Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.802
Filtrar
1.
Biochim Biophys Acta Gen Subj ; : 130668, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992482

RESUMO

Glycosylation of proteins and lipids is of fundamental importance in multicellular eukaryotes. The vast diversity of glycan structures observed is generated in the Golgi apparatus by the concerted activity of >100 distinct enzymes, which include glycosyltransferases and other glycan-modifying enzymes. Well-known for decades, the majority of these enzymes is released from the Golgi apparatus and subsequently secreted into the extracellular space following endoproteolytic cleavage, but the underlying molecular mechanisms and the physiological implications have remained unexplored. This review will summarize our current knowledge of Golgi enzyme proteolysis and secretion and will discuss its conceptual implications for the regulation of cellular glycosylation and the organization of the Golgi apparatus. A particular focus will lie on the intramembrane protease SPPL3, which recently emerged as key protease facilitating Golgi enzyme release and has since been shown to affect a multitude of glycosylation-dependent physiological processes.

2.
Biochim Biophys Acta Rev Cancer ; : 189152, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992509

RESUMO

Programmed death-ligand 1 (PD-L1) has become a crucial focus in cancer immunotherapy considering it is found in many different cells. Cancer cells enhance the suppressive impact of programmed death receptor 1 (PD-1) through elevating PD-L1 expression, which allows them to escape immune detection. Although there have been significant improvements, the effectiveness of anti-PD-1/PD-L1 treatment is still limited to a specific group of patients. An important advancement in cancer immunotherapy involves improving the PD-L1 protein degradation. This review thoroughly examined the processes by which PD-L1 breaks down, including the intracellular pathways of ubiquitination-proteasome and autophagy-lysosome. In addition, the analysis revealed changes that affect PD-L1 stability, such as phosphorylation and glycosylation. The significant consequences of these procedures on cancer immunotherapy and their potential role in innovative therapeutic approaches are emphasised. Our future efforts will focus on understanding new ways in which PD-L1 degradation is controlled and developing innovative treatments, such as proteolysis-targeting chimeras designed specifically to degrade PD-L1. It is crucial to have a thorough comprehension of these pathways in order to improve cancer immunotherapy strategies and hopefully improve therapeutic effectiveness.

3.
Int J Biol Macromol ; 275(Pt 1): 133680, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971291

RESUMO

Proteolysis targeting chimeras (PROTACs) can use the intrinsic protein degradation system in cells to degrade pathogenic target proteins, and are currently a revolutionary frontier of development strategy for tumor treatment with small molecules. However, the poor water solubility, low cellular permeability, and off-target side effects of most PROTACs have prevented them from passing the preclinical research stage of drug development. This requires the use of appropriate delivery systems to overcome these challenging hurdles and ensure precise delivery of PROTACs towards the tumor site. Therefore, the combination of PROTACs and multifunctional delivery systems will open up new research directions for targeted degradation of tumor proteins. In this review, we systematically reviewed the design principles and the most recent advances of various PROTACs delivery systems. Moreover, the constructive strategies for developing multifunctional PROTACs delivery systems were proposed comprehensively. This review aims to deepen the understanding of PROTACs drugs and promote the further development of PROTACs delivery system.

4.
J Adhes Dent ; 26: 171-178, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38966001

RESUMO

PURPOSE: To evaluate the effect of urethane methacrylate precursor (UMP) on the enzymatic resistance of demineralized dentin (DD) matrices. MATERIALS AND METHODS: Experimental treatments containing 0 (control), 1, and 5 mmol/L UMP dissolved in an acetone (Ace) solution were formulated. Dentin matrix specimens were demineralized in vitro and immersed in the experimental treatments for 1 h. The treated specimens were then stored in 0.1 mg/mL collagenase solution for 24 h, after which their dry mass loss and hydroxyproline (HYP) release were assessed. The swelling ratios of specimens in each group were also evaluated. The interaction between UMP and the dentin matrix was observed using field-emission scanning electron microscopy (FE-SEM). Endogenous enzyme activity in dentin was evaluated using confocal laser scanning microscopy (CLSM). RESULTS: Compared with the other treatment groups, treatment with 1 mM and 5 mM UMP-Ace significantly decreased the dry mass loss, HYP release and swelling ratio of the DD matrix (p < 0.05). FE-SEM and CLSM observations showed that treatment with UMP-Ace protected the structure of the dentin matrix and decreased porosity within the dentin-collagen network. CONCLUSION: Treatment with 1 mM and 5 mM UMP-Ace protects DD matrix against collagenase degradation and may be clinically useful for improving the durability of the hybrid layer.


