Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
BJU Int ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38923777

RESUMO

OBJECTIVES: To compare Uromonitor® (U-Monitor Lda, Porto, Portugal), a multitarget DNA assay that detects mutated proto-oncogenes (telomerase reverse transcriptase [TERT], fibroblast growth factor receptor 3 [FGFR-3], Kirsten rat sarcoma viral oncogene homologue [KRAS]), with urine cytology in the urine-based diagnosis of urothelial carcinoma of the bladder (UCB) within a multicentre real-world setting. PATIENTS AND METHODS: This multicentre, prospective, double-blind study was conducted across four German urological centres from 2019 to 2024. We evaluated the diagnostic performance of Uromonitor compared to urine cytology in a cohort of patients with UCB and in healthy controls within a real-world setting. Sensitivity, specificity, positive-predictive value (PPV), negative-predictive value (NPV), and accuracy of the tests were measured, in addition to multivariate analyses to assess the ability of individual proto-oncogene mutations in detecting UCB. The biometric sample size was designed to achieve a 10% difference in sensitivity. RESULTS: Patients with UCB comprised 63.7% (339/532) of the study group. Uromonitor showed a sensitivity, specificity, PPV, NPV, accuracy, and an area-under-the-curve of 49.3%, 93.3%, 92.8%, 51.1%, 65.2%, and 0.713%, respectively. These metrics did not demonstrate statistical superiority over urine cytology in terms of sensitivity (44.6%; P = 0.316). Moreover, the comparison of additional test parameters, as well as the comparison within various sensitivity analyses, yielded no significant disparity between the two urinary tests. Multivariate logistic regression underscored the significant predictive value of a positive Uromonitor for detecting UCB (odds ratio [OR] 9.03; P < 0.001). Furthermore, mutations in TERT and FGFR-3 were independently associated with high odds of UCB detection (OR 13.30 and 7.04, respectively), while KRAS mutations did not exhibit predictive capability. CONCLUSION: Despite its innovative approach, Uromonitor fell short of confirming the superior results anticipated from previous studies in this real-world setting. The search for an optimal urine-based biomarker for detecting and monitoring UCB remains ongoing. Results from this study highlight the complexity of developing non-invasive diagnostic tools and emphasise the importance of continued research efforts to refine these technologies.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38919003

RESUMO

BACKGROUND: Chemotherapy is the mainstay of cancer treatment, bringing patients optimism about recurrence and survival. However, the clinical effectiveness of chemotherapeutic drugs is frequently jeopardized by their intrinsic toxicity, resulting in side effects affecting the quality of life of cancer patients. This analysis explores the ethnopharmacological impact of phytopharmaceuticals, highlighting their traditional use in many cultures. The present study, which takes its cues from indigenous knowledge, aims to close the knowledge gap between traditional medicine and modern medicine in reducing the toxicities of chemotherapy treatments. AIM: The present in-depth study aims to highlight the current research and upcoming developments in phytopharmaceuticals for reducing the toxicity of chemotherapeutic drugs. Further, we address the mechanisms through which phytopharmaceuticals may reduce chemotherapy-induced side effects that include nausea, vomiting, myelosuppression, nephropathy, neuropathy, and cardiotoxicity using data from a variety of preclinical and clinical investigations. MATERIALS AND METHODS: The literature search was carried out by employing search engines such as PubMed and Google Scholar with keywords such as cancer, chemotherapy, CNS toxicity, hematopoietic toxicity, renal toxicity, GI toxicity, CNS toxicity, and phytopharmaceuticals. RESULTS: Bioactive chemicals found in plants, such as fruits, vegetables, herbs, and spices, are being studied for their capacity to improve the safety and acceptability of chemotherapy regimens. The current review also dives into the investigation of phytopharmaceuticals as adjuvant medicines in cancer treatment, which is a viable path for addressing the pressing need to lessen chemotherapy-induced toxicities. CONCLUSION: The present review revealed that the potential of phytopharmaceuticals in alleviating chemotherapeutic drug toxicities would pave the way for better cancer treatment and patient outcomes, harmonizing with the larger trend towards personalized and holistic approaches to chemotherapy.

