Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.922
Filtrar
1.
STAR Protoc ; 5(3): 103182, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39093703

RESUMO

S-acylation of proteins allows their association with membranes. Here, we present a protocol for establishing a platform for membrane affinity evaluation of S-acylated proteins in vitro. We describe steps for preparing lipid-maleimide compounds, mCherry-p62 recombinant proteins, and total cellular membranes. We then detail procedures for synthesizing protein-lipid conjugates using lipid-maleimide compounds and recombinant proteins and evaluating the membrane affinity of protein-lipid conjugates. For complete details on the use and execution of this protocol, please refer to Huang Xue et al.1.

2.
Methods Mol Biol ; 2829: 21-48, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38951325

RESUMO

The baculovirus expression vector system (BEVS) is recognized as a powerful platform for producing challenging proteins and multiprotein complexes both in academia and industry. Since a baculovirus was first used to produce heterologous human IFN-ß protein in insect cells, the BEVS has continuously been developed and its applications expanded. We have recently established a multigene expression toolbox (HR-bac) composed of a set of engineered bacmids expressing a fluorescent marker to monitor virus propagation and a library of transfer vectors. Unlike platforms that rely on Tn7-medidated transposition for the construction of baculoviruses, HR-bac relies on homologous recombination, which allows to evaluate expression constructs in 2 weeks and is thus perfectly adapted to parallel expression screening. In this chapter, we detail our standard operating procedures for the preparation of the reagents, the construction and evaluation of baculoviruses, and the optimization of protein production for both intracellularly expressed and secreted proteins.


Assuntos
Baculoviridae , Vetores Genéticos , Proteínas Recombinantes , Baculoviridae/genética , Animais , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vetores Genéticos/genética , Células Sf9 , Expressão Gênica , Humanos , Insetos/genética , Spodoptera , Linhagem Celular , Recombinação Homóloga , Análise Custo-Benefício
3.
Methods Mol Biol ; 2829: 159-173, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38951332

RESUMO

The baculovirus expression vector system (BEVS) is a powerful platform for protein expression in insect cells. A prevalent application is the expression of complex protein structures consisting of multiple, interacting proteins. Coinfection with multiple baculoviruses allows for production of complex structures, facilitating structure-function studies, allowing augmentation of insect cell functionality, and production of clinically relevant products such as virus-like particles (VLPs) and adeno-associated viral vectors (AAV). Successful coinfections require the generation of robust and well-quantified recombinant baculovirus stocks. Virus production through homologous recombination, combined with rigorous quantification of viral titers, allows for synchronous coinfections producing high end-product titers. In this chapter, we describe the streamlined workflow for generation and quantification of high-quality recombinant baculovirus stocks and successful coinfection as defined by a preponderance of dually infected cells in the insect cell culture.


Assuntos
Baculoviridae , Vetores Genéticos , Proteínas Recombinantes , Baculoviridae/genética , Animais , Vetores Genéticos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Linhagem Celular , Spodoptera/virologia
4.
Methods Mol Biol ; 2829: 175-183, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38951333

RESUMO

Monoclonal antibodies have widespread applications in disease treatment and antigen detection. They are traditionally produced using mammalian cell expression system, which is not able to satisfy the increasing demand of these proteins at large scale. Baculovirus expression vector system (BEVS) is an attractive alternative platform for the production of biologically active monoclonal antibodies. In this chapter, we demonstrate the production of an HIV-1 broadly neutralizing antibody b12 in BEVS. The processes including transfer vector construction, recombinant baculovirus generation, and antibody production and detection are described.


Assuntos
Baculoviridae , Vetores Genéticos , Baculoviridae/genética , Vetores Genéticos/genética , Animais , Humanos , Expressão Gênica , HIV-1/genética , HIV-1/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/biossíntese , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Ensaio de Imunoadsorção Enzimática , Anticorpos Anti-HIV/imunologia , Anticorpos Anti-HIV/genética , Células Sf9
5.
Methods Mol Biol ; 2829: 195-202, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38951335

RESUMO

The Baculovirus Expression Vector System (BEVS) has revolutionized the field of recombinant protein expression by enabling efficient and high yield production. The platform offers many advantages including manufacturing speed, flexible design, and scalability. In this chapter, we describe the methods including strategies and considerations to successfully optimize and scale-up using BEVS as a tool for production (Fig. 1). As an illustrative case study, we present an example focused on the production of a viral glycoprotein.


