1a2 (RsaI, HindIII) genes with fluorosis in mice.


Assuntos
Epigênese Genética , Fluoretos , Humanos , Camundongos , Animais , Fluoretos/toxicidade , Colágeno/metabolismo , Osteoblastos/metabolismo
10.
Asian Pac J Cancer Prev ; 24(5): 1583-1590, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37247277

RESUMO

BACKGROUND: Chromatin immunoprecipitation (ChIP) analysis revealed that the FBXW7 gene and the long non-coding RNA (LINC01588) are potential candidates in epithelial ovarian cancer (EOC) pathogenesis. However, their exact role in EOC is not yet known. Thus, the present study sheds light on the impact of the mutations/ methylation status of the FBXW7 gene. MATERIALS AND METHODS: We used public databases to assess the correlation between mutations/ methylation status and the FBXW7 expression. Furthermore, we performed Pearson's correlation analysis between the FBXW7 gene and LINC01588. We performed gene panel exome sequencing and Methylation-specific PCR (MSP) in HOSE 6-3, MCAS, OVSAHO, and eight EOC patients' samples to validate the bioinformatics results. RESULTS: The FBXW7 gene was less expressed in EOC, particularly in stages III and IV, compared to healthy tissues. Furthermore, bioinformatics analysis, gene panel exome sequencing, and MSP revealed that the FBXW7 gene is neither mutated nor methylated in EOC cell lines and tissues, suggesting alternative mechanisms for FBXW7 gene regulation. Interestingly, Pearson's correlation analysis showed an inverse, significant correlation between the FBXW7 gene and LINC01588  expression, suggesting a potential regulatory role of LINC01588. CONCLUSION: Neither mutations nor methylation is the causative mechanism for the FBXW7 downregulation in EOC, suggesting alternative means involving the lncRNA LINC01588.


Assuntos
Neoplasias Ovarianas , RNA Longo não Codificante , Humanos , Feminino , Proteína 7 com Repetições F-Box-WD/genética , Metilação de DNA , Regiões Promotoras Genéticas , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Carcinoma Epitelial do Ovário/patologia , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , RNA Longo não Codificante/genética
11.
Heliyon ; 9(5): e16004, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37206019

RESUMO

WNT inhibitory factor 1 (WIF1) is known to function as a tumor suppressor gene; it inhibits oncogene activation by preventing WNT signaling. This study investigated the epigenetic regulation of WIF1 gene in bladder cancer. We observed a positive relationship between WIF1 mRNA expression and survival probability of bladder cancer patients. The WIF1 gene expression could be enhanced by DNA demethylation drug 5-aza-2'-deoxycytidine (5-aza-dC) and histone deacetylase inhibitor trichostatin A (TSA), suggesting that epigenetic modifications could regulate WIF1 gene expression. Overexpression of WIF1 inhibited cell proliferation and migration in 5637 cells, confirming the tumor suppressor role of WIF1. 5-Aza-dC dose dependently increased WIF1 gene expression while reducing DNA methylation level, suggesting that reversing WIF1 DNA methylation could activate its gene expression. We collected the cancer tissues and urine pellets of bladder cancer patients and only urine pellets from non-bladder cancer volunteers for DNA methylation analysis, but the methylation level of WIF1 gene -184 to +29 did not differ between patients and controls. We also analyzed glutathione S-transferase Mu 5 (GSTM5) gene methylation level because GSTM5 DNA hypermethylation was suggested to be a tumor biomarker in our previous study. It confirmed a higher GSTM5 DNA methylation in bladder cancer patients than in controls. In summary, this study suggests that the 5-aza-dC activated WIF1 gene which showed an anti-cancer effect, while WIF1 promoter -184 to +29 did not provide a suitable methylation assay region in clinical samples. In contrast, GSTM5 promoter -258 to -89 is a useful region for DNA methylation assay because it shows a higher methylation level in bladder cancer patients.

