Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 550
Filtrar
1.
J Food Sci Technol ; 61(8): 1609-1619, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38966797

RESUMO

The interest in algae-derived bioactive compounds has grown due to their potential therapeutic efficacy against a range of diseases. These compounds, derived from proteins, exhibit diverse functions and profound pharmacological effects. Recent research has highlighted the extensive health benefits of algae-derived bioactive compounds, positioning them as potential natural antioxidants in the food, pharmaceutical, and cosmetic industries. This study focuses on extracting proteins from Porphyra yezoensis using innovative physical pre-treatment methods such as stirring, ball milling, and homogenization, under various acidic and alkaline conditions. Enzymatic hydrolysis, employing commercial enzymes at optimal temperature, pH, and enzyme-substrate ratios, produced distinct fractions according to molecular weight. Pepsin demonstrated the highest hydrolysis rate, with the fraction above 10 kDa identified as the most bioactive hydrolysate. Antioxidant activity was evaluated through DPPH, ABTS, ferrous ion chelation, and reducing power assays, demonstrating high antioxidant potential and the ability to mitigate oxidative stress. The 10 kDa fraction of pepsin hydrolysate exhibited 82.6% DPPH activity, 77.5% ABTS activity, 88.4% ferrous ion chelation activity, and higher reducing power potential (0.84 absorbance at 700 nm). Further exploration of mechanisms, amino acid profiles, and potential in vivo benefits is essential to fully exploit the medicinal potential of these algae-derived hydrolysates.

2.
Int J Biol Macromol ; : 133674, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971290

RESUMO

In recent years, the utilization of aerogel templates in oleogels to replace animal fats has garnered considerable attention due to health concerns. This study employed a "fiber-particle core-shell nanostructure model" to combine sodium carboxymethylcellulose (CMCNa) and soy protein isolate (SPI) or SPI hydrolysate (SPIH), and freeze-dried to form aerogel template, which was then dipped into oil to induce oleogels. The results showed that adding SPIH significantly improved the physicochemical properties of oleogels. The results of ζ-potential, FTIR, and rheology demonstrated a stronger binding of SPIH to CMC-Na compared to SPI. The CMC-Na-SPIH aerogels exhibited a coarser surface and denser network structure in contrast to CMC-Na-SPI aerogels, with an oil holding capacity (OHC) of up to 84.6 % and oil absorption capacity (OAC) of 47.4 g/g. The mechanical strength of oleogels was further enhanced through chemical crosslinking. Both CMC-Na-SPI and CMC-Na-SPIH oleogels displayed excellent elasticity and reversible compressibility, with CMC-Na-SPIH oleogels demonstrating superior mechanical strength. Additionally, CMC-Na-SPIH oleogels exhibited enhanced slow release of antimicrobial substances and antioxidant properties. Increasing the content of SPI/SPIH significantly improved the mechanical strength, antioxidant capacity, and OHC of the oleogels. This research presents a straightforward and promising approach to enhance the performance of aerogel template oleogels.

3.
Pharmaceuticals (Basel) ; 17(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38931346

RESUMO

This study aimed to extract bioactive proteins and protein hydrolysates from Apis mellifera larvae and assess their potential application in cosmetics as well as their irritation properties. The larvae were defatted and extracted using various mediums, including DI water, along with 0.5 M aqueous solutions of sodium hydroxide, ascorbic acid, citric acid, and hydrochloric acid. Subsequently, the crude proteins were hydrolyzed using the Alcalase® enzyme. All extracts underwent testing for antioxidant activities via the 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) and Griess assays. Anti-aging properties were evaluated in terms of anti-collagenase and anti-hyaluronidase effects. Irritation potential was assessed using the hen's egg chorioallantoic membrane (HET-CAM) test. The results revealed that the sodium hydroxide extraction showed promising outcomes in terms of yield, protein content, and effectiveness in inhibiting hyaluronidase, with the highest inhibition at 78.1 ± 1.5%, comparable to that of oleanolic acid. Conversely, crude protein extracted with ascorbic acid and its hydrolysate showed notable antioxidant and collagenase-inhibitory activities. Remarkably, their anti-collagenase effects were comparable to those of ascorbic acid and lysine. Additionally, it demonstrated safety upon testing with the CAM. In conclusion, the findings provided valuable insights into the utilization of A. mellifera larval proteins as active ingredients with a wide range of cosmeceutical applications, particularly due to their antioxidant, anti-aging, and low irritation properties, which hold significant promise for anti-skin wrinkles.