Assuntos
Dentina , Metacrilatos , Microscopia Confocal , Microscopia Eletrônica de Varredura , Dentina/efeitos dos fármacos , Humanos , Metacrilatos/química , Isocianatos/química , Colagem Dentária , Adesivos Dentinários/química , Teste de Materiais , Colagenases , Hidroxiprolina , Colágeno , Cimentos de Resina/química
5.
Int J Biol Sci ; 20(9): 3675-3690, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993567

RESUMO

Hepatocellular carcinoma (HCC) is one of the most prevalent and deadly tumors; however, its pathogenic mechanism remains largely elusive. In-depth researches are needed to reveal the expression regulatory mechanisms and functions of the RNA-binding protein RALY in HCC. Here, we identify RALY as a highly expressed oncogenic factor that affects HCC cells proliferation both in vitro and in vivo. O-GlcNAcylation of RALY at Ser176 enhances its stability by protecting RALY from TRIM27-mediated ubiquitination, thus maintaining hyper-expression of the RALY protein. Mechanistically, RALY interacts with USP22 messenger RNA, as revealed by RNA immunoprecipitation, to increase their cytoplasmic localization and protein expression, thereby promoting the proliferation of HCC cells. Furthermore, we develop a novel RALY protein degrader based on peptide proteolysis-targeting chimeras, named RALY-PROTAC, which we chemically synthesize by linking a RALY-targeting peptide with the E3 ubiquitin ligase recruitment ligand pomalidomide. In conclusion, our findings demonstrate a novel mechanism by which O-GlcNAcylation/RALY/USP22 mRNA axis aggravates HCC cells proliferation. RALY-PROTACs as degraders of the RALY protein exhibit potential as therapeutic drugs for RALY-overexpressing HCC.


Assuntos
Carcinoma Hepatocelular , Proliferação de Células , Neoplasias Hepáticas , Ubiquitina Tiolesterase , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Linhagem Celular Tumoral , Animais , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Camundongos , Camundongos Nus , Ubiquitinação , Transporte Ativo do Núcleo Celular
6.
mBio ; : e0072124, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958446

RESUMO

Vibrio cholerae is a Gram-negative gastrointestinal pathogen responsible for the diarrheal disease cholera. Expression of key virulence factors, cholera toxin and toxin-coregulated pilus, is regulated directly by ToxT and indirectly by two transmembrane transcription regulators (TTRs), ToxR and TcpP, that promote the expression of toxT. TcpP abundance and activity are controlled by TcpH, a single-pass transmembrane protein, which protects TcpP from a two-step proteolytic process known as regulated intramembrane proteolysis (RIP). The mechanism of TcpH-mediated protection of TcpP represents a major gap in our understanding of V. cholerae pathogenesis. The absence of tcpH leads to unimpeded degradation of TcpP in vitro and a colonization defect in a neonate mouse model of V. cholerae colonization. Here, we show that TcpH protects TcpP from RIP via direct interaction. We also demonstrate that α-linolenic acid, a dietary fatty acid, promotes TcpH-dependent inhibition of RIP via co-association of TcpP and TcpH molecules within detergent-resistant membranes (DRMs) in a mechanism requiring the TcpH transmembrane domain. Taken together, our data support a model where V. cholerae cells use exogenous α-linolenic acid to remodel the phospholipid bilayer in vivo, leading to co-association of TcpP and TcpH within DRMs where RIP of TcpP is inhibited by TcpH, thereby promoting V. cholerae pathogenicity. IMPORTANCE: Vibrio cholerae continues to pose a significant global burden on health and an alternative therapeutic approach is needed, due to evolving multidrug resistance strains. Transcription of toxT, stimulated by TcpP and ToxR, is essential for V. cholerae pathogenesis. Our results show that TcpP, one of the major regulators of toxT gene expression, is protected from proteolysis by TcpH, via direct interaction. Furthermore, we identified a gut metabolite, α-linolenic acid, that stimulates the co-association of TcpP and TcpH within detergent-resistant membranes (also known as lipid-ordered membrane domains), thereby supporting TcpH-dependent antagonism of TcpP proteolysis. Data presented here extend our knowledge of RIP, virulence gene regulation in V. cholerae, and, to the best of our knowledge, provides the first evidence that lipid-ordered membranes exist within V. cholerae. The model presented here also suggests that TTRs, common among bacteria and archaea, and co-component signal transduction systems present in Enterobacteria, could also be influenced similarly.

