Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Mol Biol Evol ; 40(7)2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37352150

RESUMO

Snake venoms harbor a wide and diverse array of enzymatic and nonenzymatic toxic components, allowing them to exert myriad effects on their prey. However, they appear to trend toward a few optimal compositional scaffolds, dominated by four major toxin classes: SVMPs, SVSPs, 3FTxs, and PLA2s. Nevertheless, the latter appears to be restricted to vipers and elapids, as it has never been reported as a major venom component in rear-fanged species. Here, by investigating the original transcriptomes from 19 species distributed in eight genera from the Pseudoboini tribe (Dipsadidae: Xenodontinae) and screening among seven additional tribes of Dipsadidae and three additional families of advanced snakes, we discovered that a novel type of venom PLA2, resembling a PLA2-IIE, has been recruited to the venom of some species of the Pseudoboini tribe, where it is a major component. Proteomic and functional analyses of these venoms further indicate that these PLA2s play a relevant role in the venoms from this tribe. Moreover, we reconstructed the phylogeny of PLA2s across different snake groups and show that different types of these toxins have been recruited in at least five independent events in caenophidian snakes. Additionally, we present the first compositional profiling of Pseudoboini venoms. Our results demonstrate how relevant phenotypic traits are convergently recruited by different means and from homologous and nonhomologous genes in phylogenetically and ecologically divergent snake groups, possibly optimizing venom composition to overcome diverse adaptative landscapes.


Assuntos
Colubridae , Proteômica , Animais , Venenos de Serpentes/genética , Fosfolipases A2/genética , Filogenia , Colubridae/genética , Serpentes
2.
Mol Biol Evol, v. 40, n. 7, msad147, 2023.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4973

RESUMO

Snake venoms harbor a wide and diverse array of enzymatic and nonenzymatic toxic components, allowing them to exert myriad effects on their prey. However, they appear to trend toward a few optimal compositional scaffolds, dominated by four major toxin classes: SVMPs, SVSPs, 3FTxs, and PLA2s. Nevertheless, the latter appears to be restricted to vipers and elapids, as it has never been reported as a major venom component in rear-fanged species. Here, by investigating the original transcriptomes from 19 species distributed in eight genera from the Pseudoboini tribe (Dipsadidae: Xenodontinae) and screening among seven additional tribes of Dipsadidae and three additional families of advanced snakes, we discovered that a novel type of venom PLA2, resembling a PLA2-IIE, has been recruited to the venom of some species of the Pseudoboini tribe, where it is a major component. Proteomic and functional analyses of these venoms further indicate that these PLA2s play a relevant role in the venoms from this tribe. Moreover, we reconstructed the phylogeny of PLA2s across different snake groups and show that different types of these toxins have been recruited in at least five independent events in caenophidian snakes. Additionally, we present the first compositional profiling of Pseudoboini venoms. Our results demonstrate how relevant phenotypic traits are convergently recruited by different means and from homologous and nonhomologous genes in phylogenetically and ecologically divergent snake groups, possibly optimizing venom composition to overcome diverse adaptative landscapes.

3.
Mol Biol Evol, v. 40, n. 7, msad147, jul. 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4964

RESUMO

Snake venoms harbor a wide and diverse array of enzymatic and nonenzymatic toxic components, allowing them to exert myriad effects on their prey. However, they appear to trend toward a few optimal compositional scaffolds, dominated by four major toxin classes: SVMPs, SVSPs, 3FTxs, and PLA2s. Nevertheless, the latter appears to be restricted to vipers and elapids, as it has never been reported as a major venom component in rear-fanged species. Here, by investigating the original transcriptomes from 19 species distributed in eight genera from the Pseudoboini tribe (Dipsadidae: Xenodontinae) and screening among seven additional tribes of Dipsadidae and three additional families of advanced snakes, we discovered that a novel type of venom PLA2, resembling a PLA2-IIE, has been recruited to the venom of some species of the Pseudoboini tribe, where it is a major component. Proteomic and functional analyses of these venoms further indicate that these PLA2s play a relevant role in the venoms from this tribe. Moreover, we reconstructed the phylogeny of PLA2s across different snake groups and show that different types of these toxins have been recruited in at least five independent events in caenophidian snakes. Additionally, we present the first compositional profiling of Pseudoboini venoms. Our results demonstrate how relevant phenotypic traits are convergently recruited by different means and from homologous and nonhomologous genes in phylogenetically and ecologically divergent snake groups, possibly optimizing venom composition to overcome diverse adaptative landscapes.