12.
Cancers (Basel) ; 15(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36765639

RESUMO

In pancreatic cancer treatment, tumor stage-dependent chemotherapies are used to prolong overall survival. By measuring DNA promoter hypermethylation in the plasma of patients with stage IV pancreatic cancer, it was recently shown that promoter DNA methylation of the tumor suppressor gene SFRP1 has a high value for predicting failure of drug treatment with gemcitabine. In this study, we therefore aimed to identify as precisely as possible the region in the SFRP1 promoter that is frequently hypermethylated in pancreatic cancer tissue. First, we used the TCGA data set to define CpG-rich regions flanking the SFRP1 transcription start site that were significantly more methylated in pancreatic cancer compared to normal pancreatic acinar tissue. A core CpG island was identified that exhibited abundant tumor DNA methylation and anti-correlation of SFRP1 mRNA expression. To validate our in silico results, we performed bisulfide conversion followed by DNA pyrosequencing of 28 matched formalin-fixed, paraffin-embedded (FFPE) pancreatic cancer cases and six pancreatic cancer cell lines. A defined block of seven CpG sites within the core CpG island was identified, which confirmed our in silico results by showing significantly higher SFRP1 methylation in pancreatic cancer specimens than in normal pancreatic tissue. By selecting this core CpG island, we were able to determine a median overall survival benefit for the low SFRP1 methylation group compared to the high SFRP1 methylation group (702 versus 517 days, p = 0.01) in the TCGA pancreatic cancer cohort. We propose a compact pyrosequencing assay that can be used in the future to further investigate the prognostic value of SFRP1 promoter hypermethylation in predicting pancreatic cancer chemoresistance. Therefore, instead of DNA analysis from blood (liquid biopsy), DNA easily extractable from cancer tissue blocks (FFPE material) could be used.

13.
Naunyn Schmiedebergs Arch Pharmacol ; 396(4): 649-657, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36441265

RESUMO

Cervical cancer is one of the leading causes of women's mortality in developing countries. The prevalence of cervical cancer is higher in developing countries like India and continents like Africa. Hyper-methylation of tumor suppressor genes through human papillomavirus (HPV) infection is known to be one of the major causes of cervical cancer. The promoter hypermethylation of the cell adhesion molecule 1 (CADM1) and suppressor of cytokine signalling (SOCS1) genes due to DNMT1 overexpression leads to their epigenetic silencing followed by gene repression causing cervical cancer. In silico study on the inhibition effect of capsaicin on DNMT1 was simulated by different servers. The binding energy was observed to be -7.8 kcal/mol. In vitro studies on the effect of capsaicin on aberrant methylation of CADM1 and SOCS1 were performed on the adenocarcinoma cervical cancer cell line, HeLa. The IC50 of capsaicin was observed to be 160 µM through crystal violet assay. DNA methylation of the CADM1 and SOCS1 was analyzed by methylation-specific PCR along with their reversal using capsaicin (20 µM) by treating the cells for 72 h and 6 days. In silico results suggested that capsaicin has an inhibitory effect on DNMT1, which regulates DNA methylation leading to the hypermethylation of CADM1 and SOCS1 genes. The in vitro studies suggested that hypermethylation leads to the inhibition of CADM1 and SOCS1 expression, which could be reversed using capsaicin with visible changes in methylation-specific and unmethylation-specific bands in MS-PCR, respectively. The present study shows the reversal of methylation of CADM1 and SOCS1 after 72 h which showed a further increase in case of 6 days of treatment using 20 µM capsaicin, which makes capsaicin a potent candidate for causing demethylation of CADM1 and SOCS1 genes that may lead to the reactivation of the downregulated gene.


Assuntos
Neoplasias do Colo do Útero , Humanos , Feminino , Molécula 1 de Adesão Celular/genética , Molécula 1 de Adesão Celular/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Capsaicina/farmacologia , Metilação de DNA , Proteínas Supressoras da Sinalização de Citocina/genética , Células HeLa , Desmetilação , Linhagem Celular Tumoral , Proteína 1 Supressora da Sinalização de Citocina/genética , Proteína 1 Supressora da Sinalização de Citocina/metabolismo
14.
J Cancer Res Ther ; 18(6): 1578-1582, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36412414