7.
Biochem J ; 481(13): 865-881, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958472

RESUMO

Filamin A is an essential protein in the cell cytoskeleton because of its actin binding properties and unique homodimer rod-shaped structure, which organises actin into three-dimensional orthogonal networks imperative to cell motility, spreading and adhesion. Filamin A is subject to extensive posttranslational modification (PTM) which serves to co-ordinate cellular architecture and to modulate its large protein-protein interaction network which is key to the protein's role as a cellular signalling hub. Characterised PTMs include phosphorylation, irreversible cleavage, ubiquitin mediated degradation, hydroxylation and O-GlcNAcylation, with preliminary evidence of tyrosylation, carbonylation and acetylation. Each modification and its relation to filamin A function will be described here. These modifications are often aberrantly applied in a range of diseases including, but not limited to, cancer, cardiovascular disease and neurological disease and we discuss the concept of target specific PTMs with novel therapeutic modalities. In summary, our review represents a topical 'one-stop-shop' that enables understanding of filamin A function in cell homeostasis and provides insight into how a variety of modifications add an extra level of Filamin A control.


Assuntos
Filaminas , Processamento de Proteína Pós-Traducional , Filaminas/metabolismo , Humanos , Animais , Fosforilação , Neoplasias/metabolismo
8.
Neurobiol Dis ; 199: 106556, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38851544

RESUMO

Mutation of the ATL1 gene is one of the most common causes of hereditary spastic paraplegia (HSP), a group of genetic neurodegenerative conditions characterised by distal axonal degeneration of the corticospinal tract axons. Atlastin-1, the protein encoded by ATL1, is one of three mammalian atlastins, which are homologous dynamin-like GTPases that control endoplasmic reticulum (ER) morphology by fusing tubules to form the three-way junctions that characterise ER networks. However, it is not clear whether atlastin-1 is required for correct ER morphology in human neurons and if so what the functional consequences of lack of atlastin-1 are. Using CRISPR-inhibition we generated human cortical neurons lacking atlastin-1. We demonstrate that ER morphology was altered in these neurons, with a reduced number of three-way junctions. Neurons lacking atlastin-1 had longer endosomal tubules, suggestive of defective tubule fission. This was accompanied by reduced lysosomal proteolytic capacity. As well as demonstrating that atlastin-1 is required for correct ER morphology in human neurons, our results indicate that lack of a classical ER-shaping protein such as atlastin-1 may cause altered endosomal tubulation and lysosomal proteolytic dysfunction. Furthermore, they strengthen the idea that defective lysosome function contributes to the pathogenesis of a broad group of HSPs, including those where the primary localisation of the protein involved is not at the endolysosomal system.

9.
J Reprod Immunol ; 164: 104270, 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38878627

RESUMO

Matrix metalloproteinases (MMPs) degrade extracellular matrix proteins and are important for placenta formation during early pregnancy. Recurrent pregnancy loss (RPL) is associated with abnormalities in endometrial extracellular matrix remodeling. This study aimed to elucidate the roles of MMP2 and MMP9 in RPL pathogenesis. In total, 295 women with a history of RPL and 101 controls were included in this genetic study. Genotype analysis was performed using polymerase chain reaction (PCR) restriction fragment length polymorphisms. For proteolytic analysis, decidua and villi were collected from 10 RPL-miscarried women with normal fetal chromosomes (NC) and 19 women with fetal chromosome aberrations (AC). The expression of MMP2 and MMP9 in the decidua and villi was measured by IHC and ELISA. All samples were collected after obtaining informed consent. There were no statistically significant differences in MMP2-735 C/T and MMP9-1562 C/T frequencies between women with RPL and the controls. There was no significant difference in MMP2 expression levels in the villi; however, MMP9 expression was significantly higher in normal fetal chromosomes. In the decidua, the expression of MMP2 in the NC group was significantly lower, and MMP9 in the NC group was significantly higher than in the AC group. Although no differences in MMP2-735 C/T and MMP9-1562 C/T gene polymorphisms were observed in the present study, it is suggested that differences at the protein level are involved in the pathogenesis of RPL since MMP expression is not only regulated by genes but also by local inflammation and various inductive signals.