3.
Cureus ; 16(1): e52246, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38352075

RESUMO

Molecular biology shines a light of hope amid the complex terrain of cancer, bringing revolutionary approaches to cancer treatment. Instead of providing a synopsis, this review presents an engaging story that sheds light on the genetic nuances controlling the course of cancer. This review goes beyond just listing genetic alterations to examine the complex interactions that lead to oncogene activation, exploring particular triggers such as viral infections or proto-oncogene mutations. A comprehensive grasp of the significant influence of oncogenes is possible through the classification and clarification of their function in various types of cancer. Furthermore, the role of tumor suppressor genes in controlling cell division and preventing tumor growth is fully explained, providing concrete examples and case studies to ground the conversation and create a stronger story. This study highlights the practical applications of molecular biology and provides a comprehensive overview of various detection and treatment modalities. It emphasizes the effectiveness of RNA analysis, immunohistochemistry, and next-generation sequencing (NGS) in cancer diagnosis and prognosis prediction. Examples include the individualized classification of breast cancers through RNA profiling, the use of NGS to identify actionable mutations such as epidermal growth factor receptor and anaplastic lymphoma kinase in lung cancer, and the use of immunohistochemical staining for proteins such as Kirsten rat sarcoma viral oncogene to guide treatment decisions in colorectal cancer. This paper carefully examines how molecular biology is essential to creating new strategies to fight this difficult and widespread illness. It highlights the exciting array of available therapeutic approaches, offering concrete instances of how clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (CRISPR-Cas9), targeted pharmaceuticals, immunotherapy, and treatments that induce apoptosis are driving a paradigm shift in cancer care. The revolutionary CRISPR-Cas9 system takes center stage, showcasing how precise gene editing could transform cancer therapy. This study concludes by fervently highlighting the critical role that molecular biology plays in reducing the complexity of cancer and changing the treatment landscape. It lists accomplishments but also thoughtfully examines cases and findings that progress our search for more precisely customized and effective cancer therapies.

4.
J Breast Cancer ; 26(2): 168-185, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37095619

RESUMO

PURPOSE: Invasive breast carcinomas (BRCAs) are highly lethal. The molecular mechanisms underlying progression of invasive BRCAs are unclear, and effective therapies are highly desired. The cancer-testis antigen CT45A1 promotes overexpression of pro-metastatic sulfatase-2 (SULF2) and breast cancer metastasis to the lungs, but its mechanisms are largely unknown. In this study, we aimed to elucidate the mechanism of CT45A1-induced SULF2 overexpression and provide evidence for targeting CT45A1 and SULF2 for breast cancer therapy. METHODS: The effect of CT45A1 on SULF2 expression was assessed using reverse transcription polymerase chain reaction and western blot. The mechanism of CT45A1-induced SULF2 gene transcription was studied using protein-DNA binding assay and a luciferase activity reporter system. The interaction between CT45A1 and SP1 proteins was assessed using immunoprecipitation and western blot. Additionally, the suppression of breast cancer cell motility by SP1 and SULF2 inhibitors was measured using cell migration and invasion assays. RESULTS: CT45A1 and SULF2 are aberrantly overexpressed in patients with BRCA; importantly, overexpression of CT45A1 is closely associated with poor prognosis. Mechanistically, gene promoter demethylation results in overexpression of both CT45A1 and SULF2. CT45A1 binds directly to the core sequence GCCCCC in the promoter region of SULF2 gene and activates the promoter. Additionally, CT45A1 interacts with the oncogenic master transcription factor SP1 to drive SULF2 gene transcription. Interestingly, SP1 and SULF2 inhibitors suppress breast cancer cell migration, invasion, and tumorigenicity. CONCLUSION: Overexpression of CT45A1 is associated with poor prognosis in patients with BRCA. CT45A1 promotes SULF2 overexpression by activating the promoter and interacting with SP1. Additionally, SP1 and SULF2 inhibitors suppress breast cancer cell migration, invasion, and tumorigenesis. Our findings provide new insight into the mechanisms of breast cancer metastasis and highlight CT45A1 and SULF2 as sensible targets for developing novel therapeutics against metastatic breast cancer.