4.
Foods ; 13(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38890929

RESUMO

In the Chilean population, calcium consumption is deficient. Therefore, several strategies have been implemented to increase calcium intake, such as consuming dairy products and supplements. In this study, an ingredient composed of bone flour (BF) and protein hydrolysate (PH) obtained from salmon frame was used as an innovative source of calcium. The objective was to evaluate the effect of the incorporation of BF and PH in a 1:1 ratio (providing two calcium concentrations to the nuggets, 75 and 125 mg/100 g) on calcium content and sensory attributes of salmon nuggets submitted to baking or shallow frying. Proximal chemical analyses, fatty acid composition, calcium content, and sensory evaluation (acceptability and check-all-that-apply test) were tested in the nuggets. The incorporation of BF/PH (1:1) in both concentrations increased the calcium content of salmon nuggets being higher for the 125 mg/100 g. On the other hand, no negative effects were observed on sensory properties where all samples showed good overall acceptability for baked and fried nuggets. Therefore, the incorporation of BF/PH (1:1) into salmon nuggets enhances the nutritional quality of these products by providing a higher calcium content without significantly affecting their sensory properties.

5.
J Dairy Sci ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38825137

RESUMO

This study characterized the sleep activity, sleep mechanism, and active peptides of whey protein hydrolysates selected through behavioral analysis of fruit-flies (Drosophila melanogaster). Sleep-inducing whey protein (WP) hydrolysate was selected through fruit fly behavior analysis, and sleep activity was measured using a pentobarbital model and electroencephalographic analysis. The mechanism of action was confirmed using a γ-aminobutyric acid (GABA) receptor antagonist, and the active peptide was identified using liquid chromatography-mass spectroscopy. Whey protein hydrolysate, prepared using Alcalase and Prozyme (WP-AP), increased sleep time in a dose-dependent manner. WP-AP significantly increased not only sleep time but also slow-wave sleep and showed an insomnia-alleviating effect in a caffeine-induced insomnia mouse model. In addition, the gene and protein expression levels of GABA sub-type A (GABAA) receptors increased in the brains of mice orally administered with WP-AP. Through peptide analysis, the mixture of DIQK, VPPF peptide, and GABA contained in WP-AP was estimated to exhibit sleep activity, and due to its high content, DIQK was speculated to be the main sleep -inducing ingredient. These results indicate that WP-AP has the potential to be used as a new ingredient to improve sleep quality.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38825860

RESUMO

This study investigated the effects of cottonseed meal protein hydrolysate (CPH) on the growth performance, carcass characteristics, serum biochemical indices, intestinal morphology, and enzyme activities of yellow-feather broilers. We randomly divided 240 chicks into four groups, each with six replicates: a basal diet with 0% (CON), 1% (LCPH), 3% (MCPH), or 5% (HCPH) CPH. The trail spanned 63 days and included three phases: Days 1-21, 22-42, and 43-63. Increased average daily gain (ADG) and decreased ratio of feed to gain (F/G) with LCPH were observed in 21-day-old broilers (P < 0.05). MCPH led to higher ADG and average daily feed intake (ADFI) in 42-day-old broilers (P < 0.05). Additionally, CPH supplementation resulted in increased dressing percentage, percentage of half-eviscerated yield, percentage of eviscerated yield, breast muscle rate, and leg muscle rate were observed (P < 0.05) with diet. The serum levels of total protein (TP), high-density lipoprotein cholesterol (HDL-C), calcium (Ca), and phosphorus (P) were enhanced, and blood urea nitrogen (BUN) and triglyceride (TG) levels decreased with diet and CPH (P < 0.05). CPH increased the length of the jejunum and ileum and the weight of the duodenum, jejunum, and ileum in 21-day-old broilers (P < 0.05). Alterations in the duodenal villus structure in broilers occurred on Days 21 and 42, and the CPH groups performed better; however, a similar change occurred in the jejunum on Days 42 and 63 (P < 0.05). MCPH and HCPH enhanced trypsin activity in the duodenum of 21-day-old and 63-day-old broilers (p < 0.05). Chymotrypsin activity increased (P > 0.05) in the duodenum of 63-day-old broilers fed MCPH. Lipase activity increased (P < 0.05) in the jejuna of 21-day-old broilers treated with HCPH. CPH increased trypsin activity in the ilea of 21-day-old broilers (P < 0.05). These results showed that CPH influenced the growth performance, carcass characteristics, serum biochemical indices, and intestinal morphology of yellow-feather broilers, which are related to growth stage. The recommended CPH level in broilers is 1% before 21 days of age and 3% after 21 days of age.