10.
Molecules ; 29(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38930843

RESUMO

Cyclophilin A (CypA), the cellular receptor of the immunosuppressant cyclosporin A (CsA), is an abundant cytosolic protein and is involved in a variety of diseases. For example, CypA supports cancer proliferation and mediates viral infections, such as the human immunodeficiency virus 1 (HIV-1). Here, we present the design of PROTAC (proteolysis targeting chimera) compounds against CypA to induce its intracellular proteolysis and to investigate their effect on immune cells. Interestingly, upon connecting to E3 ligase ligands, both peptide-based low-affinity binders and CsA-based high-affinity binders can degrade CypA at nM concentration in HeLa cells and fibroblast cells. As the immunosuppressive effect of CsA is not directly associated with the binding of CsA to CypA but the inhibition of phosphatase calcineurin by the CypA:CsA complex, we investigated whether a CsA-based PROTAC compound could induce CypA degradation without affecting the activation of immune cells. P3, the most efficient PROTAC compound discovered from this study, could deplete CypA in lymphocytes without affecting cell proliferation and cytokine production. This work demonstrates the feasibility of the PROTAC approach in depleting the abundant cellular protein CypA at low drug dosage without affecting immune cells, allowing us to investigate the potential therapeutic effects associated with the endogenous protein in the future.


Assuntos
Ciclofilina A , Ciclosporina , Ativação Linfocitária , Proteólise , Linfócitos T , Humanos , Ciclofilina A/metabolismo , Ciclosporina/farmacologia , Proteólise/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Células HeLa , Proliferação de Células/efeitos dos fármacos , Imunossupressores/farmacologia , Imunossupressores/química , Quimera de Direcionamento de Proteólise
11.
Plants (Basel) ; 13(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38931128

RESUMO

Plants utilize the ubiquitin proteasome system (UPS) to orchestrate numerous essential cellular processes, including the rapid responses required to cope with abiotic and biotic stresses. The 26S proteasome serves as the central catalytic component of the UPS that allows for the proteolytic degradation of ubiquitin-conjugated proteins in a highly specific manner. Despite the increasing number of studies employing cell-free degradation assays to dissect the pathways and target substrates of the UPS, the precise extraction methods of highly potent tissues remain unexplored. Here, we utilize a fluorogenic reporting assay using two extraction methods to survey proteasomal activity in different Arabidopsis thaliana tissues. This study provides new insights into the enrichment of activity and varied presence of proteasomes in specific plant tissues.

12.
Protein Sci ; 33(7): e5065, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38923615

RESUMO

Although in silico folding based on coevolving residue constraints in the deep-learning era has transformed protein structure prediction, the contributions of coevolving residues to protein folding, stability, and other functions in physical contexts remain to be clarified and experimentally validated. Herein, the PHD finger module, a well-known histone reader with distinct subtypes containing subtype-specific coevolving residues, was used as a model to experimentally assess the contributions of coevolving residues and to clarify their specific roles. The results of the assessment, including proteolysis and thermal unfolding of wildtype and mutant proteins, suggested that coevolving residues have varying contributions, despite their large in silico constraints. Residue positions with large constraints were found to contribute to stability in one subtype but not others. Computational sequence design and generative model-based energy estimates of individual structures were also implemented to complement the experimental assessment. Sequence design and energy estimates distinguish coevolving residues that contribute to folding from those that do not. The results of proteolytic analysis of mutations at positions contributing to folding were consistent with those suggested by sequence design and energy estimation. Thus, we report a comprehensive assessment of the contributions of coevolving residues, as well as a strategy based on a combination of approaches that should enable detailed understanding of the residue contributions in other large protein families.


