Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.163
Filtrar
1.
Med Phys ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949569

RESUMO

BACKGROUND: MR-integrated proton therapy is under development. It consists of the unique challenge of integrating a proton pencil beam scanning (PBS) beam line nozzle with an magnetic resonance imaging (MRI) scanner. The magnetic interaction between these two components is deemed high risk as the MR images can be degraded if there is cross-talk during beam delivery and image acquisition. PURPOSE: To create and benchmark a self-consistent proton PBS nozzle model for empowering the next stages of MR-integrated proton therapy development, namely exploring and de-risking complete integrated prototype system designs including magnetic shielding of the PBS nozzle. MATERIALS AND METHODS: Magnetic field (COMSOL Multiphysics ${\text{Multiphysics}}$ ) and radiation transport (Geant4) models of a proton PBS nozzle located at OncoRay (Dresden, Germany) were developed according to the manufacturers specifications. Geant4 simulations of the PBS process were performed by using magnetic field data generated by the COMSOL Multiphysics ${\text{Multiphysics}}$ simulations. In total 315 spots were simulated which consisted of a 40 × 30 cm 2 $40\times 30\,{\text{cm}}^{2}$ scan pattern with 5 cm spot spacings and for proton energies of 70, 100, 150, 200, and 220 MeV. Analysis of the simulated deflection at the beam isocenter plane was performed to determine the self-consistency of the model. The magnetic fringe field from a sub selection of 24 of the 315 spot simulations were directly compared with high precision magnetometer measurements. These focused on the maximum scanning setting of ± $\pm$  20 cm beam deflection as generated from the second scanning magnet in the PBS for a proton beam energy of 220 MeV. Locations along the beam line central axis (CAX) were measured at beam isocenter and downstream of 22, 47, 72, 97, and 122 cm. Horizontal off-axis positions were measured at 22 cm downstream of isocenter ( ± $\pm$  50, ± $\pm$  100, and ± $\pm$  150 cm from CAX). RESULTS: The proton PBS simulations had good spatial agreement to the theoretical values in all 315 spots examined at the beam line isocenter plane (0-2.9 mm differences or within 1.5 % of the local spot deflection amount). Careful analysis of the experimental measurements were able to isolate the changes in magnetic fields due solely to the scanning magnet contribution, and showed 1.9  ± $\pm$  1.2 µ T $\bf{\mu} {\text{T}}$ -9.4 ± $\pm$  1.2 µ T $\bf{\mu} {\text{T}}$ changes over the range of measurement locations. Direct comparison with the equivalent simulations matched within the measurement apparatus and setup uncertainty in all but one measurement point. CONCLUSIONS: For the first time a robust, accurate and self-consistent model of a proton PBS nozzle assembly has been created and successfully benchmarked for the purposes of advancing MR-integrated proton therapy research. The model will enable confidence in further simulation based work on fully integrated designs including MRI scanners and PBS nozzle magnetic shielding in order to de-risk and realize the full potential of MR-integrated proton therapy.

2.
Phys Imaging Radiat Oncol ; 31: 100598, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38993288

RESUMO

Background & purpose: Magnetic resonance imaging (MRI) is increasingly used in treatment preparation of ocular proton therapy, but its spatial accuracy might be limited by geometric distortions due to susceptibility artefacts. A correct geometry of the MR images is paramount since it defines where the dose will be delivered. In this study, we assessed the geometrical accuracy of ocular MRI. Materials & methods: A dedicated ocular 3 T MRI protocol, with localized shimming and increased gradients, was compared to computed tomography (CT) and X-ray images in a phantom and in 15 uveal melanoma patients. The MRI protocol contained three-dimensional T2-weighted and T1-weighted sequences with an isotropic reconstruction resolution of 0.3-0.4 mm. Tantalum clips were identified by three observers and clip-clip distances were compared between T2-weighted and T1-weighted MRI, CT and X-ray images for the phantom and between MRI and X-ray images for the patients. Results: Interobserver variability was below 0.35 mm for the phantom and 0.30(T1)/0.61(T2) mm in patients. Mean absolute differences between MRI and reference were below 0.27 ± 0.16 mm and 0.32 ± 0.23 mm for the phantom and in patients, respectively. In patients, clip-clip distances were slightly larger on MRI than on X-ray images (mean difference T1: 0.11 ± 0.38 mm, T2: 0.10 ± 0.44 mm). Differences did not increase at larger distances and did not correlate to interobserver variability. Conclusions: A dedicated ocular MRI protocol can produce images of the eye with a geometrical accuracy below half the MRI acquisition voxel (<0.4 mm). Therefore, these images can be used for ocular proton therapy planning, both in the current model-based workflow and in proposed three-dimensional MR-based workflows.