RESUMO

Context: Epithelial ovarian cancer (EOC) is a serious gynecological issue worldwide and its late detection is the major encumbrance in treatment procedures. Hypermethylation-mediated BRCA1 gene silencing results in failure of the repair system of damaged DNA playing an important role in ovarian carcinogenesis. BRCA1 gene hypermethylation can serve as a safe and highly specific clinical marker for EOC. Aims: The present study was conducted to evaluate the promoter hypermethylation of BRCA1 gene in EOC patients. Settings and Design: This hospital-based case-control study carried out in the tertiary care hospital in New Delhi. Subjects and Methods: Promoter hypermethylation of BRCA1 gene was examined in 30 EOC diagnosed untreated cases confirmed by histopathological examinations and compared with 30 normal healthy controls matched for age using methylation specific-polymerase chain reaction. Results: We found significantly higher BRCA1 promoter hypermethylation in the serum of EOC cases as compared to controls with P < 0.0001. BRCA1 gene methylation was found to have 70% sensitivity for the diagnosis of EOC with 100% specificity. A significant difference was observed in the range of CA125 levels, B12 and Folate levels between EOC cases and controls. Conclusions: We conclude that BRCA1 gene is significantly hypermethylated in EOC patients and thus can prove to be a noninvasive diagnostic tool. Our results provide prefatory evidence that epithelial ovarian epigenome can be influenced by dietary nutrients.


Assuntos
Neoplasias Ovarianas , Feminino , Humanos , Proteína BRCA1/genética , Carcinoma Epitelial do Ovário/genética , Estudos de Casos e Controles , Genes BRCA1 , Neoplasias Ovarianas/genética , Regiões Promotoras Genéticas/genética , Metilação de DNA
15.
J Biomed Sci ; 29(1): 97, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376872

RESUMO

BACKGROUND: The complement system functions primarily as a first-line host defense against invading microbes, including viruses. However, the interaction of Hepatitis B virus (HBV) with the complement-components during chronic HBV infection remains largely unknown. We investigated the mechanism by which HBV inhibits the formation of cytolytic complement membrane-attack complex (MAC) and studied its impact on MAC-mediated microbicidal activity and disease pathogenesis. METHODS: Blood/liver tissues were collected from chronically HBV-infected patients and controls. HepG2hNTCP cells were infected with HBV particles and Huh7 cells were transfected with full-length linear HBV-monomer or plasmids containing different HBV-ORFs and expression of complement components or other host genes were evaluated. Additionally, ELISA, Real-time PCR, Western blot, bioinformatics analysis, gene overexpression/knock-down, mutagenesis, chromatin immunoprecipitation, epigenetic studies, immunofluorescence, and quantification of serum HBV-DNA, bacterial-DNA and endotoxin were performed. RESULTS: Among the MAC components (C5b-C9), significant reduction was noted in the expression of C9, the major constituent of MAC, in HBV-infected HepG2hNTCP cells and in Huh7 cells transfected with full-length HBV as well as HBX. C9 level was also marked low in sera/liver of chronic hepatitis B (CHB) and Immune-tolerant (IT) patients than inactive carriers and healthy controls. HBX strongly repressed C9-promoter activity in Huh7 cells but CpG-island was not detected in C9-promoter. We identified USF-1 as the key transcription factor that drives C9 expression and demonstrated that HBX-induced hypermethylation of USF-1-promoter is the leading cause of USF-1 downregulation that in turn diminished C9 transcription. Reduced MAC formation and impaired lysis of HBV-transfected Huh7 and bacterial cells were observed following incubation of these cells with C9-deficient CHB sera but was reversed upon C9 supplementation. Significant inverse correlation was noted between C9 concentration and HBV-DNA, bacterial-DNA and endotoxin content in HBV-infected patients. One-year Tenofovir therapy resulted in improvement in C9 level and decline in viral/bacterial/endotoxin load in CHB patients. CONCLUSION: Collectively, HBX suppressed C9 transcription by restricting the availability of USF-1 through hypermethylation of USF-1-promoter and consequently hinder the formation and lytic functions of MAC. Early therapy is needed for both CHB and IT to normalize the aberrant complement profile and contain viral and bacterial infection and limit disease progression.