Assuntos
Baculoviridae , Vetores Genéticos , Proteínas Recombinantes , Baculoviridae/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/biossíntese , Vetores Genéticos/genética , Animais , Humanos , Células Sf9
6.
Methods Mol Biol ; 2829: 289-300, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38951345

RESUMO

Nonviral transfection has been used to express various recombinant proteins, therapeutics, and virus-like particles (VLP) in mammalian and insect cells. Virus-free methods for protein expression require fewer steps for obtaining protein expression by eliminating virus amplification and measuring the infectivity of the virus. The nonviral method uses a nonlytic plasmid to transfect the gene of interest into the insect cells instead of using baculovirus, a lytic system. In this chapter, we describe one of the transfection methods, which uses polyethyleneimine (PEI) as a DNA delivery material into the insect cells to express the recombinant protein in both adherent and suspension cells.


Assuntos
Polietilenoimina , Proteínas Recombinantes , Transfecção , Animais , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transfecção/métodos , Polietilenoimina/química , Plasmídeos/genética , Insetos/genética , Células Sf9 , Linhagem Celular , Expressão Gênica , Spodoptera
7.
Adv Sci (Weinh) ; : e2404313, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38952047

RESUMO

Bacillus subtilis is an industrially important microorganism that is often used as a microbial cell factory for the production of recombinant proteins due to its food safety, rapid growth, and powerful secretory capacity. However, the lack of data on functional genes related to recombinant protein production has hindered the further development of B. subtilis cell factories. Here, a strategy combining genome-wide CRISPRi screening and targeted CRISPRa activation to enhance recombinant protein expression is proposed. First, a CRISPRi library covering a total of 4225 coding genes (99.7%) in the B. subtilis genome and built the corresponding high-throughput screening methods is constructed. Twelve key genes for recombinant protein expression are identified, including targets without relevant functional annotations. Meanwhile, the transcription of recombinant protein genes by CRISPRa is up-regulated. These screened or selected genes can be easily applied to metabolic engineering by constructing sgRNA arrays. The relationship between differential pathways and recombinant protein expression in engineered strains by transcriptome analysis is also revealed. High-density fermentation and generalisability validation results prove the reliability of the strategy. This method can be extended to other industrial hosts to support functional gene annotation and the design of novel cell factories.

8.
Microb Cell Fact ; 23(1): 190, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956607

RESUMO

BACKGROUND: Carbonic anhydrase (CA) enzymes facilitate the reversible hydration of CO2 to bicarbonate ions and protons. Identifying efficient and robust CAs and expressing them in model host cells, such as Escherichia coli, enables more efficient engineering of these enzymes for industrial CO2 capture. However, expression of CAs in E. coli is challenging due to the possible formation of insoluble protein aggregates, or inclusion bodies. This makes the production of soluble and active CA protein a prerequisite for downstream applications. RESULTS: In this study, we streamlined the process of CA expression by selecting seven top CA candidates and used two bioinformatic tools to predict their solubility for expression in E. coli. The prediction results place these enzymes in two categories: low and high solubility. Our expression of high solubility score CAs (namely CA5-SspCA, CA6-SazCAtrunc, CA7-PabCA and CA8-PhoCA) led to significantly higher protein yields (5 to 75 mg purified protein per liter) in flask cultures, indicating a strong correlation between the solubility prediction score and protein expression yields. Furthermore, phylogenetic tree analysis demonstrated CA class-specific clustering patterns for protein solubility and production yields. Unexpectedly, we also found that the unique N-terminal, 11-amino acid segment found after the signal sequence (not present in its homologs), was essential for CA6-SazCA activity. CONCLUSIONS: Overall, this work demonstrated that protein solubility prediction, phylogenetic tree analysis, and experimental validation are potent tools for identifying top CA candidates and then producing soluble, active forms of these enzymes in E. coli. The comprehensive approaches we report here should be extendable to the expression of other heterogeneous proteins in E. coli.