3.
Phys Med Biol ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981589

RESUMO

Prompt gamma (PG) radiation generated from nuclear reactions between protons and tissue nuclei can be employed for range verification in proton therapy. A typical clinical workflow for prompt gamma range verification compares the detected prompt gamma profile with a predicted one. Recently, a novel analytical prompt gamma prediction algorithm based on the so-called filtering formalism has been proposed and implemented in a research version of RayStation (RaySearch Laboratories AB), which is a widely adopted treatment planning system. In this work, the said algorithm is validated against experimental data and benchmarked with another well-established prompt gamma prediction algorithm implemented in a MATLAB-based software REGGUI. Furthermore, a new workflow based on several PG profile quality criteria and analytical methods is proposed for data selection. The workflow also calculates sensitivity and specificity information, which can help practitioners to decide on irradiation course interruption during treatment and monitor spot selection at the treatment planning stage. With the proposed workflow, the comparison can be performed on a limited number of selected high-quality irradiation spots without neighbouring-spot aggregation. The mean shifts between the experimental data and the simulated PG detection (PGD) profiles (ΔPGD) by the two algorithms are estimated to be 1.5~2.1 mm and -0.6~2.2 mm for the filtering and REGGUI prediction methods, respectively. The ΔPGD difference between two algorithms is observed to be consistent with the beam model difference within uncertainty. However, the filtering approach requires a much shorter computation time compared to the REGGUI approach.

4.
Phys Med Biol ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981595

RESUMO

Head and neck cancer patients experience systematic anatomical changes as well as random day to day anatomical changes during fractionated radiotherapy treatment. Modelling the expected systematic anatomical changes could aid in creating treatment plans which are more robust against such changes. A patient specific (SM) and population average (AM) model are presented which are able to capture the systematic anatomical changes of some head and neck cancer patients over the course of radiotherapy treatment. Inter- patient correspondence aligned all patients to a model space. Intra- patient correspondence between each planning CT scan and on treatment cone beam CT scans was obtained using diffeomorphic deformable image registration. The stationary velocity fields were then used to develop B-Spline based SMs and AMs. The models were evaluated geometrically and dosimetrically. A leave-one-out method was used to compare the training and testing accuracy of the models. Both SMs and AMs were able to capture systematic changes. The average surface distance between the registration propagated contours and the contours generated by the SM was less than 2mm, showing that the SM are able to capture the anatomical changes which a patient experiences during the course of radiotherapy. The testing accuracy was lower than the training accuracy of the SM, suggesting that the model overfits to the limited data available and therefore also captures some of the random day to day changes. For most patients the AMs were a better estimate of the anatomical changes than assuming there were no changes, but the AMs could not capture the variability in the anatomical changes seen in all patients. No difference was seen in the training and testing accuracy of the AMs. These observations were highlighted in both the geometric and dosimetric evaluations and comparisons. The large patient variability highlights the need for more complex, capable population models.