5.
Chembiochem ; 23(12): e202200131, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35467068

RESUMO

RNA G-quadruplex (GQs) sequences in 5'-UTRs of certain proto-oncogenes co-localize with hairpin (Hp) forming sequences resulting in intramolecular Hp-GQ conformational equilibria, which is suggested to regulate cancer development and progression. Thus, regulation of Hp-GQ equilibria with small molecules is an attractive but less explored therapeutic approach. Herein, two tetraphenylethene (TPE) derivatives, TPE-Py and TPE-MePy, were synthesized and their effect on Hp-GQ equilibrium was explored. FRET, CD and molecular docking experiments suggest that cationic TPE-MePy shifts the Hp-GQ equilibrium significantly towards the GQ conformer mainly through π-π stacking and van der Waals interactions. In the presence of TPE-MePy, the observed rate constant values for first and second folding steps were increased up to 14.6 and 2.6-fold, respectively. The FRET melting assay showed a strong stabilizing ability of TPE-MePy (ΔTm=4.36 °C). Notably, the unmethylated derivative TPE-Py did not alter the Hp-GQ equilibrium. Subsequently, luciferase assay analysis demonstrated that the TPE-MePy derivatives suppressed the translation efficiency by ∼5.7-fold by shifting the Hp-GQ equilibrium toward GQ conformers in the 5'-UTR of TRF2. Our data suggests that HpGQ equilibria could be selectively targeted with small molecules to modulate translation for therapy.


Assuntos
Quadruplex G , Simulação de Acoplamento Molecular , Conformação de Ácido Nucleico , Proto-Oncogenes , RNA
6.
Int J Mol Sci ; 22(18)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34575830

RESUMO

In principle, an oncogene is a cellular gene (proto-oncogene) that is dysfunctional, due to mutation and fusion with another gene or overexpression. Generally, oncogenes are viewed as deregulating cell proliferation or suppressing apoptosis in driving cancer. The cancer stem cell theory states that most, if not all, cancers are a hierarchy of cells that arises from a transformed tissue-specific stem cell. These normal counterparts generate various cell types of a tissue, which adds a new dimension to how oncogenes might lead to the anarchic behavior of cancer cells. It is that stem cells, such as hematopoietic stem cells, replenish mature cell types to meet the demands of an organism. Some oncogenes appear to deregulate this homeostatic process by restricting leukemia stem cells to a single cell lineage. This review examines whether cancer is a legacy of stem cells that lose their inherent versatility, the extent that proto-oncogenes play a role in cell lineage determination, and the role that epigenetic events play in regulating cell fate and tumorigenesis.


Assuntos
Linhagem da Célula/genética , Regulação Neoplásica da Expressão Gênica , Células-Tronco Neoplásicas/metabolismo , Oncogenes , Proto-Oncogenes , Animais , Biomarcadores Tumorais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Epigênese Genética , Humanos , Células-Tronco Neoplásicas/patologia , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proto-Oncogene Mas
7.
Int. j. med. surg. sci. (Print) ; 8(3): 1-11, sept. 2021. tab
Artigo em Espanhol | LILACS | ID: biblio-1292528

RESUMO

El cáncer constituye la segunda de causa de muerte a nivel mundial y se estima será la primera, superando a las cardiovasculares. El estudio de sus bases moleculares ha permitido el desarrollo de la quimioterapia clásica, como de nuevas terapias biológicas. Si bien estos avances han redundado en un aumento en la sobrevida, no ha impactado en una menor incidencia de los casos. Esto último se debe, en parte, al desconocimiento de los múltiples factores carcinogénicos existentes y los efectos de sus interacciones para cada uno de los tumores. En este sentido, es interesante notar que, en los currículos de las escuelas de salud de las universidades chilenas, el cáncer u oncología como tal, no constituye una cátedra en sí misma, siendo sus contenidos tangencialmente abordados en distintos momentos de la formación; en biología celular, medicina interna y cirugía, entre otros. Con estos antecedentes, el propósito de este trabajo es ofrecer un propuesta sencilla y accesible para los estudiantes, respecto de los contenidos que, a nuestro juicio, son esenciales para comprender las bases biológicas de esta enfermedad y enfrentar con mejores conocimientos el ciclo clínico posterior. A continuación, el lector se encontrará con principios fundamentales de la biología humana normal (como el ciclo celular y el dogma central de la biología molecular), que permiten obtener una visión global de los mecanismos fisiológicos cuya desregulación conlleva a una neoplasia maligna. Luego se entregarán algunas definiciones amplias en relación con los conceptos de neoplasia, tumor benigno y maligno. Para, finalmente, abordar las principales etapas que permiten el desarrollo del cáncer; (i) iniciación, (ii) promoción y (iii) progresión. En esta última, se profundizará por separado, en angiogénesis, degradación de la matriz extracelular, migración y evasión de la respuesta inmune. Este trabajo no aborda materias relacionadas con la hipótesis metabólica del cáncer.