Assuntos
Anidrases Carbônicas , Biologia Computacional , Escherichia coli , Solubilidade , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/enzimologia , Anidrases Carbônicas/metabolismo , Anidrases Carbônicas/genética , Biologia Computacional/métodos , Filogenia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Dióxido de Carbono/metabolismo
9.
Meat Sci ; 217: 109615, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39084122

RESUMO

In this study, the effects of propylene glycol (PG) on meat quality and molecular pathways related to energy metabolism in longissimus lumborum muscle on lambs were evaluated. Seventy-two lambs were divided into three groups consisting of 60th, 90th, and 120th of slaughter days. The dosage of the PG and slaughter days were the variables used in the study. Eight animals were slaughtered from each group on each day. The meat quality parameters (e.g., pH, protein, fatty acid profile) and IGF-1, IGFBP4, and DGAT1 (i.e., mRNA and protein levels) were evaluated. The pH 45 min post-slaughter was higher in PG groups on 120th day. On the 4th day after slaughter, the b value was the lowest in the PG3, while 7th day after slaughter it was highest in Con and PG3 on 90th day. The total n3 and n6 were lowest and the NV was highest on 120th day. The IGFBP4 was upregulated in the PG groups on all of the slaughter days. The DGAT1 was upregulated in the PG3 on the 90th day. The IGF-1, DGAT1, IGFBP4 protein levels were found to have increased in the PG3 on 90th day. The IGFBP4 was found to have decreased in the PG3 on 120th day. According to the results of the study, the oral administration of the PG at the 3 mL/kg live weight0.75 for at least 120 days may have positive effects on meat quality in lambs through the IGF-1, DGAT1, and IGFBP4 genes and the proteins encoded by these genes.

10.
Int J Biol Macromol ; : 134243, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39084422

RESUMO

The progress of modern medical technology has made artificial heart valve replacement an effective means to treat valvular disease, but the impact of cardiac function on patients after surgery is still a key issue. The purpose of this study was to construct the cirRNA-miRNA-mRNA network after artificial heart valve replacement in valvular disease patients, and to explore the regulatory mechanism related to MAPK1 protein, so as to reveal its potential role in affecting cardiac function. We downloaded cyclic cRNA expression profiles from the GEO database. Use the limma package to identify dec. WGCNA is used to identify key modules of circular rna. The target miRNAs of circular rna and the corresponding target genes of miRNAs were screened by ring intertome and target scan database. GO and KEGG analysis using the DAVID database. The genes associated with iron sag disease were derived from FerrDb database. The overlapping genes were obtained by Wien analysis. Next, the CircrNa-mirNa-mrna network was constructed based on the circRNA-miRNA pair and miRNA-mRNA pair and their cyclic landscape software. This study revealed the changes in the structure and expression of MAPK1 protein in the cirRNA-miRNA-mRNA network after artificial heart valve replacement in valvular disease patients, suggesting the potential role of MAPK1 protein in regulating cardiac function, and laying a foundation for further revealing its mechanism and clinical application.

11.
Acta Biomater ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39084496

RESUMO

BACKGROUND: Calcific aortic valve disease (CAVD) is one of the most common forms of valvulopathy, with a 50% elevated risk of a fatal cardiovascular event, and greater than 15,000 annual deaths in North America alone. The treatment standard is valve replacement as early diagnostic, mitigation, and drug strategies remain underdeveloped. The development of early diagnostic and therapeutic strategies requires the fabrication of effective in vitro valve mimetic models to elucidate early CAVD mechanisms. METHODS: In this study, we developed a multilayered physiologically relevant 3D valve-on-chip (VOC) system that incorporated aortic valve mimetic extracellular matrix (ECM), porcine aortic valve interstitial cell (VIC) and endothelial cell (VEC) co-culture and dynamic mechanical stimuli. Collagen and glycosaminoglycan (GAG) based hydrogels were assembled in a bilayer to mimic healthy or diseased compositions of the native fibrosa and spongiosa. Multiphoton imaging and proteomic analysis of healthy and diseased VOCs were performed. RESULTS: Collagen-based bilayered hydrogel maintained the phenotype of the VICs. Proteins related to cellular processes like cell cycle progression, cholesterol biosynthesis, and protein homeostasis were found to be significantly altered and correlated with changes in cell metabolism in diseased VOCs. This study suggested that diseased VOCs may represent an early, adaptive disease initiation stage, which was corroborated by human aortic valve proteomic assessment. CONCLUSIONS: In this study, we developed a collagen-based bilayered hydrogel to mimic healthy or diseased compositions of the native fibrosa and spongiosa layers. When the gels were assembled in a VOC with VECs and VICs, the diseased VOCs revealed key insights about the CAVD initiation process. STATEMENT OF SIGNIFICANCE: Calcific aortic valve disease (CAVD) elevates the risk of death due to cardiovascular pathophysiology by 50%, however, prevention and mitigation strategies are lacking, clinically. Developing tools to assess early disease would significantly aid in the prevention of disease and in the development of therapeutics. Previously, studies have utilized collagen and glycosaminoglycan-based hydrogels for valve cell co-cultures, valve cell co-cultures in dynamic environments, and inorganic polymer-based multilayered hydrogels; however, these approaches have not been combined to make a physiologically relevant model for CAVD studies. We fabricated a bi-layered hydrogel that closely mimics the aortic valve and used it for valve cell co-culture in a dynamic platform to gain mechanistic insights into the CAVD initiation process using proteomic and multiphoton imaging assessment.