5.
J Leukoc Biol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38952292

RESUMO

The absolute lymphocyte count (ALC), lymphocyte-to-monocyte ratio (LMR), and neutrophil-to-lymphocyte ratio (NLR) offer convenient means to assess systemic inflammation post-cancer treatment, which influences treatment outcomes. Understanding these biomarker variations and leukocyte subpopulation interplay is crucial for optimizing radiotherapy. Herein, leukocyte subpopulations (T-CD4+, T-CD8+, B-cells, NK-cells, neutrophils, monocytes) during and after brain irradiation (using X-rays or Protons) in tumor-free mice were used to compute ALC, LMR, and NLR, on which radiation parameter influence was assessed by principal component analysis (PCA). NLR kinetics were further examined using modeling. Leukocyte subpopulations interplays and their response to radiation parameters were examined using PCA and correlation analysis. Under X-rays, ALC and LMR decreased, with ALC recovered to baseline after irradiation, but not LMR. Both X-rays and protons increased the NLR during irradiation, recovering in protons but not X-rays. Both irradiation volume and dose rate had a pronounced effect on the NLR. Leukocyte subpopulation interplay was observed under X-rays and protons, normalizing in the proton group by day 28. Lymphopenia was observed in all lymphocyte subpopulations under X-ray irradiation but not protons. The recovery patterns varied among the subpopulations. Neutrophil counts increased during irradiation, with the recovery of protons, but not X-rays, by day 28. Interplays between NK-cells and myeloid subpopulations were evident under X-rays but not protons. Importantly, no interplay was detected between myeloid cells and T/B-cells, indicating that LMR and NLR variations were primarily due to independent responses to brain irradiation. A tumor-free experimental mouse model was used to study the effects of brain radiotherapy on systemic immunity. When administering fractionated irradiation with a total dose of 20 Gy using a vertical beam to either the whole brain or hemi-brain, proton irradiation had fewer adverse impacts on the immune system compared to X-rays in tumor-free rodents.

6.
J Fr Ophtalmol ; 47(8): 104239, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38964279

RESUMO

PURPOSE: Radiation-induced optic neuropathy (RION) is rare but may lead to blindness. The mechanisms by which this occurs include endothelial and neuronal damage, but RION has been assessed very little in the case of extraocular tumors treated with high-energy proton therapy, the use of which is expanding worldwide. We assessed peripapillary microvascular changes by optical coherence tomography angiography (OCT-A) in patients undergoing high-energy proton therapy for para-optic intracranial or head and neck tumors. MATERIALS AND METHODS: In this prospective institutional review board approved study, patients receiving>40Gy_RBE maximal PBT dose to their optic nerve between 2018 and 2020 underwent quantitative OCT-A analyses. ImageJ software was used to assess changes in the peripapillary superficial vascular complex (SVC) using vascular area density (VAD), vessel length density (VLD) and fractal dimension (FDsk). Uni- and multivariate analyses were performed. RESULTS: Of 47 patients (78 eyes) with 29±6 months of follow-up (range 18-42), 29 patients (61.7%) had previously undergone surgery and 18 (32.1%) had microvascular abnormalities prior to proton therapy. Total radiotherapy dose was the most relevant factor in decreased peripapillary microvasculature. Duration of follow-up was associated with lower VAD (P=0.005) and mean retinal nerve fiber layer (RNFLm) thickness also decreased. There was no significant correlation between OCT-A changes and mean visual defect. CONCLUSION: Peripapillary microvasculature changes may occur from tumor compression or surgery and proton therapy for extraocular tumors. OCT-A may provide quantitative and mechanistic insights into RION before the occurrence of clinical symptoms.

7.
Med Phys ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967477

RESUMO

BACKGROUND: Intensity-modulated proton therapy (IMPT) optimizes spot intensities and position, providing better conformability. However, the successful application of IMPT is dependent upon addressing the challenges posed by range and setup uncertainties. In order to address the uncertainties in IMPT, robust optimization is essential. PURPOSE: This study aims to develop a novel fast algorithm for robust optimization of IMPT with minimum monitor unit (MU) constraint. METHODS AND MATERIALS: The study formulates a robust optimization problem and proposes a novel, fast algorithm based on the alternating direction method of multipliers (ADMM) framework. This algorithm enables distributed computation and parallel processing. Ten clinical cases were used as test scenarios to evaluate the performance of the proposed approach. The robust optimization method (RBO-NEW) was compared with plans that only consider nominal optimization using CTV (NMO-CTV) without handling uncertainties and PTV (NMO-PTV) to handle the uncertainties, as well as with conventional robust-optimized plans (RBO-CONV). Dosimetric metrics, including D95, homogeneity index, and Dmean, were used to evaluate the dose distribution quality. The area under the root-mean-square dose (RMSD)-volume histogram curves (AUC) and dose-volume histogram (DVH) bands were used to evaluate the robustness of the treatment plan. Optimization time cost was also assessed to measure computational efficiency. RESULTS: The results demonstrated that the RBO plans exhibited better plan quality and robustness than the NMO plans, with RBO-NEW showing superior computational efficiency and plan quality compared to RBO-CONV. Specifically, statistical analysis results indicated that RBO-NEW was able to reduce the computational time from 389.70 ± 207.40 $389.70\pm 207.40$ to 228.60 ± 123.67 $228.60\pm 123.67$ s ( p < 0.01 $p<0.01$ ) and reduce the mean organ-at-risk (OAR) dose from 9.38 ± 12.80 $9.38\pm 12.80$ % of the prescription dose to 9.07 ± 12.39 $9.07\pm 12.39$ % of the prescription dose ( p < 0.05 $p<0.05$ ) compared to RBO-CONV. CONCLUSION: This study introduces a novel fast robust optimization algorithm for IMPT treatment planning with minimum MU constraint. Such an algorithm is not only able to enhance the plan's robustness and computational efficiency without compromising OAR sparing but also able to improve treatment plan quality and reliability.