5.
Mol Biol Evol ; 37(12): 3563-3575, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-32722789

RESUMO

Novel phenotypes are commonly associated with gene duplications and neofunctionalization, less documented are the cases of phenotypic maintenance through the recruitment of novel genes. Proteolysis is the primary toxic character of many snake venoms, and ADAM metalloproteinases, named snake venom metalloproteinases (SVMPs), are largely recognized as the major effectors of this phenotype. However, by investigating original transcriptomes from 58 species of advanced snakes (Caenophidia) across their phylogeny, we discovered that a different enzyme, matrix metalloproteinase (MMP), is actually the dominant venom component in three tribes (Tachymenini, Xenodontini, and Conophiini) of rear-fanged snakes (Dipsadidae). Proteomic and functional analyses of these venoms further indicate that MMPs are likely playing an "SVMP-like" function in the proteolytic phenotype. A detailed look into the venom-specific sequences revealed a new highly expressed MMP subtype, named snake venom MMP (svMMP), which originated independently on at least three occasions from an endogenous MMP-9. We further show that by losing ancillary noncatalytic domains present in its ancestors, svMMPs followed an evolutionary path toward a simplified structure during their expansion in the genomes, thus paralleling what has been proposed for the evolution of their Viperidae counterparts, the SVMPs. Moreover, we inferred an inverse relationship between the expression of svMMPs and SVMPs along the evolutionary history of Xenodontinae, pointing out that one type of enzyme may be substituting for the other, whereas the general (metallo)proteolytic phenotype is maintained. These results provide rare evidence on how relevant phenotypic traits can be optimized via natural selection on nonhomologous genes, yielding alternate biochemical components.


Assuntos
Evolução Molecular , Metaloproteinases da Matriz/metabolismo , Venenos de Serpentes/enzimologia , Serpentes/metabolismo , Animais , Metaloproteinases da Matriz/genética , Fenótipo , Proteólise , Venenos de Serpentes/genética , Serpentes/genética , Transcriptoma
6.
Genome Biol Evol ; 12(3): 160-173, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32108236

RESUMO

Iron-sulfur (Fe-S) clusters play important roles in electron transfer, metabolic and biosynthetic reactions, and the regulation of gene expression. Understanding the biogenesis of Fe-S clusters is therefore relevant to many fields. In the complex process of Fe-S protein formation, the A-type assembly protein (ATAP) family, which consists of several subfamilies, plays an essential role in Fe-S cluster formation and transfer and is highly conserved across the tree of life. However, the taxonomic distribution, motif compositions, and the evolutionary history of the ATAP subfamilies are not well understood. To address these problems, our study investigated the taxonomic distribution of 321 species from a broad cross-section of taxa. Then, we identified common and specific motifs in multiple ATAP subfamilies to explain the functional conservation and nonredundancy of the ATAPs, and a novel, essential motif was found in Eumetazoa IscA1, which has a newly found magnetic function. Finally, we used phylogenetic analytical methods to reconstruct the evolution history of this family. Our results show that two types of ErpA proteins (nonproteobacteria-type ErpA1 and proteobacteria-type ErpA2) exist in bacteria. The ATAP family, consisting of seven subfamilies, can be further classified into two types of ATAPs. Type-I ATAPs include IscA, SufA, HesB, ErpA1, and IscA1, with an ErpA1-like gene as their last common ancestor, whereas type-II ATAPs consist of ErpA2 and IscA2, duplicated from an ErpA2-like gene. During the mitochondrial endosymbiosis, IscA became IscA1 in eukaryotes and ErpA2 became IscA2 in eukaryotes, respectively.


Assuntos
Evolução Molecular , Duplicação Gênica , Proteínas Ferro-Enxofre/biossíntese , Motivos de Aminoácidos/genética , Proteínas de Bactérias/genética , Filogenia
7.
Mol Biol Evol, v. 12, n. 12, p. 3563-3575, jul. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3117

RESUMO

Novel phenotypes are commonly associated with gene duplications and neofunctionalization, less documented are the cases of phenotypic maintenance through the recruitment of novel genes. Proteolysis is the primary toxic character of many snake venoms, and ADAM metalloproteinases, named Snake Venom Metalloproteinases (SVMPs), are largely recognized as the major effectors of this phenotype. However, by investigating original transcriptomes from 58 species of advanced snakes (Caenophidia) across their phylogeny, we discovered that a different enzyme, matrix metalloproteinase (MMP), is actually the dominant venom component in three tribes (Tachymenini, Xenodontini, and Conophiini) of rear-fanged snakes (Dipsadidae). Proteomic and functional analyses of these venoms further indicate that MMPs are likely playing an ‘SVMP-like’ function in the proteolytic phenotype. A detailed look into the venom-specific sequences revealed a new highly expressed MMP subtype, named snake venom MMP (svMMP), which originated independently on at least three occasions from an endogenous MMP-9. We further show that by losing ancillary non-catalytic domains present in its ancestors, svMMPs followed an evolutionary path toward a simplified structure during their expansion in the genomes, thus paralleling what has been proposed for the evolution of their Viperidae counterparts, the SVMPs. Moreover, we inferred an inverse relationship between the expression of svMMPs and SVMPs along the evolutionary history of Xenodontinae, pointing out that one type of enzyme may be substituting for the other, while the general (metallo)proteolytic phenotype is maintained. These results provide rare evidence on how relevant phenotypic traits can be optimized via natural selection on non-homologous genes, yielding alternate biochemical components.