Assuntos
Vírus da Hepatite B , Hepatite B Crônica , Humanos , Complemento C9/metabolismo , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , DNA Bacteriano/metabolismo , Endotoxinas/metabolismo , Células Hep G2 , Vírus da Hepatite B/genética , Hepatite B Crônica/patologia , Transativadores/genética , Proteínas Virais Reguladoras e Acessórias
16.
Subcell Biochem ; 100: 427-472, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36301502

RESUMO

Cancer begins due to uncontrolled cell division. Cancer cells are insensitive to the signals that control normal cell proliferation. This uncontrolled cell division is due to the accumulation of abnormalities in different factors associated with the cell division, including different cyclins, cell cycle checkpoint inhibitors, and cellular signaling. Cellular signaling pathways are aberrantly activated in cancer mainly due to epigenetic regulation and post-translational regulation. In this chapter, the role of epigenetic regulation in aberrant activation of PI3K/AKT, Ras, Wnt, Hedgehog, Notch, JAK/STAT, and mTOR signaling pathways in cancer progression is discussed. The role of epigenetic regulators in controlling the upstream regulatory proteins and downstream effector proteins responsible for abnormal cellular signaling-mediated cancer progression is covered in this chapter. Similarly, the role of signaling pathways in controlling epigenetic gene regulation-mediated cancer progression is also discussed. We have tried to ascertain the current status of potential epigenetic drugs targeting several epigenetic regulators to prevent different cancers.


Assuntos
Epigênese Genética , Neoplasias , Transdução de Sinais , Humanos , Neoplasias/metabolismo , Regulação Neoplásica da Expressão Gênica
17.
Front Oncol ; 12: 880643, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35785170

RESUMO

Homologous recombination (HR) is a highly conserved DNA repair mechanism that protects cells from exogenous and endogenous DNA damage. Breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2) play an important role in the HR repair pathway by interacting with other DNA repair proteins such as Fanconi anemia (FA) proteins, ATM, RAD51, PALB2, MRE11A, RAD50, and NBN. These pathways are frequently aberrant in cancer, leading to the accumulation of DNA damage and genomic instability known as homologous recombination deficiency (HRD). HRD can be caused by chromosomal and subchromosomal aberrations, as well as by epigenetic inactivation of tumor suppressor gene promoters. Deficiency in one or more HR genes increases the risk of many malignancies. Another conserved mechanism involved in the repair of DNA single-strand breaks (SSBs) is base excision repair, in which poly (ADP-ribose) polymerase (PARP) enzymes play an important role. PARP inhibitors (PARPIs) convert SSBs to more cytotoxic double-strand breaks, which are repaired in HR-proficient cells, but remain unrepaired in HRD. The blockade of both HR and base excision repair pathways is the basis of PARPI therapy. The use of PARPIs can be expanded to sporadic cancers displaying the "BRCAness" phenotype. Although PARPIs are effective in many cancers, their efficacy is limited by the development of resistance. In this review, we summarize the prevalence of HRD due to mutation, loss of heterozygosity, and promoter hypermethylation of 35 DNA repair genes in ovarian, breast, colorectal, pancreatic, non-small cell lung cancer, and prostate cancer. The underlying mechanisms and strategies to overcome PARPI resistance are also discussed.

18.
BMC Med Genomics ; 15(1): 109, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35546405

RESUMO

OBJECTIVES: Recurrent Kidney stone formation is a main medical problem imposing a significant burden on both healthcare and the economy worldwide. Environmental and genetic factors have been linked to a bigger risk of kidney stone formation. We aim to assess the role of methylation on recurrent stone formation in three target genes. METHODS: We aimed to check the association between promoter hypermethylation vitamin D receptor (VDR), calcium-sensing receptor (CaSR), and claudin 14 (CLDN14) genes in recurrent kidney stones. We enrolled 30 consecutive recurrent kidney stone formers (age 18-60 years) (cases) and 30 age and gender-matched controls.3. To identify promoter methylation, two target regions from each candidate gene were bisulfited after blood collection and DNA extraction. Methylation quantification was done through methylation-specific high resolution melting (MS-HRM). RESULTS: The mean age of the patients and controls (mean ± SD) was 49.58 ± 14.23 years and BMI 36.12 ± 2.72. The methylation status in all six target regions was meaningfully different between the stone-former group and controls when methylation was considered in three clusters of unmethylated, methylated, and hypermethylated. A higher effect in VDR and CLDN was observed compare to CasR (p-value < 0.001, and < 0.005 versus p-value < 0.256). CONCLUSIONS: Methylation as an important epigenetic mechanism should be considered more in recurrent stone formations. Promoter hypermethylation of VRD and CLDN genes may have an essential role in recurrent kidney stones formations.