8.
Med Phys ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977285

RESUMO

BACKGROUND: The dynamic collimation system (DCS) provides energy layer-specific collimation for pencil beam scanning (PBS) proton therapy using two pairs of orthogonal nickel trimmer blades. While excellent measurement-to-calculation agreement has been demonstrated for simple cube-shaped DCS-trimmed dose distributions, no comparison of measurement and dose calculation has been made for patient-specific treatment plans. PURPOSE: To validate a patient-specific quality assurance (PSQA) process for DCS-trimmed PBS treatment plans and evaluate the agreement between measured and calculated dose distributions. METHODS: Three intracranial patient cases were considered. Standard uncollimated PBS and DCS-collimated treatment plans were generated for each patient using the Astroid treatment planning system (TPS). Plans were recalculated in a water phantom and delivered at the Miami Cancer Institute (MCI) using an Ion Beam Applications (IBA) dedicated nozzle system and prototype DCS. Planar dose measurements were acquired at two depths within low-gradient regions of the target volume using an IBA MatriXX ion chamber array. RESULTS: Measured and calculated dose distributions were compared using 2D gamma analysis with 3%/3 mm criteria and low dose threshold of 10% of the maximum dose. Median gamma pass rates across all plans and measurement depths were 99.0% (PBS) and 98.3% (DCS), with a minimum gamma pass rate of 88.5% (PBS) and 91.2% (DCS). CONCLUSIONS: The PSQA process has been validated and experimentally verified for DCS-collimated PBS. Dosimetric agreement between the measured and calculated doses was demonstrated to be similar for DCS-collimated PBS to that achievable with noncollimated PBS.

9.
Support Care Cancer ; 32(7): 470, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951291

RESUMO

PURPOSE: This study aimed to compare the effects of a mobile health intervention based on social cognitive theory with standard care on maximal mouth opening, exercise compliance, and self-efficacy in patients receiving proton and heavy ion therapy for head and neck cancer. METHODS: This open-label, parallel-group, randomized, superiority trial involved a self-developed "Health Enjoy System" intervention. We assessed maximal mouth opening, exercise compliance, and self-efficacy at baseline (T0), post-treatment (T1), and at 1 month (T2) and 3 months (T3) after radiotherapy. Generalized estimating equations were used to analyze differences between the groups over time, with results reported as P values and 95% confidence intervals (CIs). RESULTS: The study included 44 participants. At T3, the intervention group showed a 6 mm greater increase in maximal interincisal opening than the control group (mean difference = 6.0, 95% CI = 2.4 to 9.5, P = 0.001). There was also a significant difference in exercise compliance between the groups (mean difference = 31.7, 95% CI = 4.6 to 58.8, P = 0.022). However, no significant difference in self-efficacy was found between the groups. CONCLUSION: This study demonstrated that an mHealth intervention incorporating behavior change theory could effectively enhance or maintain maximal mouth opening in patients undergoing proton and heavy ion therapy for head and neck cancer in China. This approach provides valuable support during and after treatment. TRIAL REGISTRATION: ChiCTR: ChiCTR2300067550. Registered 11 Jan 2023.