8.
Artigo em Inglês | MEDLINE | ID: mdl-28993800

RESUMO

Ticks modulate their hosts' defense responses by secreting a biopharmacopiea of hundreds to thousands of proteins and bioactive chemicals into the feeding site (tick-host interface). These molecules and their functions evolved over millions of years as ticks adapted to blood-feeding, tick lineages diverged, and host-shifts occurred. The evolution of new proteins with new functions is mainly dependent on gene duplication events. Central questions around this are the rates of gene duplication, when they occurred and how new functions evolve after gene duplication. The current review investigates these questions in the light of tick biology and considers the possibilities of ancient genome duplication, lineage specific expansion events, and the role that positive selection played in the evolution of tick protein function. It contrasts current views in tick biology regarding adaptive evolution with the more general view that neutral evolution may account for the majority of biological innovations observed in ticks.


Assuntos
Evolução Molecular , Duplicação Gênica , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/fisiologia , Carrapatos/genética , Carrapatos/fisiologia , Adaptação Fisiológica , Animais , Evolução Biológica , Duplicação Cromossômica/genética , Face/fisiopatologia , Comportamento Alimentar/fisiologia , Deriva Genética , Especiação Genética , Família Multigênica/genética , Filogenia , Glândulas Salivares/metabolismo , Carrapatos/classificação , Carrapatos/patogenicidade , Transcriptoma
9.
G3 (Bethesda) ; 7(10): 3349-3357, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28866640

RESUMO

The field of comparative genomics is concerned with the study of similarities and differences between the information encoded in the genomes of organisms. A common approach is to define gene families by clustering protein sequences based on sequence similarity, and analyze protein cluster presence and absence in different species groups as a guide to biology. Due to the high dimensionality of these data, downstream analysis of protein clusters inferred from large numbers of species, or species with many genes, is nontrivial, and few solutions exist for transparent, reproducible, and customizable analyses. We present KinFin, a streamlined software solution capable of integrating data from common file formats and delivering aggregative annotation of protein clusters. KinFin delivers analyses based on systematic taxonomy of the species analyzed, or on user-defined, groupings of taxa, for example, sets based on attributes such as life history traits, organismal phenotypes, or competing phylogenetic hypotheses. Results are reported through graphical and detailed text output files. We illustrate the utility of the KinFin pipeline by addressing questions regarding the biology of filarial nematodes, which include parasites of veterinary and medical importance. We resolve the phylogenetic relationships between the species and explore functional annotation of proteins in clusters in key lineages and between custom taxon sets, identifying gene families of interest. KinFin can easily be integrated into existing comparative genomic workflows, and promotes transparent and reproducible analysis of clustered protein data.


Assuntos
Filarioidea/genética , Proteínas/genética , Proteômica/métodos , Software , Sequência de Aminoácidos , Animais , Filogenia
10.
Mol Biol Evol ; 34(6): 1429-1444, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28333205

RESUMO

Reconstruction of ancestral protein sequences using phylogenetic methods is a powerful technique for directly examining the evolution of molecular function. Although ancestral sequence reconstruction (ASR) is itself very efficient, downstream functional, and structural studies necessary to characterize when and how changes in molecular function occurred are often costly and time-consuming, currently limiting ASR studies to examining a relatively small number of discrete functional shifts. As a result, we have very little direct information about how molecular function evolves across large protein families. Here we develop an approach combining ASR with structure and function prediction to efficiently examine the evolution of ligand affinity across a large family of double-stranded RNA binding proteins (DRBs) spanning animals and plants. We find that the characteristic domain architecture of DRBs-consisting of 2-3 tandem double-stranded RNA binding motifs (dsrms)-arose independently in early animal and plant lineages. The affinity with which individual dsrms bind double-stranded RNA appears to have increased and decreased often across both animal and plant phylogenies, primarily through convergent structural mechanisms involving RNA-contact residues within the ß1-ß2 loop and a small region of α2. These studies provide some of the first direct information about how protein function evolves across large gene families and suggest that changes in molecular function may occur often and unassociated with major phylogenetic events, such as gene or domain duplications.