7.
Front Pediatr ; 12: 1328709, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827219

RESUMO

Objective: This study aimed to investigate growth and gut comfort of healthy infants fed with a partially hydrolysed cow's milk protein-based infant formula (pHF) compared to a standard intact cow's milk protein-based formula (IPF). Methods: A double-blind, multi-center, randomized, controlled trial was performed. Healthy full-term, exclusively formula-fed infants (n = 345), aged ≤28 days were allocated to consume either a pHF (n = 173) or an IPF (n = 172) until the age of 17 weeks. The primary outcome was equivalence of weight gain (g/d) until the age of 17 weeks. The secondary outcomes were equivalence of other growth parameters, i.e., infants' weight, length, head circumference, body mass index (BMI) and anthropometric Z-scores, while tertiary outcomes were gut comfort, formula intake, and adverse events (AEs). Results: Overall, 288 infants completed the study (pHF group: 138, IPF group: 150). No differences were observed between the two groups in weight gain (g/d) during the three-months intervention [p = 0.915 for the Per Protocol (PP) population]. The 90% CI was [-1.252 to 1.100] being within the pre-defined equivalence margin of ±3.0 g/d. Similar findings were observed in the Full Analysis Set (FAS) and the sensitivity analysis. Regarding the secondary outcomes, no differences over the intervention period were shown between the two groups in both the PP and FAS analysis sets. Average Z-scores were in the normal range based on World Health Organization (WHO) growth standards for both groups at all time points in both analysis sets. Stool consistency, amount, and colour were different in the two groups. No differences were observed in gut comfort, stool frequency, and formula intake, between the two groups. In total 14 AEs and 22 serious adverse events (SAEs) were reported of which 15 (12%) and 1 (5%) were considered as (possibly) related to the study product, respectively. Conclusions: The study demonstrates that the consumption of pHF results in adequate infant growth, equivalent to that of infants consuming IPF. Furthermore, the overall gut comfort was comparable between the two groups. Therefore, it can be concluded that the pHF is safe for and well tolerated by healthy infants. Clinical Trial Registration: https://clinicaltrials.gov/study/NCT05757323?id=NCT05757323&rank=1, identifier (NCT05757323).

8.
Poult Sci ; 103(8): 103924, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38908125

RESUMO

A significant quantity of bone-rich poultry by-products must be disposed of by poultry processors. These products still contain a significant amount of nutritionally valuable animal proteins. In the present work, a hydrolysis protocol was optimized to recover the protein fraction of bone-rich poultry by-products while simultaneously minimizing the amount of water required for hydrolysis (thus reducing drying costs) and recycling the hydrolytic broth up to 3 times, to reduce the cost of the proteolytic enzyme. The final hydrolysis conditions involved the use of (protease from B. licheniformis, ≥2.4 U/g; 0.5 V/w of raw material) and a hydrolysis time of 2 h at 65°C. The protein hydrolysate obtained has a high protein content (79-86%), a good amino acid profile (chemical amino acid score equal to 0.7-0.8) and good gastric digestibility (about 30% of peptide bonds are already hydrolyzed before digestion). This supports its use as an ingredient in food, pet food or animal feed formulations.

9.
Pharmaceutics ; 16(6)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38931846

RESUMO

This study aimed to develop chitosan alginate nanoparticles (CANPs) for enhanced stability for dermal delivery of protein hydrolysate from Acheta domesticus (PH). CANPs, developed using ionotropic pre-gelation followed by the polyelectrolyte complex technique, were characterized for particle size, polydispersity index (PDI), and zeta potential. After the incorporation of PH into CANPs, a comprehensive assessment included encapsulation efficiency, loading capacity, morphology, chemical analyses, physical and chemical stability, irritation potential, release profile, skin permeation, and skin retention. The most optimal CANPs, comprising 0.6 mg/mL sodium alginate, 1.8 mg/mL calcium chloride, and 0.1 mg/mL chitosan, exhibited the smallest particle size (309 ± 0 nm), the narrowest PDI (0.39 ± 0.01), and pronounced negative zeta potential (-26.0 ± 0.9 mV), along with an encapsulation efficiency of 56 ± 2%, loading capacity of 2.4 ± 0.1%, release of 40 ± 2% after 48 h, and the highest skin retention of 12 ± 1%. The CANPs induced no irritation and effectively enhanced the stability of PH from 44 ± 5% of PH remaining in a solution to 74 ± 4% after three-month storage. Therefore, the findings revealed the considerable potential of CANPs in improving PH stability and skin delivery, with promising applications in cosmetics and related fields.