12.
Nat Prod Res ; : 1-11, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058646

RESUMO

Gut epithelial barrier perturbation leads to leaky gut syndrome and permeation of substances activating immune response. Polyphenols can improve intestinal barrier function and represent candidates for preventing development of leaky gut. Herein, we evaluated in vitro the molecular mechanisms involved in the protective effects of a polyphenol-rich extract from leaves of Cynara cardunculus L. (CCLE) on intestinal barrier function and integrity on Caco-2 human epithelial cells. Treatment with CCLE from seeding until complete differentiation improved intestinal function by increasing trans-epithelial electrical resistance (TEER), reducing paracellular permeability to fluorescein, and promoting faster recovery of tight junctions (TJ) assembly in the Ca2+ switch assay. CCLE stimulated epithelial cell differentiation inducing alkaline phosphatase activity and TJ proteins. These CCLE-induced effects were attributed to activation of AMP-activated protein kinase (AMPK) pathway. Our data support the use of Cynara cardunculus L. leaves, an agricultural co-product rich in bioactive polyphenols, for the health of intestinal epithelium.

13.
Microb Cell Fact ; 23(1): 208, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39049057

RESUMO

The diversity of chemical and structural attributes of proteins makes it inherently difficult to produce a wide range of proteins in a single recombinant protein production system. The nature of the target proteins themselves, along with cost, ease of use, and speed, are typically cited as major factors to consider in production. Despite a wide variety of alternative expression systems, most recombinant proteins for research and therapeutics are produced in a limited number of systems: Escherichia coli, yeast, insect cells, and the mammalian cell lines HEK293 and CHO. Recent interest in Vibrio natriegens as a new bacterial recombinant protein expression host is due in part to its short doubling time of ≤ 10 min but also stems from the promise of compatibility with techniques and genetic systems developed for E. coli. We successfully incorporated V. natriegens as an additional bacterial expression system for recombinant protein production and report improvements to published protocols as well as new protocols that expand the versatility of the system. While not all proteins benefit from production in V. natriegens, we successfully produced several proteins that were difficult or impossible to produce in E. coli. We also show that in some cases, the increased yield is due to higher levels of properly folded protein. Additionally, we were able to adapt our enhanced isotope incorporation methods for use with V. natriegens. Taken together, these observations and improvements allowed production of proteins for structural biology, biochemistry, assay development, and structure-based drug design in V. natriegens that were impossible and/or unaffordable to produce in E. coli.


Assuntos
Proteínas Recombinantes , Vibrio , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Vibrio/genética , Vibrio/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Humanos
14.
STAR Protoc ; 5(3): 103046, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38959108

RESUMO

Here, we present a protocol for the in vitro phosphorylation of Src kinase domain (SrcKD), preparation of phospho-SrcKD in complex with the D1 domain of rPTP epsilon (rPTPεD1), and binding assays using biolayer interferometry (BLI). We describe steps for the in vitro phosphorylation of SrcKD and preparation of the phospho-SrcKD: rPTPεD1 complex for small-angle X-ray scattering (SAXS) experiments. We then detail instructions for the BLI binding assay to determine the binding affinity between phospho-SrcKD and rPTPεD1. For complete details on the use and execution of this protocol, please refer to EswarKumar et al.1.

15.
Metab Eng ; 85: 116-130, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39059674

RESUMO

Nanobodies are single-domain antibody fragments that have garnered considerable use as diagnostic and therapeutic agents as well as research tools. However, obtaining pure VHHs, like many proteins, can be laborious and inconsistent. High level cytoplasmic expression in E. coli can be challenging due to improper folding and insoluble aggregation caused by reduction of the conserved disulfide bond. We report a systems engineering approach leveraging engineered strains of E. coli, in combination with a two-stage process and simplified downstream purification, enabling improved, robust, soluble cytoplasmic nanobody expression, as well as rapid cell autolysis and purification. This approach relies on the dynamic control over the reduction potential of the cytoplasm, incorporates lysis enzymes for purification, and can also integrate dynamic expression of protein folding catalysts. Collectively, the engineered system results in more robust growth and protein expression, enabling efficient scalable nanobody production, and purification from high throughput microtiter plates, to routine shake flask cultures and larger instrumented bioreactors. We expect this system will expedite VHH development.