Assuntos
Proteínas de Ligação a RNA/genética , Análise de Sequência de DNA/métodos , Sequência de Aminoácidos/genética , Animais , Evolução Biológica , Bases de Dados de Ácidos Nucleicos , Evolução Molecular , Ligantes , Dados de Sequência Molecular , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Plantas/genética , Ligação Proteica/genética , Domínios Proteicos , Proteínas de Ligação a RNA/metabolismo , Relação Estrutura-Atividade
11.
BMC Plant Biol ; 16: 63, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26964738

RESUMO

BACKGROUND: Albumin 1b peptides (A1b) are small disulfide-knotted insecticidal peptides produced by Fabaceae (also called Leguminosae). To date, their diversity among this plant family has been essentially investigated through biochemical and PCR-based approaches. The availability of high-quality genomic resources for several fabaceae species, among which the model species Medicago truncatula (Mtr), allowed for a genomic analysis of this protein family aimed at i) deciphering the evolutionary history of A1b proteins and their links with A1b-nodulins that are short non-insecticidal disulfide-bonded peptides involved in root nodule signaling and ii) exploring the functional diversity of A1b for novel bioactive molecules. RESULTS: Investigating the Mtr genome revealed a remarkable expansion, mainly through tandem duplications, of albumin1 (A1) genes, retaining nearly all of the same canonical structure at both gene and protein levels. Phylogenetic analysis revealed that the ancestral molecule was most probably insecticidal giving rise to, among others, A1b-nodulins. Expression meta-analysis revealed that many A1b coding genes are silent and a wide tissue distribution of the A1 transcripts/peptides within plant organs. Evolutionary rate analyses highlighted branches and sites with positive selection signatures, including two sites shown to be critical for insecticidal activity. Seven peptides were chemically synthesized and folded in vitro, then assayed for their biological activity. Among these, AG41 (aka MtrA1013 isoform, encoded by the orphan TA24778 contig.), showed an unexpectedly high insecticidal activity. The study highlights the unique burst of diversity of A1 peptides within the Medicago genus compared to the other taxa for which full-genomes are available: no A1 member in Lotus, or in red clover to date, while only a few are present in chick pea, soybean or pigeon pea genomes. CONCLUSION: The expansion of the A1 family in the Medicago genus is reminiscent of the situation described for another disulfide-rich peptide family, the "Nodule-specific Cysteine-Rich" (NCR), discovered within the same species. The oldest insecticidal A1b toxin was described from the Sophorae, dating the birth of this seed-defense function to more than 58 million years, and making this model of plant/insect toxin/receptor (A1b/insect v-ATPase) one of the oldest known.


Assuntos
Albuminas/genética , Genoma de Planta , Inseticidas , Medicago truncatula/genética , Proteínas de Plantas/genética , Albuminas/química , Albuminas/classificação , Membrana Celular/efeitos dos fármacos , Evolução Molecular , Perfilação da Expressão Gênica , Inseticidas/química , Medicago truncatula/química , Proteínas de Membrana/química , Análise em Microsséries , Modelos Moleculares , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/classificação , Conformação Proteica , Isoformas de Proteínas/química
12.
Mol Biol Evol ; 31(1): 140-53, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24109602

RESUMO

Animals deploy various molecular sensors to detect pathogen infections. RIG-like receptor (RLR) proteins identify viral RNAs and initiate innate immune responses. The three human RLRs recognize different types of RNA molecules and protect against different viral pathogens. The RLR protein family is widely thought to have originated shortly before the emergence of vertebrates and rapidly diversified through a complex process of domain grafting. Contrary to these findings, here we show that full-length RLRs and their downstream signaling molecules were present in the earliest animals, suggesting that the RLR-based immune system arose with the emergence of multicellularity. Functional differentiation of RLRs occurred early in animal evolution via simple gene duplication followed by modifications of the RNA-binding pocket, many of which may have been adaptively driven. Functional analysis of human and ancestral RLRs revealed that the ancestral RLR displayed RIG-1-like RNA-binding. MDA5-like binding arose through changes in the RNA-binding pocket following the duplication of the ancestral RLR, which may have occurred either early in Bilateria or later, after deuterostomes split from protostomes. The sensitivity and specificity with which RLRs bind different RNA structures has repeatedly adapted throughout mammalian evolution, suggesting a long-term evolutionary arms race with viral RNA or other molecules.