10.
Food Res Int ; 186: 114365, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729700

RESUMO

This study aimed to investigate the interaction, structure, antioxidant, and emulsification properties of quinoa protein hydrolysate (QPH) complexes formed with (-)-epigallocatechin gallate (EGCG) at pH 3.0 and 7.0. Additionally, the effect of pH conditions and EGCG complexation on protein hydrolysate-lipid co-oxidation in QPH emulsions was explored. The results indicated that QPH primarily interacted with EGCG through hydrophobic interactions and hydrogen bonds. This interaction led to alterations in the secondary structure of QPH, as well as a decrease in surface hydrophobicity and free SH content. Notably, the binding affinity between QPH and EGCG was observed to be higher at pH 7.0 compared to pH 3.0. Consequently, QPH-EGCG complexes exhibited more significant enhancement in antioxidant and emulsification properties at pH 7.0 than pH 3.0. The pH level also influenced the droplet size, ζ-potential, and interfacial composition of emulsions formed by QPH and QPH-EGCG complexes. Compared to QPH stabilized emulsions, QPH-EGCG stabilized emulsions were more capable of mitigating destabilization during storage and displayed fewer lipid oxidation products, carbonyl generation, and sulfhydryl groups and fluorescence loss, which implied better oxidative stability of the emulsions. Furthermore, the QPH-EGCG complexes formed at pH 7.0 exhibited better inhibition of protein hydrolysate-lipid co-oxidation. Overall, these findings provide valuable insights into the potential application of QPH and its complexes with EGCG in food processing systems.


Assuntos
Antioxidantes , Catequina , Chenopodium quinoa , Emulsões , Interações Hidrofóbicas e Hidrofílicas , Oxirredução , Hidrolisados de Proteína , Chenopodium quinoa/química , Concentração de Íons de Hidrogênio , Emulsões/química , Hidrolisados de Proteína/química , Catequina/química , Catequina/análogos & derivados , Antioxidantes/química , Ligação de Hidrogênio , Proteínas de Plantas/química , Lipídeos/química
11.
Plants (Basel) ; 13(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38794397

RESUMO

Modern agriculture urgently requires viable alternatives to synthetic chemical substances, such as pesticides and fertilizers, to comply with new and stringent international regulations and meet the growing demands of consumers who prefer chemical-free food. Consequently, organic agriculture has garnered increasing interest over time. To compensate for yield reduction resulting from opting out of the use mineral fertilizers, research has focused on the use of biostimulants to sustain the productivity of horticultural crops. To this end, a greenhouse experiment was conducted to assess the effects of three nonmicrobial biostimulants (a plant extract, vegetable protein hydrolysate, and a seaweed extract) and an untreated control on the production and mineral content of wild rocket (Diplotaxis tenuifolia (L.) DC.) cultivated under organic conditions and harvested three times during the growth cycle. In general, the nitrate content, which defines the commercial quality of wild rocket, was not influenced by the application of biostimulants. At each harvest, the application of biostimulants resulted in improved production performance, although this was not always accompanied by an increase in mineral content. Specifically, the best results were obtained with the use of plant-derived protein hydrolysate and plant extract, which led to an improvement in total yield of 32.1% and 27.2%, respectively compared to that of control plants. These results reconfirm that biostimulants represent a valid and indispensable tool for organic growers.