Cancer constitutes the second most common cause of death worldwide and is expected to become the leading one, even above cardiovascular diseases. The understanding of the cellular and molecular basis of cancer has led not only to the proper development of chemotherapy but also of target therapies. Although these advances are related with improved survival rates among cancer patients, it has poorly impacted its incidences. In this regard, the lack of knowledge regarding the impact that the several carcinogenic factors and their interactions have on different types of cancers may explain at least in part the difficulties to reduce incidence rates. However, is worth noticing that in several health schools of chilean universities, cancer does not constitute a formal course, being only partially approached during other courses, such as cell biology, internal medicine, and surgery. Thus, the aim of our work is to provide students a simple and resumed manuscript about essential topics necessary to understand the biological basis of cancer. First, the reader will find some fundamentals about human biology including the cell cycle and the central dogma of molecular biology, which offers an overview of the physiological mechanisms leading to malignant neoplasia. Then, we will provide current definitions of neoplasia, benign and malignant tumors are provided. Finally, the different stages of tumor progression will be approached to allow the understanding of cancer development. These stages include (i) initiation, (ii) promotion, and (iii) progression. For the last one, metastasis, angiogenesis, extracellular matrix degradation, migration, and immune evasion will also be addressed. This work will not consider the metabolic hypothesis of cancer.


Assuntos
Educação de Graduação em Medicina , Neoplasias/microbiologia , Currículo
8.
Rev. cuba. invest. bioméd ; 40(2): e1189, 2021. tab, graf
Artigo em Espanhol | LILACS, CUMED | ID: biblio-1347466

RESUMO

Introducción: El cáncer pulmonar constituye un serio problema de salud mundial por su elevada prevalencia y mortalidad. En la carcinogénesis pulmonar están implicados oncogenes y genes supresores tumorales, que en una compleja interacción con factores ambientales favorecen la transformación cancerosa. Objetivo: Describir los principales genes implicados en el cáncer pulmonar. Métodos: Se buscaron referencias en las bases de datos PubMed Central, Annual Reviews y SciELO. Se revisaron preferentemente los artículos originales, las revisiones bibliográficas, las revisiones sistemáticas y los metaanálisis de los últimos cinco años. Análisis e integración de la información: En la carcinogénesis pulmonar se involucran los oncogenes JUN, FOS, ABL1, BRAF, RAF1, GNAS, KRAS, NRAS, HRAS, CSF 1R, MYC, EGFR, MET, ALK, CCNE1, DDR2, ERBB3, FGFR1, MDM2, ROS1, SOX2 y TP63 y los genes supresores tumorales TP53, CDKN2A, CDKN1A, RB1, CDK2AP1, ATM, ERCC2, BRCA1, CCND1, STK11, PDLIM2, PTEN, ARID1A, ASCL4, CUL3, EP300, KEAP1, KMT2D, NF1, NOTCH1, RASA1, ETD2 y SMARCA4. El conocimiento de la genética molecular del cáncer pulmonar es importante para la identificación de biomarcadores diagnósticos y pronósticos más eficaces y para el diseño de fármacos diana sobre genes específicos(AU)


Introduction: Lung cancer is a serious global health problem due to its high prevalence and mortality. Lung carcinogenesis involves oncogenes and tumor suppressor genes which interact in complex manners with environmental factors, paving the way for the cancerous transformation. Objective: Describe the main genes involved in lung cancer. Methods: References were searched for in the databases PubMed Central, Annual Reviews and SciELO. Particular attention was paid to original papers, bibliographic reviews, systematic reviews and meta-analyses published in the last five years. Data analysis and integration: Lung carcinogenesis involves the oncogenes JUN, FOS, ABL1, BRAF, RAF1, GNAS, KRAS, NRAS, HRAS, CSF 1R, MYC, EGFR, MET, ALK, CCNE1, DDR2, ERBB3, FGFR1, MDM2, ROS1, SOX2 and TP63, and the tumor suppressor genes TP53, CDKN2A, CDKN1A, RB1, CDK2AP1, ATM, ERCC2, BRCA1, CCND1, STK11, PDLIM2, PTEN, ARID1A, ASCL4, CUL3, EP300, KEAP1, KMT2D, NF1, NOTCH1, RASA1, ETD2 and SMARCA4. Knowledge about the molecular genetics of lung cancer is important to identify more efficient diagnostic and prognostic biomarkers and to design targeted drugs for specific genes(AU)


Assuntos
Humanos , Oncogenes , Biomarcadores , Genes Supressores de Tumor
9.
Cent Eur J Public Health ; 29(4): 247-258, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35026062