Assuntos
Neoplasias de Cabeça e Pescoço , Terapia com Prótons , Autoeficácia , Telemedicina , Trismo , Humanos , Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias de Cabeça e Pescoço/complicações , Neoplasias de Cabeça e Pescoço/terapia , Masculino , Pessoa de Meia-Idade , Feminino , Terapia com Prótons/métodos , Trismo/etiologia , Trismo/terapia , Radioterapia com Íons Pesados/métodos , Terapia por Exercício/métodos , Idoso , Cooperação do Paciente/estatística & dados numéricos , Adulto
10.
Phys Med Biol ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38959905

RESUMO

Oxygen depletion is generally believed to play an important role in the FLASH effect - a differential reduction of the radiosensitivity of healthy tissues, relative to that of the tumour under ultra-high dose-rate (UHDR) irradiation conditions. In proton therapy (PT) with pencil-beam scanning (PBS), the deposition of dose, and, hence, the degree of (radiolytic) oxygen depletion varies both spatially and temporally. Therefore, the resulting oxygen concentration and the healthy-tissue sparing effect through radiation-induced hypoxia varies both spatially and temporally as well. We propose and numerically solve a physical oxygen diffusion model to study these effects and their dependence on tissue parameters and the scan pattern in pencil-beam delivery. Since current clinical FLASH proton therapy (FLASH-PT) is based on 250 MeV shoot-through (transmission) beams, for which dose and dose rate hardly vary with depth compared to the variation transverse to the beam axis, we focus on the two-dimensional case. We numerically integrate the model to obtain the oxygen concentration in each voxel as a function of time and extract voxel-based and spatially and temporarily integrated metrics for oxygen (FLASH) enhanced dose. Furthermore, we evaluate the impact on oxygen enhancement of standard pencil-beam delivery patterns and patterns that were optimised on dose-rate. Our model can contribute to the identification of tissue properties and pencil-beam delivery parameters that are critical for FLASH-PT and it may be used for the optimisation of FLASH-PT treatment plans and their delivery. Our main findings are that: (i) the diffusive properties of oxygen are critical for the steady state concentration and therefore the FLASH effect, even more so in two dimensions when compared to one dimension. (ii) The FLASH effect through oxygen depletion depends primarily on dose and less on other parameters. (iii) At a fixed fraction dose there is a slight dependence on dose rate. (iv) Scan patterns optimised on dose rate slightly increase the oxygen induced FLASH effect.

11.
J Liver Cancer ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38961722

RESUMO

Backgrounds/Aims: Although access to proton beam therapy (PBT) is limited worldwide, its use for the treatment of hepatocellular carcinoma (HCC) is gradually increasing with the expansion of new facilities. Therefore, we conducted a systematic review and meta-analysis to investigate the updated evidence of PBT for HCC. Methods: The MEDLINE, EMBASE, Cochrane Library, and Web of Science databases were systematically searched for studies that enrolled patients with liver-confined HCC that were treated with PBT for a cure up to February 2024. Results: A total of 1858 HCC patients receiving PBT from 22 studies between 2004 and 2023 were selected for this meta-analysis. The median proportion of Child-Pugh class A was 86% (range: 41-100%), and the median tumor size was 3.6 cm (range: 1.2-9 cm). The median total dose ranged from 55 GyE to 76 GyE (median, 69 GyE). The pooled rates of 3- and 5-year local progression-free survival after PBT were 88% (95% confidence interval [CI], 85-91%) and 86% (95% CI, 82-90%), respectively. The pooled 3- and 5-year overall rates were 60% (95% CI, 54-66%) and 46% (95% CI, 38-54%), respectively. The pooled rates of grade 3 hepatic toxicity, classic radiation-induced liver disease (RILD), and non-classic RILD were 1%, 2%, and 1%, respectively. Conclusions: The current study supports PBT for HCC and demonstrates favorable long-term survival and low hepatic toxicities compared with other published studies on other radiotherapy modalities. However, further studies are needed to identify the subgroups that will benefit from PBT.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38971383