12.
Antioxidants (Basel) ; 13(5)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38790675

RESUMO

Valorisation of food by-products, like spent brewer's yeast and fruit pomaces, represents an important strategy for contributing to sustainable food production. The aims of this study were to obtain Maillard conjugates based on spent yeast protein hydrolysate (SYH) with dextran (D) or maltodextrin (MD) by means of ultrasound treatment and to use them for developing encapsulation systems for the anthocyanins from aronia pomace. The ultrasound-assisted Maillard conjugation promoted the increase of antioxidant activity by about 50% compared to conventional heating and SYH, and was not dependent on the polysaccharide type. The ability of the conjugates to act as wall material for encapsulating various biologically active compounds was tested via a freeze-drying method. The retention efficiency ranged between 58.25 ± 0.38%-65.25 ± 2.21%, while encapsulation efficiency varied from 67.09 ± 2.26% to 88.72 ± 0.33%, indicating the strong effect of the carrier material used for encapsulation. The addition of the hydrolysed yeast cell wall played a positive effect on the encapsulation efficiency of anthocyanins when used in combination with the SYH:MD conjugates. On the other hand, the stability of anthocyanins during storage, as well as their bioavailability during gastrointestinal digestion, were higher when using the SYH:D conjugate. The study showed that hydrolysis combined with the ultrasound-assisted Maillard reaction has a great potential for the valorisation of spent brewer's yeast as delivery material for the encapsulation of bioactive compounds.

13.
Food Sci Biotechnol ; 33(8): 1847-1857, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38752117

RESUMO

Plant-based protein hydrolysates have found applications in food industry for emulsification, foaming, and increasing shelf life of food products. The objective of this study is to isolate protease-secreting bacteria hydrolyzing protein waste, and subjecting the resultant hydrolysates for the characterization for application in the food industry. Peanut cake hydrolysates were prepared using proteases from two microorganisms selected for the purpose, viz., Aneurinibacillus migulanus, VITPM11 and Aneurinibacillus aneurinilyticus, VITPS07. The cleavage specificity of the proteases from VITPM11 and VITPS07 were found to be like plasmin and elastase respectively. The cleaving sites of proteases for peanut proteins were predicted using expasy tool. The protease of VITPM11 had maximal activity of 325.8 ± 0.1 U/mL in peanut-cake media. The degree of hydrolysis (32.03 ± 0.89%), solubility (88.5 ± 1.18%), emulsion stability index (89.76 ± 2.80) and foaming stability (68.67 ± 1.53%) properties of VITPM11 protease correlated well with results from bioinformatic studies. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01490-z.

14.
Food Chem ; 452: 139466, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38735106

RESUMO

γ-Glutamylation of beef protein hydrolysate (BPH) by L-glutaminase was carried out to improve the taste, as well as enhance the stimulating effect of gastrointestinal hormone (CCK and GLP-1) secretion and the anti-inflammatory property. Results of sensory evaluation showed that the kokumi taste, umaminess, saltiness of the γ-glutamylated product (γ-GBPH) were significantly higher (p < 0.05), whilst the bitterness was remarkably decreased (p < 0.05) than that of BPH. γ-GBPH had a better promoting effect (p < 0.05) on CCK and GLP-1 secretion and a higher inhibition (p < 0.05) on TNF-α and IL-8 production than BPH in vitro cell experiments. In γ-GBPH, 15 γ-Glutamylated amino acids (γ-[Glu](n =1/2)-AAs) and 10 γ-Glutamyl-tripeptide (γ-Glu-AA-AAs) were synthesized from the bitter amino acids and bitter peptides, respectively, and their total production yield was 140.01-170.46 mg/g and 149.06 mg/g, respectively. The synthesized γ-Glu-AA-AAs entered the binding pocket of the calcium-sensitive receptor (CaSR), and they all interacted with three reported amino acid residues (Ser147, Ala168, and Ser170) of CaSR.


Assuntos
Anti-Inflamatórios , Peptídeo 1 Semelhante ao Glucagon , Hidrolisados de Proteína , Paladar , Hidrolisados de Proteína/química , Hidrolisados de Proteína/metabolismo , Hidrolisados de Proteína/farmacologia , Animais , Humanos , Bovinos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Colecistocinina/metabolismo , Colecistocinina/química
15.
Am J Clin Nutr ; 120(1): 56-65, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38710445