RESUMO

The dramatic progress in tumour biology and immunology in the past several years has opened new avenues for the treatment and prevention of cancer. One of the great contributions of the immunotherapeutic approaches is an increasing understanding of the immunology of cancer, which is, gradually creating conditions for the development of prophylactic anti-cancer vaccines. Efficient vaccines have been developed and employed for the prophylaxis of two frequent cancers of viral origin, namely cervical cancer and liver cancer. The new knowledge on the interactions between the immune system and the malignant tumors seems to provide means for the development of prophylactic vaccines against cancers developing due to the mutations in the proto-oncogenes converting their products into oncoproteins. According to the present estimates, these cancers form a great majority of human malignancies. Recent evidence has indicated that the immune system recognizes such mutated proteins, and that the development of cancer is due to the failure of the immune system to eliminate neoplastic cells. Followingly, it can be expected that inducing immunity against the mutated epitopes will increase the capacity of the body to deal with the initiated precancerous cells. In the present paper this hypothesis is primarily discussed in the relationship with colorectal cancer (CRC), which seems to be a well-fitting candidate for prophylactic vaccination. CRC is the third most frequent malignancy and the fourth most common cause of cancer mortality. Mutations of two proto-oncogenes, namely RAS and RAF, are involved in the majority of CRC cases and, in addition, they are shared with other human malignancies. Therefore, the strategy to be used for prophylaxis of CRC is discussed together with several other frequent human cancers, namely lung cancer, pancreatic duct cancer and melanoma. The prophylactic vaccines proposed are aimed at the reduction of the incidence of these and, to a lesser extent, some other cancers.


Assuntos
Melanoma , Neoplasias Pancreáticas , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Neoplasias do Colo do Útero , Vacinas , Feminino , Humanos , Vacinação
10.
Gen Comp Endocrinol ; 298: 113579, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32777222

RESUMO

Spermatogenesis is an extraordinarily complex process, regulated by several factors, which leads to the differentiation of spermatogonia into spermatozoa. Among vertebrates, several reports have been focused on the lizard Podarcis sicula, a seasonal breeder and a good model for the study of reproductive processes. The goal of this review is to resume all the available data about systemic and above all local control factors involved in the control of P. sicula testicular activity. During the seasonal reproductive cycle, the variation of the expression levels of these factors determines significant variations that induce the activation or blocking of spermatogenesis. The data supplied in this review, in addition to analyze the current literature regarding the main actors of Podarcis sicula spermatogenesis, will hopefully provide a basic model that can be used for further studies on the intratesticular interaction between molecular factors that control spermatogenesis.


Assuntos
Lagartos/fisiologia , Espermatogênese/fisiologia , Animais , Masculino , Modelos Biológicos , Reprodução/fisiologia , Testículo/metabolismo
11.
Eur J Haematol ; 105(1): 35-46, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32145111

RESUMO

OBJECTIVES: In the TOURMALINE-MM1 phase 3 trial in relapsed/refractory multiple myeloma, ixazomib-lenalidomide-dexamethasone (IRd) showed different magnitudes of progression-free survival (PFS) benefit vs placebo-Rd according to number and type of prior therapies, with greater benefit seen in patients with >1 prior line of therapy or 1 prior line of therapy without stem cell transplantation (SCT). METHODS: RNA sequencing data were used to investigate the basis of these differences. RESULTS: The PFS benefit of IRd vs placebo-Rd was greater in patients with tumors expressing high c-MYC levels (median not reached vs 11.3 months; hazard ratio [HR] 0.42; 95% CI, 0.26, 0.66; P < .001) compared with in those expressing low c-MYC levels (median 20.6 vs 16.6 months; HR 0.75; 95% CI, 0.42, 1.2). Expression of c-MYC in tumors varied based on the number and type of prior therapy received, with the lowest levels observed in tumors of patients who had received 1 prior line of therapy including SCT. These tumors also had higher expression levels of CD19 and CD81. CONCLUSIONS: PFS analyses suggest that lenalidomide and ixazomib target tumors with different levels of c-MYC, CD19, and CD81 expression, thus providing a potential rationale for the differential benefits observed in the TOURMALINE-MM1 study. This trial was registered at www.clinicaltrials.gov as: NCT01564537.