RESUMO

Although rare cancers, ocular tumors are a threat to vision, quality of life, and potentially life expectancy of a patient. Ocular proton therapy (OPT) is a powerful tool for successfully treating this disease. The Particle Therapy Co-Operative Ocular Group (PTCOG Ocular) formulated an Evidence and Expert-Based Executive Summary of Current Practices and Future Developments in OPT: Comparative dosimetric and clinical analysis with the different OPT systems is essential to set up planning guidelines, implement best practices, and establish benchmarks for eye preservation, vision, and quality of life measures. Contemporary prospective trials in select subsets of patients (e.g., tumors near the optic disc and/or macula) may allow for dosimetric and clinical analysis between different radiation modalities and beamline systems to evaluate differences in radiation delivery and penumbra, and resultant tumor control, normal tissue complication rates, and overall clinical cost-effectiveness. To date, the combination of multimodal imaging (fundus photography, ultrasound, etc.), ophthalmologist assessment, and clip surgery with radiation planning have been keys to successful treatment. Increased use of 3D imaging (CT/MRI) is anticipated although its spatial resolution might be a limiting factor (e.g., detection of flat diffuse tumor parts). Commercially produced ocular treatment planning systems are under development and their future use is expected to expand across OPT centers. Future continuity of OPT will depend on (i) maintaining and upgrading existing older dedicated low-energy facilities, (ii) maintaining shared, degraded beamlines at large proton therapy centers, and (iii) developing adapted gantry beams of sufficient quality to maintain the clinical benefits of sharp beam conformity. Option (i) potentially offers the sharpest beams, minimizing impact on healthy tissues, whilst (ii) and (iii) potentially offer the advantage of substantial long-term technical support and development as well as the introduction of new approaches. Significant patient throughputs and close cooperation between medical physics, ophthalmology, and radiotherapy, underpinned by mutual understanding, is crucial for a successful OPT service.

13.
J Appl Clin Med Phys ; : e14394, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38887816

RESUMO

PURPOSE: The treatment of brain tumors in pregnant patients poses challenges, as the out-of-field dose exposure to the fetus can potentially be harmful. A pregnant patient with prior radiation treatment was presented with a brain tumor at our clinic. This work reports on our pre-treatment study that compared fetal dose exposure between intensity-modulated proton therapy (IMPT) using pencil beam scanning (PBS) and conventional photon 3D conformal radiation therapy (3DCRT) and volumetric-modulated arc therapy (VMAT), and the subsequent pregnant patient's radiation treatment. MATERIALS AND METHODS: Pre-treatment measurements of clinical plans, 3DCRT, VMAT, and IMPT, were conducted on a phantom. Measurements were performed using a device capable of neutron detections, closely following AAPM guidelines, TG158. For photon measurements, fetus shielding was utilized. On patient treatment days, which was determined to be proton treatment, shielding was used only during daily imaging for patient setup. Additionally, an in vivo measurement was conducted on the patient. RESULTS: Measurements showed that IMPT delivered the lowest fetal dose, considering both photon and neutron out-of-field doses to the fetus, even when shielding was implemented for photon measurements. Additionally, the proton plans demonstrated superior treatment for the mother, a reirradiation case. CONCLUSION: The patient was treated with proton therapy, and the baby was subsequently delivered at full term with no complications. This case study supports previous clinical findings and advocates for the expanded use of proton therapy in this patient population.

14.
BMC Cancer ; 24(1): 742, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890585

RESUMO

BACKGROUND: Nasopharyngeal adenoid cystic carcinoma (NACC) is a relatively rare salivary gland tumor that is generally associated with poor outcomes. High-dose radiotherapy is a key treatment for patients with NACC. This study reported the long-term efficacy and safety of particle beam radiation therapy (PBRT) for NACC. METHODS AND MATERIALS: Twenty-six patients with nonmetastatic NACC who received definitive PBRT alone were included in this retrospective study. The majority of patients (92.3%) had locally advanced disease. Twenty-five (96.15%) patients received intensity-modulated proton radiotherapy (IMPT) followed by a carbon ion radiotherapy (CIRT) boost, and one patient received CIRT alone. Overall survival (OS), local control (LC), regional control (RC), and distant metastasis control (DMC) rates were calculated via the Kaplan-Meier method. RESULTS: The median follow-up time was 46.95 months for the entire cohort. Seven patients experienced local recurrence, and one patient experience neck lymph node recurrence. The 3- and 4-year OS, LC, RC, and DMC rates were 100% and 91.7%, 92.3% and 84.6%, 95.8% and 87.8%, and 90.2% and 71.3%, respectively. A total of 91.3% of the patients achieved complete remission of gross tumors at 1 year after PBRT. Severe acute toxicity was observed in only two patients. A grade 4 decrease in visual acuity was observed in one patient with orbital apex invasion. No late grade 3 or 5 toxicity was observed. CONCLUSION: Definitive PBRT provided a satisfactory 4-year OS for patients with locally advanced NACC. The toxicity was acceptable and mild. Further follow-up is necessary to confirm the efficacy and safety of definitive PBRT for patients with NACC.