Assuntos
Dobramento de Proteína , Modelos Moleculares , Estabilidade Proteica , Proteólise , Humanos
13.
Adv Mater ; : e2405475, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898702

RESUMO

While proteolysis-targeting chimeras (PROTACs) hold great potential for persistently reprogramming the immunosuppressive tumor microenvironment via targeted protein degradation, precisely activating them in tumor tissues and preventing uncontrolled proteolysis at off-target sites remain challenging. Herein, a light-triggered PROTAC nanoassembly (LPN) for photodynamic indoleamine 2,3-dioxygenase (IDO) proteolysis is reported. The LPN is derived from the self-assembly of prodrug conjugates, which comprise a PROTAC, cathepsin B-specific cleavable peptide linker, and photosensitizer, without any additional carrier materials. In colon tumor models, intravenously injected LPNs initially silence the activity of PROTACs and accumulate significantly in targeted tumor tissues due to an enhanced permeability and retention effect. Subsequently, the cancer biomarker cathepsin B begins to trigger the release of active PROTACs from the LPNs through enzymatic cleavage of the linkers. Upon light irradiation, tumor cells undergo immunogenic cell death induced by photodynamic therapy to promote the activation of effector T cells, while the continuous IDO degradation of PROTAC simultaneously blocks tryptophan metabolite-regulated regulatory-T-cell-mediated immunosuppression. Such LPN-mediated combinatorial photodynamic IDO proteolysis effectively inhibits tumor growth, metastasis, and recurrence. Collectively, this study presents a promising nanomedicine, designed to synergize PROTACs with other immunotherapeutic modalities, for more effective and safer cancer immunotherapy.

14.
Molecules ; 29(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38893549

RESUMO

The Omicron BA.5 variant of SARS-CoV-2 is known for its high transmissibility and its capacity to evade immunity provided by vaccine protection against the (original) Wuhan strain. In our prior research, we successfully produced the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein in an E. coli expression system. Extensive biophysical characterization indicated that, even without glycosylation, the RBD maintained native-like conformational and biophysical properties. The current study explores the immunogenicity and neutralization capacity of the E. coli-expressed Omicron BA.5 RBD using a mouse model. Administration of three doses of the RBD without any adjuvant elicited high titer antisera of up to 7.3 × 105 and up to 1.6 × 106 after a booster shot. Immunization with RBD notably enhanced the population of CD44+CD62L+ T cells, indicating the generation of T cell memory. The in vitro assays demonstrated the antisera's protective efficacy through significant inhibition of the interaction between SARS-CoV-2 and its human receptor, ACE2, and through potent neutralization of a pseudovirus. These findings underscore the potential of our E. coli-expressed RBD as a viable vaccine candidate against the Omicron variant of SARS-CoV-2.


Assuntos
Enzima de Conversão de Angiotensina 2 , Anticorpos Neutralizantes , Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Camundongos , Anticorpos Neutralizantes/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/imunologia , Enzima de Conversão de Angiotensina 2/química , Humanos , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/química , Anticorpos Antivirais/imunologia , Modelos Animais de Doenças , Domínios Proteicos , Glicosilação , Ligação Proteica , Feminino , Escherichia coli/metabolismo , Linfócitos T/imunologia
15.
Bioorg Chem ; 149: 107508, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38850781

RESUMO

Cyclin-dependent kinases (CDKs) constitute a vital family of protein-serine kinases, pivotal in regulating various cellular processes such as the cell cycle, metabolism, proteolysis, and neural functions. Dysregulation or overexpression of CDK kinases is directly linked to the development of cancer. However, the currently approved CDK inhibitors by the US FDA, such as palbociclib, ribociclib, Trilaciclib, Abemaciclib, etc., although effective, exhibit limited specificity and often lead to undesirable adverse effects. First and second-generation CDK inhibitors have not gained significant clinical interaction due to their high toxicity and lack of specificity. To address these challenges, a combined approach is being employed in the quest for newer CDK inhibitors aimed at mitigating toxicity and side effects associated with CDKIs. The discovery of therapeutic agents selectively targeting tumorous cells, such as CDK inhibitors, has demonstrated promise in treating various cancers, including breast cancer. Extensive literature reviews have facilitated the development of novel CDK inhibitors by combining medicinally preferred pyrimidine derivatives with other heterocyclic rings. Pyrimidine derivatives substituted with pyrazole, imidazole, benzamide, benzene sulfonamide, indole carbohydrazide, and other privileged heterocyclic rings have shown encouraging efficacy in inhibiting cyclin-dependent kinase activity. This review provides comprehensive data, including structure-activity relationship (SAR), anticancer activity, and kinetics studies of potent compounds. Additionally, molecular docking studies with compounds under clinical trial and patents filed on pyrimidine based CDK inhibitors in cancer treatment are included. This review serves as a valuable resource for further development of CDK kinase inhibitors for cancer treatment, offering insights into their efficacy, specificity, and potential clinical applications.