Assuntos
Expressão Gênica , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais , Compostos de Boro , Dexametasona , Feminino , Perfilação da Expressão Gênica , Glicina/análogos & derivados , Humanos , Lenalidomida , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/mortalidade , Gradação de Tumores , Estadiamento de Neoplasias , Prognóstico , Intervalo Livre de Progressão , Resultado do Tratamento
12.
Cell J ; 22(1): 106-114, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31606974

RESUMO

OBJECTIVE: Weightlessness simulation due to the simulated microgravity has been shown to considerably affect behavior of tumor cells. It is aim of this study to evaluate characteristics of human breast cancer cells in this scaffoldfree 3D culture model. MATERIALS AND METHODS: In this experimental study, the cells were exposed to simulated microgravity in a randompositioning machine (RPM) for five days. Morphology was observed under phase-contrast and confocal microscopy. Cytofilament staining was performed and changes in expression level of cytofilament genes, proliferation/differentiation genes, oncogenes and tumor suppressor genes were detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR), followed by western blot confirmation. RESULTS: After five days, distinct spheroid formation was observed. Rearrangement of the cytoskeleton into spherical shape was visible. VIM gene expression was significantly up-regulated for adherent cells and spheroids (3.3x and 3.6x respectively, P<0.05 each). RHOA also showed significant gene up-regulation for adherent cells and spheroids (3.2x and 3.9x respectively, P<0.05 each). BRCA showed significant gene up-regulation in adherent cells and spheroids (2.1x and 4.1x respectively, P<0.05 each). ERBB2 showed significant gene up-regulation (2.4x, P<0.05) in the spheroids, but not in the adherent cells. RAB27A showed no significant alteration in gene expression. MAPK) showed significant gene up-regulation in adherent cells and spheroids (3.2x, 3.0x, P<0.05 each). VEGF gene expression was down-regulated under simulated microgravity, without significance. Alterations of gene expressions could be confirmed on protein level for vimentin and MAPK1. Protein production was not increased for BRCA1, human epidermal growth factor receptor 2 (HER2) and VEGF. Contradictory changes were determined for RHOA and its related protein. CONCLUSION: Microgravity provides an easy-to handle, scaffold-free 3D-culture model for human breast cancer cells. There were considerable changes in morphology, cytoskeleton shape and gene expressions. Identification of the underlying mechanisms could provide new therapeutic options.

13.
Cancer Biomark ; 24(4): 383-393, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30909182

RESUMO

Cancer, a deadly disease is characterized by abnormal cell growth with the potential to invade to other parts of the body. Most cancers start due to changes at gene level that happen over a person's lifetime when DNA repair system becomes faulty. CCDC6, one of the players in DNA repair system acts as a tumor suppressor gene. It was originally identified in chimeric genes caused by chromosomal translocation involving RET proto-oncogene in some thyroid tumors. Different fusion chimers with different proto-oncogenes like RET are known for CCDC6 which hampered its function. Further, CCDC6 is recognized as a pro-apoptotic phosphoprotein, which is an ATM substrate responsive to genotoxic stress. In this article, we reviewed the published literature to characterize CCDC6 fusions with proto-oncogenes and the role of natural phytochemicals which can potentially alter CCDC6 activity and thus can prove beneficial for cancer patients.


Assuntos
Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proto-Oncogenes , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais , Proteínas do Citoesqueleto/química , Regulação Neoplásica da Expressão Gênica , Humanos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Proteínas de Fusão Oncogênica/antagonistas & inibidores , Proteínas de Fusão Oncogênica/química , Processamento de Proteína Pós-Traducional , Proto-Oncogene Mas , Transdução de Sinais , Relação Estrutura-Atividade
14.
J Clin Pathol ; 72(3): 187-190, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30636697

RESUMO

The neurotrophic tropomyosin or tyrosine receptor kinase (NTRK) genes (1-3) are proto-oncogenes that when activated are encountered in a wide array of tumours. The recent advent of very specific and selective inhibitors of their gene fusions makes the NRTK gene fusions actionable. NRTK gene fusions are very characteristic of specific tumours: salivary mammary analogue secretory carcinoma, breast secretory carcinoma, infantile fibrosarcoma and congenital mesoblastic nephroma. Over 90% of these tumours bear NTRK gene fusions. While next-generation sequencing is the current platform of choice for the detection of NTRK fusions, immunohistochemistry also shows great promise. Immunohistochemical localisation of the fusion protein to the nucleus, cytoplasm, nuclear membrane and cell membrane is indicative of specific gene fusions involving the NTRK genes.