Assuntos
Carcinoma Adenoide Cístico , Neoplasias Nasofaríngeas , Terapia com Prótons , Humanos , Carcinoma Adenoide Cístico/radioterapia , Carcinoma Adenoide Cístico/mortalidade , Carcinoma Adenoide Cístico/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Neoplasias Nasofaríngeas/radioterapia , Neoplasias Nasofaríngeas/mortalidade , Neoplasias Nasofaríngeas/patologia , Adulto , Estudos Retrospectivos , Resultado do Tratamento , Idoso , Terapia com Prótons/efeitos adversos , Terapia com Prótons/métodos , Radioterapia de Intensidade Modulada/efeitos adversos , Radioterapia de Intensidade Modulada/métodos , Adulto Jovem , Seguimentos , Carcinoma Nasofaríngeo/radioterapia , Carcinoma Nasofaríngeo/mortalidade , Carcinoma Nasofaríngeo/patologia , Recidiva Local de Neoplasia/radioterapia , Radioterapia com Íons Pesados/efeitos adversos , Radioterapia com Íons Pesados/métodos
15.
Radiat Oncol ; 19(1): 75, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886727

RESUMO

BACKGROUND AND PURPOSE: Rare but severe toxicities of the optic apparatus have been observed after treatment of intracranial tumours with proton therapy. Some adverse events have occurred at unusually low dose levels and are thus difficult to understand considering dose metrics only. When transitioning from double scattering to pencil beam scanning, little consideration was given to increased dose rates observed with the latter delivery paradigm. We explored if dose rate related metrics could provide additional predicting factors for the development of late visual toxicities. MATERIALS AND METHODS: Radiation-induced intracranial visual pathway lesions were delineated on MRI for all index cases. Voxel-wise maximum dose rate (MDR) was calculated for 2 patients with observed optic nerve toxicities (CTCAE grade 3 and 4), and 6 similar control cases. Additionally, linear energy transfer (LET) related dose enhancing metrics were investigated. RESULTS: For the index cases, which developed toxicities at low dose levels (mean, 50 GyRBE), some dose was delivered at higher instantaneous dose rates. While optic structures of non-toxicity cases were exposed to dose rates of up to 1 to 3.2 GyRBE/s, the pre-chiasmatic optic nerves of the 2 toxicity cases were exposed to dose rates above 3.7 GyRBE/s. LET-related metrics were not substantially different between the index and non-toxicity cases. CONCLUSIONS: Our observations reveal large variations in instantaneous dose rates experienced by different volumes within our patient cohort, even when considering the same indications and beam arrangement. High dose rate regions are spatially overlapping with the radiation induced toxicity areas in the follow up images. At this point, it is not feasible to establish causality between exposure to high dose rates and the development of late optic apparatus toxicities due to the low incidence of injury.


Assuntos
Neoplasias Encefálicas , Terapia com Prótons , Lesões por Radiação , Dosagem Radioterapêutica , Humanos , Terapia com Prótons/efeitos adversos , Terapia com Prótons/métodos , Neoplasias Encefálicas/radioterapia , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Lesões por Radiação/etiologia , Idoso , Nervo Óptico/efeitos da radiação , Órgãos em Risco/efeitos da radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Relação Dose-Resposta à Radiação
16.
Cancers (Basel) ; 16(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38893068

RESUMO

Proton therapy has emerged as a crucial tool in the treatment of head and neck and skull-base cancers, offering advantages over photon therapy in terms of decreasing integral dose and reducing acute and late toxicities, such as dysgeusia, feeding tube dependence, xerostomia, secondary malignancies, and neurocognitive dysfunction. Despite its benefits in dose distribution and biological effectiveness, the application of proton therapy is challenged by uncertainties in its relative biological effectiveness (RBE). Overcoming the challenges related to RBE is key to fully realizing proton therapy's potential, which extends beyond its physical dosimetric properties when compared with photon-based therapies. In this paper, we discuss the clinical significance of RBE within treatment volumes and adjacent serial organs at risk in the management of head and neck and skull-base tumors. We review proton RBE uncertainties and its modeling and explore clinical outcomes. Additionally, we highlight technological advancements and innovations in plan optimization and treatment delivery, including linear energy transfer/RBE optimizations and the development of spot-scanning proton arc therapy. These advancements show promise in harnessing the full capabilities of proton therapy from an academic standpoint, further technological innovations and clinical outcome studies, however, are needed for their integration into routine clinical practice.