16.
Biophys Chem ; 313: 107290, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39002246

RESUMO

Due to their fundamental biological importance, membrane proteins (MPs) are attractive targets for drug discovery, with cell surface receptors, transporters, ion channels, and membrane-bound enzymes being of particular interest. However, due to numerous challenges, these proteins present underutilized opportunities for discovering biotherapeutics. Antibodies hold the promise of exquisite specificity and adaptability, making them the ideal candidates for targeting complex membrane proteins. They can target specific conformations of a particular membrane protein and can be engineered into various formats. Generating specific and effective antibodies targeting these proteins is no easy task due to several factors. The antigen's design, antibody-generation strategies, lead optimization technologies, and antibody modalities can be modified to tackle these challenges. The rational employment of cutting-edge lipid nanoparticle systems for retrieving the membrane antigen has been successfully implemented to simplify the mechanism-based therapeutic antibody discovery approach. Despite the highlighted MP production challenges, this review unequivocally underscores the advantages of targeting complex membrane proteins with antibodies and designing membrane protein antigens. Selected examples of lipid nanoparticle success have been illustrated, emphasizing the potential of therapeutic antibody discovery in this regard. With further research and development, we can overcome these challenges and unlock the full potential of therapeutic antibodies directed to target complex MPs.

17.
Genes (Basel) ; 15(7)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39062724

RESUMO

TGF-ß1/Smads is a classic signaling pathway, which plays important roles in the development process of organisms. Black porgy Acanthopagrus schlegelii and red porgy Pagrus major are valuable economic fishes, and their hybrid offspring show excellent heterosis traits. Yet the molecular regulation mechanism of the heterosis traits is less clear. Here, we explored the TGF-ß1/Smads pathway's molecular genetic information for heterosis in A. schlegelii ♂ × P. major ♀ (AP) and A. schlegelii ♀ × P. major ♂ (PA) in terms of growth and development. The mRNA expression levels of TGF-ß1, TßR-I, TßR-II, and Smad2 genes in different developmental stages of A. schlegelii were detected. Furthermore, the expression levels of TGF-ß1, TßR-I, TßR-II, and Smad2 genes in different tissues of adult (mRNA level) and larva (mRNA and protein level) of A. schlegelii, P. major, and their hybrids were determined by both real-time quantitative PCR and Western blot techniques. The results indicated the ubiquitous expression of these genes in all developmental stages of A. schlegelii and in all tested tissues of A. schlegelii, P. major, and its hybrids. Among them, the mRNA of TGF-ß1, TßR-I, and TßR-II genes is highly expressed in the liver, gill, kidney, and muscle of black porgy, red porgy, and their hybrid offspring. There are significant changes in gene and protein expression levels in hybrid offspring, which indirectly reflect hybrid advantage. In addition, there was no correlation between protein and mRNA expression levels of Smad2 protein. The results provide novel data for the differential expression of growth and development genes between the reciprocal hybridization generation of black porgy and red porgy and its parents, which is conducive to further explaining the molecular regulation mechanism of heterosis in the growth and development of hybrid porgy.


Assuntos
Vigor Híbrido , Proteína Smad2 , Fator de Crescimento Transformador beta1 , Animais , Proteína Smad2/genética , Proteína Smad2/metabolismo , Vigor Híbrido/genética , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Hibridização Genética , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Perciformes/genética , Perciformes/crescimento & desenvolvimento , Perciformes/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Feminino , Masculino , Regulação da Expressão Gênica no Desenvolvimento
18.
PeerJ ; 12: e17806, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39035165