Assuntos
Antineoplásicos , Quinases Ciclina-Dependentes , Neoplasias , Inibidores de Proteínas Quinases , Pirimidinas , Humanos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/síntese química , Pirimidinas/química , Pirimidinas/farmacologia , Pirimidinas/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Animais , Ensaios de Seleção de Medicamentos Antitumorais
16.
MedComm (2020) ; 5(6): e575, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38845697

RESUMO

Leukemia is a heterogeneous group of life-threatening malignant disorders of the hematopoietic system. Immunotherapy, radiotherapy, stem cell transplantation, targeted therapy, and chemotherapy are among the approved leukemia treatments. Unfortunately, therapeutic resistance, side effects, relapses, and long-term sequelae occur in a significant proportion of patients and severely compromise the treatment efficacy. The development of novel approaches to improve outcomes is therefore an unmet need. Recently, novel leukemia drug discovery strategies, including targeted protein degradation, have shown potential to advance the field of personalized medicine for leukemia patients. Specifically, PROteolysis-TArgeting Chimeras (PROTACs) are revolutionary compounds that allow the selective degradation of a protein by the ubiquitin-proteasome system. Developed against a wide range of cancer targets, they show promising potential in overcoming many of the drawbacks associated with conventional therapies. Following the exponential growth of antileukemic PROTACs, this article reviews PROTAC-mediated degradation of leukemia-associated targets. Chemical structures, in vitro and in vivo activities, pharmacokinetics, pharmacodynamics, and clinical trials of PROTACs are critically discussed. Furthermore, advantages, challenges, and future perspectives of PROTACs in leukemia are covered, in order to understand the potential that these novel compounds may have as future drugs for leukemia treatment.

17.
Anal Chim Acta ; 1312: 342755, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38834267

RESUMO

BACKGROUND: Identifying drug-binding targets and their corresponding sites is crucial for drug discovery and mechanism studies. Limited proteolysis-coupled mass spectrometry (LiP-MS) is a sophisticated method used for the detection of compound and protein interactions. However, in some cases, LiP-MS cannot identify the target proteins due to the small structure changes or the lack of enrichment of low-abundant protein. To overcome this drawback, we developed a thermostability-assisted limited proteolysis-coupled mass spectrometry (TALiP-MS) approach for efficient drug target discovery. RESULTS: We proved that the novel strategy, TALiP-MS, could efficiently identify target proteins of various ligands, including cyclosporin A (a calcineurin inhibitor), geldanamycin (an HSP90 inhibitor), and staurosporine (a kinase inhibitor), with accurately recognizing drug-binding domains. The TALiP protocol increased the number of target peptides detected in LiP-MS experiments by 2- to 8-fold. Meanwhile, the TALiP-MS approach can not only identify both ligand-binding stability and destabilization proteins but also shows high complementarity with the thermal proteome profiling (TPP) and machine learning-based limited proteolysis (LiP-Quant) methods. The developed TALiP-MS approach was applied to identify the target proteins of celastrol (CEL), a natural product known for its strong antioxidant and anti-cancer angiogenesis effect. Among them, four proteins, MTHFD1, UBA1, ACLY, and SND1 were further validated for their strong affinity to CEL by using cellular thermal shift assay. Additionally, the destabilized proteins induced by CEL such as TAGLN2 and CFL1 were also validated. SIGNIFICANCE: Collectively, these findings underscore the efficacy of the TALiP-MS method for identifying drug targets, elucidating binding sites, and even detecting drug-induced conformational changes in target proteins in complex proteomes.


Assuntos
Proteólise , Humanos , Espectrometria de Massas/métodos , Lactamas Macrocíclicas/farmacologia , Lactamas Macrocíclicas/química , Benzoquinonas/química , Benzoquinonas/farmacologia , Temperatura , Triterpenos Pentacíclicos/química , Ciclosporina/farmacologia , Ciclosporina/química , Ciclosporina/metabolismo , Estaurosporina/farmacologia , Estaurosporina/metabolismo , Ligantes , Descoberta de Drogas , Sítios de Ligação
18.
Cancer Cell Int ; 24(1): 196, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38835027