RESUMO

BACKGROUND: The effects of consuming hemp seed protein (HSP) as well as its hydrolysate-derived bioactive peptide (HSP+) on blood pressure (BP) has not, to our knowledge, been investigated in humans. OBJECTIVES: We aimed to investigate how consumption of HSP and its hydrolysate modulates 24-h systolic (SBP) and diastolic BP (DBP) and plasma biomarkers of BP compared with casein. METHODS: In a double-blind, randomized, crossover design trial, 35 adults who had mild hypertension with SBP between 130 and 160 mmHg and DBP ≤110 mmHg were recruited. Participants were randomly assigned to varying sequences of 3 6-wk treatments, 50 g casein/d, 50 g HSP/d, or 45 g HSP plus 5 g HSP-derived bioactive peptides/d (HSP+), separated by a 2-wk washout period. Treatment effects were assessed with a linear mixed model with repeated measures. RESULTS: Compared with casein, after HSP+ consumption, 24-h SBP and 24-h DBP decreased from 135.1 and 80.0 mmHg to 128.1 ± 1.6 (P < 0.0001) and 76.0 ± 1.4 mmHg (P < 0.0001), respectively, whereas these values were 133.5 ± 1.6 and 78.9 ± 1.4 mmHg after HSP consumption (P < 0.0001). There were no differences between the HSP and HSP+ consumption in plasma angiotensin-converting enzyme (ACE) activity, renin, or nitric oxide (NO) concentrations. However, these 2 treatments were able to lower both ACE and renin activities and raise NO concentration in plasma compared with casein. CONCLUSIONS: These results suggest that hemp protein consumption, as well as in combination with bioactive peptides, may have a role in the dietary management of hypertension. This trial was registered at clinicaltrials.gov as NCT03508895.


Assuntos
Pressão Sanguínea , Cannabis , Caseínas , Estudos Cross-Over , Hipertensão , Proteínas de Plantas , Sementes , Humanos , Caseínas/administração & dosagem , Método Duplo-Cego , Masculino , Feminino , Hipertensão/dietoterapia , Hipertensão/tratamento farmacológico , Cannabis/química , Pessoa de Meia-Idade , Sementes/química , Pressão Sanguínea/efeitos dos fármacos , Proteínas de Plantas/administração & dosagem , Adulto , Hidrolisados de Proteína/administração & dosagem , Idoso , Biomarcadores/sangue
16.
Curr Res Food Sci ; 8: 100739, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708103

RESUMO

Pumpkin seeds are rich in protein (24-36.5%). Some of them are consumed as nuts, while others are regarded as waste and used for feeding animals. Protein hydrolysates from pumpkin seeds possess some bioactive properties, such as anti-oxidant activity. In this work, various composite alginate hydrogels contain Aloe vera, CMC, and tragacanth have been employed to protect PSPH against degradation in simulated gastrointestinal digestion (SGI) and regulate its release rate. The encapsulation efficiency of PSPH in plain alginate and beads with Aloe vera, CMC, and tragacanth combinations was 71.63, 75.63, 85.07, and 80.4%, respectively. The release rate of the plain alginate beads was %30.23 in the SGF and %52.26 in the SIF, and decreased in the composite-based beads. The highest decreasing rate in the antioxidant activity during SGI was observed in free PSPH, and the decreasing rate slowed down in the alginate-based composites. The swelling rate in plain alginate was %-23.43 and %25.43 in the SGF and SIF, respectively, and increased in the composite-based beads. The FTIR spectra of hydrogels before and after loading with PSPH showed identical absorption patterns and were similar to each other. Based on the data for SEM, it was revealed that substituting other polymers in polymer combinations with alginates resulted in a porosity reduction of the beads and smoother and more uniform surfaces. Based on the results, the combination of polysacchared with alginate could protect and increase the applicability of PSPH as a functional component in the food industry.

17.
Food Chem ; 454: 139805, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38810442

RESUMO

The poor thermal stability and ion tolerance of whey protein hydrolysates (WPH) restrict its application in emulsions, while glycosylation shows potential benefits in improving WPH stability. However, the relationship between saccharides with different Mw and the glycosylation behavior of WPH rich in short peptides is unclear. In response, the effect of different saccharides on glycosylated WPH rich in short peptides and its emulsion stability were investigated. Grafted small Mw saccharides were more beneficial to the emulsion stability of WPH. Specifically, grafting xylose effectively inhibited 121 °C sterilization and 5 mM CaCl2-induced coalescence of WPH emulsion (687.50 nm) by comprehensively enhancing steric hindrance, conformational flexibility and electrostatic repulsion, and dissociating large aggregates into small aggregates. Conversely, grafting maltodextrin (30,590 Da) reduced thermal stability of WPH emulsion (4791.80 nm) by steric shielding and bridging flocculation. These findings provide new sights into glycosylation mechanism for WPH and achieving its application in nutritional emulsions.