Assuntos
Receptor trkA/genética , Receptor trkB/genética , Receptor trkC/genética , Animais , Humanos
15.
BMC Genomics ; 19(1): 881, 2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30522435

RESUMO

BACKGROUND: The eukaryotic unicellular protist Plasmodiophora brassicae is an endocellular parasite of cruciferous plants. In host cortical cells, this protist develops a unicellular structure that is termed the plasmodium. The plasmodium is actually a multinucleated cell, which subsequently splits and forms resting spores. The mechanism for the growth of this endocellular parasite in host cell is unclear. RESULTS: Here, combining de novo genome sequence and transcriptome analysis of strain ZJ-1, we identified top five significant enriched KEGG pathways of differentially expressed genes (DEGs), namely translation, cell growth and death, cell communication, cell motility and cancers. We detected 171 proto-oncogenes from the genome of P. brassicae that were implicated in cancer-related pathways, of which 46 were differential expression genes. Three predicted proto-oncogenes (Pb-Raf1, Pb-Raf2, and Pb-MYB), which showed homology to the human proto-oncogenes Raf and MYB, were specifically activated during the plasmodial growth in host cortical cells, demonstrating their involvement in the multinucleate development stage of the unicellular protist organism. Gene networks involved in the tumorigenic-related signaling transduction pathways and the activation of 12 core genes were identified. Inhibition of phosphoinositol-3-kinase relieved the clubroot symptom and significantly suppressed the development process of plasmodia. CONCLUSIONS: Proto-oncogene-related regulatory mechanisms play an important role in the plasmodial growth of P. brassicae.


Assuntos
Genoma de Protozoário , Plasmodioforídeos/genética , Proto-Oncogenes/genética , Sequência de Aminoácidos , Brassica napus/metabolismo , Brassica napus/parasitologia , Perfilação da Expressão Gênica , Genes myb/genética , Humanos , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Oxazepinas/farmacologia , Oxazepinas/uso terapêutico , Doenças das Plantas/parasitologia , Doenças das Plantas/terapia , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Raízes de Plantas/parasitologia , Plasmodioforídeos/crescimento & desenvolvimento , Proto-Oncogene Mas , Alinhamento de Sequência , Esporos de Protozoários/efeitos dos fármacos , Esporos de Protozoários/genética , Transcriptoma/efeitos dos fármacos , Quinases raf/genética
16.
Pathologe ; 39(4): 308-312, 2018 Jul.
Artigo em Alemão | MEDLINE | ID: mdl-29876651

RESUMO

BACKGROUND: Over the last 15 years, an estimated 3000 large centralized biobanks have been established worldwide, making important contributions to the further development of precision medicine. In many cases, these biobanks are affiliated with pathological institutes or work closely with them. OBJECTIVE: In which translational research projects, and during which phases in the development of new drugs are human bioprobes being used and can their use be easily traced in the literature? METHODS: PubMed, Internet research, and information from the German Biobank Alliance and the European initiative BBMRI-ERIC. RESULTS: High-quality biosamples from centralized biobanks are increasingly used in clinical research and development projects. Success stories, where bioprobes have contributed to the further development of precision medicine, are shown in this paper using among others the example of RET gene fusion discovery in lung cancer. Interestingly enough, many key publications in the field of precision medicine do not contain exact references to the biobanks involved. CONCLUSIONS: The importance of centralized biobanks in translational research and clinical development is constantly increasing. However, in order to ensure the acceptance and visibility of biobanks, their participation in success stories of biomedical progress must be systematically documented and published.


Assuntos
Bancos de Espécimes Biológicos , Pesquisa Biomédica , Academias e Institutos , Humanos , Medicina de Precisão , Pesquisa Translacional Biomédica
17.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-702083

RESUMO

Objective To explore the relationship between the expression of proto oncogene c -Ski in non-small cell lung cancer and the early metastasis of tumor .Methods From January 2015 to July 2016 , 97 patients with non -small cell lung cancer in the People's Hospital of Pingxiang were selected .The protein expression of c-Ski was examined with immunohistochemical SP and real -time PCR,the results were observed and compared.Results The positive rates of c-Ski protein and mRNA level in non -small cell lung cancer tissues and adjacent normal tissues were 18.6%and 79.4%,respectively,the difference was statistically significant (χ2 =71.80, P<0.01).The positive rate of c-Ski protein expressed in non -small cell lung cancer patients was related with age , clinical stage and pathologic classification ,the differences were statistically significant (χ2 =8.40,4.72,15.71,all P<0.05).Conclusion c-Ski may play an important role in the invasion and metastasis of non -small cell lung cancer,which can be used as a potential therapeutic target for non -small cell lung cancer in the future .