RESUMO

BACKGROUND: Thyroid cancer (TC) is the most common endocrine malignancy. Nowadays, undifferentiated thyroid cancers (UTCs) are still lethal, mostly due to the insurgence of therapy resistance and disease relapse. These events are believed to be caused by a subpopulation of cancer cells with stem-like phenotype and specific tumor-initiating abilities, known as tumor-initiating cells (TICs). A comprehensive understanding of how to isolate and target these cells is necessary. Here we provide insights into the role that the protein Epithelial Cell Adhesion Molecule (EpCAM), a known TICs marker for other solid tumors, may have in TC biology, thus considering EpCAM a potential marker of thyroid TICs in UTCs. METHODS: The characterization of EpCAM was accomplished through Western Blot and Immunofluorescence on patient-derived tissue samples, adherent cell cultures, and 3D sphere cultures of poorly differentiated thyroid cancer (PDTC) and anaplastic thyroid cancer (ATC) cell lines. The frequency of tumor cells with putative tumor-initiating ability within the 3D cultures was assessed through extreme limiting dilution analysis (ELDA). EpCAM proteolytic cleavages were studied through treatments with different cleavages' inhibitors. To evaluate the involvement of EpCAM in inducing drug resistance, Vemurafenib (PLX-4032) treatments were assessed through MTT assay. RESULTS: Variable EpCAM expression pattern was observed in TC tissue samples, with increased cleavage in the more UTC. We demonstrated that EpCAM is subjected to an intense cleavage process in ATC-derived 3D tumor spheres and that the 3D model faithfully mimics what was observed in patient's samples. We also proved that the integrity of the protein appears to be crucial for the generation of 3D spheres, and its expression and cleavage in a 3D system could contribute to drug resistance in thyroid TICs. CONCLUSIONS: Our data provide novel information on the role of EpCAM expression and cleavage in the biology of thyroid TICs, and our 3D model reflects the variability of EpCAM cleavage observed in tissue samples. EpCAM evaluation could play a role in clinical decisions regarding patient therapy since its expression and cleavage may have a fundamental role in the switch to a drug-resistant phenotype of UTC cells.

19.
Biochimie ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38901793

RESUMO

Proteins are essential molecular actors in every cellular process. From their synthesis to their degradation, they are subject to continuous quality control mechanisms to ensure that they fulfil cellular needs in proper and timely fashion. Proteostasis is a key process allowing cells or organisms to maintain an appropriate but dynamic equilibrium of their proteome (the ensemble of all their proteins). It relies on multiple mechanisms that together control the level, fate and function of individual proteins, and ensure elimination of abnormal ones. The proteostasis network is essential for development and adaptation to environmental changes or challenges. Its dysfunctions can lead to accumulation of deleterious proteins or, conversely, to excessive degradation of beneficial ones, and are implicated in many diseases such as cancers, neurodegeneration, or developmental and aging disorders. Manipulating this network to control abundance of selected target proteins is therefore a strategy with enormous therapeutic or biotechnological potential. The ProteoCure COST Action gathers more than 350 researchers and their teams (31 countries represented) from the academic, clinical, and industrial sectors, who share the conviction that our understanding of proteostasis is mature enough to develop novel and highly specific therapies based on selective tunning of protein levels. Towards this objective, the Action organizes community-building activities to foster synergies among its participants and reinforce training of the next generation of European researchers. Its ambition is to function as a knowledge-based network and a creative exchange hub on normal and pathologic proteostasis, focusing on developing innovative tools modulating the level of specific protein(s).

20.
Biomed Pharmacother ; 177: 116972, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38906024

RESUMO

Breast cancer is one of the most prevalent malignancies affecting women worldwide, underscoring the urgent need for more effective and specific treatments. Proteolysis-targeting chimeras (PROTACs) have emerged as a promising strategy to develop new lead compounds by selectively targeting oncoproteins for degradation. In this study, we designed, synthesized and evaluated a CRBN-based PROTAC, L055, which targets CDK9. Our findings demonstrate that L055 effectively inhibits the proliferation, induces cell cycle arrest, and decreases the survival of ERα-positive breast cancer cells in vitro. L055 specifically binds to CDK9, facilitating its degradation via the CRBN-dependent proteasomal pathway. Additionally, L055 suppressed the growth of organoids and tumors derived from T47D and MCF7 cells in nude mice. Thus, L055 represents a potential novel therapeutic agent for ERα-positive breast cancer and potentially other malignancies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...