Assuntos
Cálcio , Emulsões , Temperatura Alta , Hidrolisados de Proteína , Proteínas do Soro do Leite , Proteínas do Soro do Leite/química , Emulsões/química , Glicosilação , Hidrolisados de Proteína/química , Cálcio/química , Tamanho da Partícula
18.
Food Chem ; 449: 139163, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38604024

RESUMO

Precipitation was an important obstacle to improving zinc's bioavailability. Therefore, zinc-whey protein hydrolysate-chitosan oligosaccharide (Zn-WPH-COS) complexes (167 nm) were prepared by linking Zn-WPH (zinc: 18.4%) with COS (1:1, 2 h) to enhance zinc's bioaccessibility. Fourier-transform infrared showed Zn-WPH formed with zinc replaced hydrogen (from 3274 to 3279 cm-1) and reacted with COO- (C-N: from 1394 to 1402 cm-1), a new peak at 1025 cm-1 proved COS can be successful cross-linked (Zn-WPH-COS). Fluorescence spectra showed zinc and COS reduced WPH hydrophobicity (28.0 and 39.0%, respectively). Circular dichroism showed zinc decreased WPH α-helix (from 13.7 to 11.5%), in contrast with COS to Zn-WPH. Zinc solubility and dialyzability were increased (64.5/ 54.2% vs 50.2/ 41.2% vs 29.5/ 21.7%) in Zn-WPH-COS, compared with Zn-WPH and ZnSO4·7H2O, respectively, due to the smallest size (167 nm) and COS protection on Zn-WPH (gastric digestion). These results indicate Zn-WPH-COS could significantly improve the digestion and absorption of zinc.


Assuntos
Disponibilidade Biológica , Quitosana , Nanopartículas , Zinco , Zinco/química , Quitosana/química , Nanopartículas/química , Humanos , Solubilidade
19.
Food Chem ; 450: 139400, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38640536

RESUMO

Three protein hydrolysates from Tenebrio molitor were obtained by enzymatic hydrolysis employing two food-grade proteases (i.e. Alcalase and Flavourzyme), and a complete characterisation of their composition was done. The digestion-derived products were obtained using the INFOGEST protocol. In vitro antioxidant activity and anti-inflammatory activities were evaluated. Tenebrio molitor flour and the protein hydrolysates showed a high ability to scavenge the DPPH radical (EC50 values from 0.30 to 0.87 mg/mL). The hydrolysate obtained with a combination of the two food-grade proteases could decrease the gene expression of pro-inflammatory genes after being digested. Furthermore, the peptidome was fully determined for the first time for T. molitor hydrolysates and digests, and 40 peptides were selected based on their bioactivity to be evaluated by in silico tools, including prediction tools and molecular docking. These results provide new perspectives on the use of edible insects as sustainable and not nutritionally disadvantageous food for human consumption.


Assuntos
Antioxidantes , Proteínas de Insetos , Oligopeptídeos , Tenebrio , Tenebrio/química , Tenebrio/genética , Tenebrio/metabolismo , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Oligopeptídeos/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Simulação de Acoplamento Molecular , Hidrolisados de Proteína/química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Hidrólise , Humanos
20.
Heliyon ; 10(7): e28368, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560105

RESUMO

New plant proteins with high nutritional quality and biological properties are actively searched worldwide. Moringa oleifera seed protein isolate was prepared from defatted flour and hydrolyzed using four proteases namely trypsin, pepsin, Alcalase, and thermolysin. Then, antioxidant activity and cellular glucose uptake properties of the hydrolysates were assessed. A high degree of hydrolysis was obtained for hydrolysate prepared using trypsin (60.07%), followed by pepsin (57.14%), Alcalase (50.68%), and thermolysin (45.45%). Thermolysin hydrolysate was the most antioxidant efficient (IC50 0.15 and 0.74 mg/mL for 2,2'-azino-bis(acide 3-ethylbenzothiazoline-6-sulfonique) diammonium salt (ABTS) and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, respectively). Trypsin hydrolysate stimulated high glucose uptake by yeast cells (12.34-35.28%). In the absence of insulin, Alcalase hydrolysate was the most efficient for glucose uptake by the muscle, with the rate ranging from 22.03% to 29.93% after 30 min, then from 29.55% to 34.6% after 60 min. The four hydrolysates improved glucose uptake by the muscle in the presence of insulin with the rate ranging from 46.88% to 58.03% after 30 min, and from 50% to 58.18% after 60 min. Therefore, Moringa oleifera seed proteins could be used to prepare peptides as components of functional foods for the management of type-2 diabetes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...