Assuntos
Cálculos Renais , Receptores de Calcitriol , Adolescente , Adulto , Claudinas , Metilação de DNA , Feminino , Humanos , Cálculos Renais/genética , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Receptores de Detecção de Cálcio/genética , Receptores de Detecção de Cálcio/metabolismo , Adulto Jovem
19.
Mol Cell Biochem ; 477(11): 2669-2679, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35604518

RESUMO

Nuclear receptor subfamily 3 group c member 2 (NR3C2) has been reported to function as a tumor suppressor in several tumors. However, the clinical significance and potential action mechanisms of NR3C2 in colon cancer (COAD) remain unclear. NR3C2 expression and its correlation with clinicopathological features in COAD were analyzed based on the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Receiver operating characteristic (ROC) curves and Human Protein Atlas (HPA) database were used to evaluate the diagnostic and prognostic values of NR3C2 in COAD. Immune infiltration and DNA methylation analyses were performed by Gene Set Cancer Analysis (GSCA) database. NR3C2-correlated genes were identified by UALCAN database and subjected to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment pathway analyses. Cell apoptosis and proliferation were evaluated using TUNEL and CCK-8 assays, respectively. NR3C2 was downregulated in COAD based on TCGA and GEO databases, which may be due to promoter hypermethylation. NR3C2 expression was correlated with prognosis and immune infiltration of COAD. High NR3C2 expression displayed good diagnostic value in COAD. KEGG pathway analysis presented that NR3C2-correlated genes were mainly clustered in choline metabolism in cancer and apoptosis. In vitro experiments confirmed that NR3C2 overexpression induced apoptosis and suppressed proliferation in COAD cells. In conclusion, our study revealed the potential prognostic and diagnostic values of NR3C2 and provided insights into understanding the tumor-suppressive role of NR3C2 in COAD progression.


Assuntos
Neoplasias do Colo , Metilação de DNA , Humanos , Neoplasias do Colo/metabolismo , Regiões Promotoras Genéticas , Receptores de Mineralocorticoides/metabolismo
20.
Clin Epigenetics ; 14(1): 52, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440018

RESUMO

BACKGROUND: epi-cblC is a recently discovered inherited disorder of intracellular vitamin B12 metabolism associating hematological, neurological, and cardiometabolic outcomes. It is produced by an epimutation at the promoter common to CCDC163P and MMACHC, which results from an aberrant antisense transcription due to splicing mutations in the antisense PRDX1 gene neighboring MMACHC. We studied whether the aberrant transcription produced a second epimutation by encompassing the CpG island of the TESK2 gene neighboring CCDC163P. METHODS: We unraveled the methylome architecture of the CCDC163P-MMACHC CpG island (CpG:33) and the TESK2 CpG island (CpG:51) of 17 epi-cblC cases. We performed an integrative analysis of the DNA methylome profiling, transcriptome reconstruction of RNA-sequencing (RNA-seq), chromatin immunoprecipitation sequencing (ChIP-Seq) of histone H3, and transcription expression of MMACHC and TESK2. RESULTS: The PRDX1 splice mutations and activation of numerous cryptic splice sites produced antisense readthrough transcripts encompassing the bidirectional MMACHC/CCDC163P promoter and the TESK2 promoter, resulting in the silencing of both the MMACHC and TESK2 genes through the deposition of SETD2-dependent H3K36me3 marks and the generation of epimutations in the CpG islands of the two promoters. CONCLUSIONS: The antisense readthrough transcription of the mutated PRDX1 produces an epigenetic silencing of MMACHC and TESK2. We propose using the term 'epi-digenism' to define this epigenetic disorder that affects two genes. Epi-cblC is an entity that differs from cblC. Indeed, the PRDX1 and TESK2 altered expressions are observed in epi-cblC but not in cblC, suggesting further evaluating the potential consequences on cancer risk and spermatogenesis.


Assuntos
Homocistinúria , Vitamina B 12 , Metilação de DNA , Homocistinúria/genética , Homocistinúria/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Mutação , Oxirredutases/genética , Oxirredutases/metabolismo , Proteínas Serina-Treonina Quinases , Vitaminas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...