RESUMO

Epidermal growth factor (EGF) protein is a crucial biomolecule involved in regulating cell growth, proliferation, migration and differentiation, which is used in various therapeutic applications, such as wound healing and tissue regeneration. The production of recombinant EGF is essential for studying its biological function and for its clinical translation. However, EGF protein expressed in prokaryotic cells often occurs in inclusion bodies, and co-expression with soluble tag protein is an effective method to prepare recombinant EGF. In this study, we expressed recombinant human EGF (rhEGF) fused to a HaloTag (Halo-rhEGF) and a large portion of Halo-rhEGF was found in the soluble fraction. Cell growth assay showed that the purified Halo-rhEGF protein could promote the proliferation of fibroblasts (NIH 3T3) and epithelial cells (HaCaT), and significantly increased their viability. Phosphorylation of the intracellular signaling proteins, ERK1/2 and c-Jun, was stimulated by treatment with Halo-rhEGF and the expression levels of proteins regulating cell proliferation were significantly increased. RNA sequencing analysis revealed that rhEGF could increase the transcription of genes enriched in ribosome generation and cell proliferation. Moreover, Halo-rhEGF can be labelled by HaloTag ligand for fluorescence imaging and can be slowly released in tissue repair by binding to anion biomaterials. In conclusion, HaloTag is an efficient fusion tag for rhEGF protein expression, purification and controlled release, and Halo-rhEGF can promote the proliferation and viability of epithelial and fibroblast cells.


Assuntos
Proliferação de Células , Fator de Crescimento Epidérmico , Humanos , Fator de Crescimento Epidérmico/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Fator de Crescimento Epidérmico/genética , Proliferação de Células/efeitos dos fármacos , Camundongos , Animais , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/genética , Células NIH 3T3 , Sobrevivência Celular/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/metabolismo
19.
Proteomics ; : e2400031, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044338

RESUMO

In this study, we present a high-resolution dataset and bioinformatic analysis of the proteome of Bacillus subtilis 168 trp+ (BSB1) during germination and spore outgrowth. Samples were collected at 14 different time points (ranging from 0 to 130 min) in three biological replicates after spore inoculation into germination medium. A total of 2191 proteins were identified and categorized based on their expression kinetics. We observed four distinct clusters that were analyzed for functional categories and KEGG pathways annotations. The examination of newly synthesized proteins between successive time points revealed significant changes, particularly within the first 50 min. The dataset provides an information base that can be used for modeling purposes and inspire the design of new experiments.

20.
Front Immunol ; 15: 1402038, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39072316

RESUMO

Purpose: In this study, we retrospectively reviewed the use of flow cytometry (FCM) in the diagnosis of inborn errors of immunity (IEIs) at a single center in Algeria. Sharing insights into our practical experience, we present FCM based diagnostic approaches adapted to different clinical scenarios. Methods: Between May 2017 and February 2024, pediatric and adult patients presenting with clinical features suggestive of immunodeficiency were subjected to FCM evaluation, including lymphocyte subset analysis, detection of specific surface or intracellular proteins, and functional analysis of immune cells. Results: Over a nearly seven-year period, our laboratory diagnosed a total of 670 patients (372 (55.5%) males and 298 (44.5%) females), distributed into 70 different IEIs belonging to 9 different categories of the International Union of Immunological Societies classification. FCM was used to diagnose and categorize IEI in 514 patients (76.7%). It provided direct diagnostic insights for IEIs such as severe combined immunodeficiency, Omenn syndrome, MHC class II deficiency, familial hemophagocytic lymphohistiocytosis, and CD55 deficiency. For certain IEIs, including hyper-IgE syndrome, STAT1-gain of function, autoimmune lymphoproliferative syndrome, and activated PI3K delta syndrome, FCM offered suggestive evidence, necessitating subsequent genetic testing for confirmation. Protein expression and functional assays played a crucial role in establishing definitive diagnoses for various disorders. To setup such diagnostic assays at high and reproducible quality, high level of expertise is required; in house reference values need to be determined and the parallel testing of healthy controls is highly recommended. Conclusion: Flow cytometry has emerged as a highly valuable and cost-effective tool for diagnosing and studying most IEIs, particularly in low-income countries where access to genetic testing can be limited. FCM analysis could provide direct diagnostic insights for most common IEIs, offer clues to the underlying genetic defects, and/or aid in narrowing the list of putative genes to be analyzed.


Assuntos
Citometria de Fluxo , Humanos , Citometria de Fluxo/métodos , Masculino , Feminino , Argélia , Criança , Pré-Escolar , Lactente , Adolescente , Adulto , Estudos Retrospectivos , Imunofenotipagem , Adulto Jovem , Recém-Nascido , Síndromes de Imunodeficiência/diagnóstico , Síndromes de Imunodeficiência/imunologia , Síndromes de Imunodeficiência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...