18.
Iran J Public Health ; 46(11): 1475-1485, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29167765

RESUMO

BACKGROUND: Cancer is a genetic disease and mainly arises due to a number of reasons include activation of onco-genes, malfunction of tumor suppressor genes or mutagenesis due to external factors. METHODS: This article was written from the data collected from PubMed, Nature, Science Direct, Springer and Elsevier groups of journals. RESULTS: Oncogenes are deregulated form of normal proto-oncogenes required for cell division, differentiation and regulation. The conversion of proto-oncogene to oncogene is caused due to translocation, rearrangement of chromosomes or mutation in gene due to addition, deletion, duplication or viral infection. These oncogenes are targeted by drugs or RNAi system to prevent proliferation of cancerous cells. There have been developed different techniques of molecular biology used to diagnose and treat cancer, including retroviral therapy, silencing of oncogenes and mutations in tumor suppressor genes. CONCLUSION: Among all the techniques used, RNAi, zinc finger nucleases and CRISPR hold a brighter future towards creating a Cancer Free World.

19.
Curr Cancer Drug Targets ; 17(8): 707-721, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28359244

RESUMO

BACKGROUND: Mutations in proto-oncogenes and tumor suppressor genes make cancer cells proliferate indefinitely. As they possess almost all mechanisms for cell proliferation and survival like healthy cells, it is difficult to specifically target cancer cells in the body. Current treatments in most of the cases are harmful to healthy cells as well. Thus, it would be of great prudence to target specific characters of cancer cells. Since cancer cells avidly use glucose and glutamine to survive and proliferate by upregulating the relevant enzymes and their specific isoforms having important regulatory roles, it has been of great interest recently to target the energy-related metabolic pathways as part of the therapeutic interventions. OBJECTIVE: This paper summarizes the isozymes overexpressed in breast cancer, their roles of energy metabolism and cross-talks with other important signaling pathways in regulating proliferation, invasion and metastasis in breast cancer. METHOD: Information has been collected from recently published literature available on Google Scholar and PubMed. Where available, in vivo results were given more importance over in vitro works. RESULT: Like many other cancers, breast cancer shows increased dependence on glycolysis rather than mitochondrial respiration, the main energy source in healthy cells. Cancer cells alter the cellular energy system in a way that helps minimize level of reactive oxygen species and simultaneously produce enough macromolecules- proteins, lipids and nucleotides for cellular proliferation. The altered system enables the cells to grow, proliferate, metastasize and to develop drug resistance. Certain isozymes of metabolic enzymes are overexpressed in breast cancer and the degree of expression of these enzymes vary among subtypes. CONCLUSION: A clear understanding of the variations of energy metabolism in different molecular subtypes of breast cancer would help in treating each type with a very customized, safer and efficient treatment regimen. Anti-cancer drugs or RNAi or combination of both targeting cancer cell specific isozymes of metabolic enzymes mentioned in this article could offer a great treatment modality for breast cancer.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Metabolismo Energético/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Mitocôndrias/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
20.
Curr Cancer Drug Targets ; 17(2): 158-168, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27262320

RESUMO

The evolution of genomic research enabled the genetic and molecular profiling of breast cancer and revealed the profound complexity and heterogeneity of this disease. Subtypes of breast cancer characterized by mutations and/or amplifications of some proto-oncogenes are associated with an increased rate of recurrence and poor prognosis. They represent a challenge in the clinic with limited arsenal to attack them. Nowadays, metabolic reprogramming is firmly established as a hallmark of cancer. An increased rate of lipid and protein syntheses in cancerous tissues, a direct consequence of alterations in key metabolic enzymes involved in these pathways, is now recognized as an important aspect of the rewired metabolism of neoplastic cells. Over the past several years, accumulating evidence has revealed that mutations or amplifications of some proto-oncogenes are primarily involved in this metabolic dysregulation. It is thus critically important to dissect the molecular mechanisms tumors use to link metabolic reprogramming with upstream altered signaling. In this article, we review the recent findings that support the importance of lipid and protein biosyntheses in breast tumorigenesis, discuss the crosstalk between growth factor signal transduction and key metabolic enzymes involved in these processes, and point out the potentials of developing new strategies and therapeutics to target these key parameters in order to help breast cancer patients by providing new therapeutic opportunities.


Assuntos
Neoplasias da Mama/metabolismo , Enzimas/metabolismo , Metabolismo dos Lipídeos , Proteínas/metabolismo , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Terapia de Alvo Molecular/métodos , Biossíntese de Proteínas , Receptor ErbB-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...