Assuntos
Evolução Molecular , Imunidade Inata , Filogenia , Vertebrados/imunologia , Vertebrados/virologia , Sequência de Aminoácidos , Animais , Dados de Sequência Molecular , Fases de Leitura Aberta , Conformação Proteica , RNA Helicases/genética , RNA Helicases/imunologia , RNA Viral/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/imunologia , Alinhamento de Sequência , Vertebrados/classificação
13.
Mycologia ; 105(6): 1471-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23928416

RESUMO

Hydrophobins are small, secreted proteins playing important roles at different stages of fungal life cycles. Their characteristic feature is the presence of eight highly conserved cysteine residues. Here we present an inventory and evolutionary analysis of hydrophobin genes from three wood-degrading basidiomycetes, Phlebia brevispora, Ganoderma sp. and Bjerkandera adusta. The genomes of the three analyzed species are characterized by the presence of high copy numbers of hydrophobin genes. Results of the phylogenetic analysis of the identified proteins revealed that many of them share a high degree of sequence similarity and probably originated from a series of duplication events. The presence of several clusters of adjacent copies of the hydrophobin gene in a particular location in the genome further supports the interpretation that gene duplication has played a role in the evolution of hydrophobins in the analyzed species.


Assuntos
Basidiomycota/genética , Basidiomycota/metabolismo , Evolução Molecular , Proteínas Fúngicas/genética , Madeira/microbiologia , Sequência de Aminoácidos , Basidiomycota/química , Basidiomycota/classificação , Proteínas Fúngicas/química , Dosagem de Genes , Duplicação Gênica , Genômica , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Madeira/metabolismo
14.
Mycologia ; 105(6): 1456-70, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23928421

RESUMO

ABC proteins constitute one of the largest families of proteins. They are implicated in wide variety of cellular processes ranging from ribosome biogenesis to multidrug resistance. With the advance of fungal genomics, the number of known fungal ABC proteins increases rapidly but the information on their biological functions remains scarce. In this work we extended the previous analysis of fungal ABC proteins to include recently sequenced species of basidiomycetes. We performed an identification and initial cataloging of ABC proteins from 23 fungal species representing 10 orders within class Agaricomycotina. We identified more than 1000 genes coding for ABC proteins. Comparison of sets of ABC proteins present in basidiomycetes and ascomycetes revealed the existence of two groups of ABC proteins specific for basidiomycetes. Results of survey should contribute to the better understanding of evolution of ABC proteins in fungi and support further experimental work on their characterization.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Basidiomycota/genética , Evolução Molecular , Proteínas Fúngicas/genética , Variação Genética , Transportadores de Cassetes de Ligação de ATP/química , Basidiomycota/química , Basidiomycota/classificação , Proteínas Fúngicas/química , Genoma Fúngico , Família Multigênica , Estrutura Terciária de Proteína
15.
Front Genet ; 4: 293, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24381583

RESUMO

The beta amyloid (APP) cleaving enzyme (BACE1) has been a drug target for Alzheimer's Disease (AD) since 1999 with lead inhibitors now entering clinical trials. In 2011, the paralog, BACE2, became a new target for type II diabetes (T2DM) having been identified as a TMEM27 secretase regulating pancreatic ß cell function. However, the normal roles of both enzymes are unclear. This study outlines their evolutionary history and new opportunities for functional genomics. We identified 30 homologs (UrBACEs) in basal phyla including Placozoans, Cnidarians, Choanoflagellates, Porifera, Echinoderms, Annelids, Mollusks and Ascidians (but not Ecdysozoans). UrBACEs are predominantly single copy, show 35-45% protein sequence identity with mammalian BACE1, are ~100 residues longer than cathepsin paralogs with an aspartyl protease domain flanked by a signal peptide and a C-terminal transmembrane domain. While multiple paralogs in Trichoplax and Monosiga pre-date the nervous system, duplication of the UrBACE in fish gave rise to BACE1 and BACE2 in the vertebrate lineage. The latter evolved more rapidly as the former maintained the emergent neuronal role. In mammals, Ka/Ks for BACE2 is higher than BACE1 but low ratios for both suggest purifying selection. The 5' exons show higher Ka/Ks than the catalytic section. Model organism genomes show the absence of certain BACE human substrates when the UrBACE is present. Experiments could thus reveal undiscovered substrates and roles. The human protease double-target status means that evolutionary trajectories and functional shifts associated with different substrates will have implications for the development of clinical candidates for both AD and T2DM. A rational basis for inhibition specificity ratios and assessing target-related side effects will be facilitated by a more complete picture of BACE1 and BACE2 functions informed by their evolutionary context.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...