17.
Cancers (Basel) ; 16(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38893080

RESUMO

Photon-based radiotherapy (XRT) is one of the most frequently used treatment modalities for HPV-negative and HPV-positive locally advanced head and neck squamous cell carcinoma (HNSCC). However, locoregional recurrences and normal RT-associated toxicity remain major problems for these patients. Proton therapy (PT), with its dosimetric advantages, can present a solution to the normal toxicity problem. However, issues concerning physical delivery and the lack of insights into the underlying biology of PT hamper the full exploitation of PT. Here, we assessed the radiobiological processes involved in PT in HPV-negative and HPV-positive HNSCC cells. We show that PT and XRT activate the DNA damage-repair and stress response in both HPV-negative and HPV-positive cells to a similar extent. The activation of these major radiobiological mechanisms resulted in equal levels of clonogenic survival and mitotic cell death. Altogether, PT resulted in similar biological effectiveness when compared to XRT. These results emphasize the importance of dosimetric parameters when exploiting the potential of increased clinical effectiveness and reduced normal tissue toxicity in PT treatment.

18.
Cancers (Basel) ; 16(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38893114

RESUMO

Helium ion therapy (HRT) is a promising modality for the treatment of pediatric tumors and those located close to critical structures due to the favorable biophysical properties of helium ions. This in silico study aimed to explore the potential benefits of HRT in advanced juvenile nasopharyngeal angiofibroma (JNA) compared to proton therapy (PRT). We assessed 11 consecutive patients previously treated with PRT for JNA in a definitive or postoperative setting with a relative biological effectiveness (RBE) weighted dose of 45 Gy (RBE) in 25 fractions at the Heidelberg Ion-Beam Therapy Center. HRT plans were designed retrospectively for dosimetric comparisons and risk assessments of radiation-induced complications. HRT led to enhanced target coverage in all patients, along with sparing of critical organs at risk, including a reduction in the brain integral dose by approximately 27%. In terms of estimated risks of radiation-induced complications, HRT led to a reduction in ocular toxicity, cataract development, xerostomia, tinnitus, alopecia and delayed recall. Similarly, HRT led to reduced estimated risks of radiation-induced secondary neoplasms, with a mean excess absolute risk reduction of approximately 30% for secondary CNS malignancies. HRT is a promising modality for advanced JNA, with the potential for enhanced sparing of healthy tissue and thus reduced radiation-induced acute and long-term complications.

19.
Cancers (Basel) ; 16(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38893180

RESUMO

(1) Background: to analyze the impact of the COVID-19 pandemic on the characteristics and management of uveal melanoma (UM) in the National Referral Center in Poland. (2) Materials and Methods: the retrospective analysis of 1336 patients who were newly diagnosed with UM at the Department of Ophthalmology and Ophthalmic Oncology, Jagiellonian University Collegium Medicum Krakow, Poland between 1 January 2018 and 31 December 2021. The demographic and clinical data were compiled, including localization, size, and treatment methods of tumors. (3) Results: In total, 728 patients with UM were included before the COVID-19 pandemic, in the years 2018-2019, and 608 were included during the COVID-19 pandemic, in the years 2020-2021. Fixed-base dynamics indicators for the incidence of uveal melanoma (base year 2018) in the National Referral Center in Poland were 80.22% and 86.81% in the years 2020 and 2021, respectively. UMs were statistically significantly larger and more frequently localized anterior to the equator of the eye globe in the year 2021 than in the year 2018 (Chi-square Pearson test p = 0.0001 and p = 0.0077, respectively). The rate of patients treated with enucleation increased from 15.94% in the year 2018 to 26.90% in the year 2021 (Chi-square Pearson test p = 0.0005). (4) Conclusions: Statistically significant differences were found in the management of uveal melanoma in the National Referral Center in Poland during the COVID-19 pandemic with tumors being larger, more frequently localized anterior to the equator of the eye globe, and more often enucleated.

20.
Cancers (Basel) ; 16(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38893203

RESUMO

The growing interest in proton therapy (PT) in recent decades is justified by the evidence that protons dose distribution allows maximal dose release at the tumor depth followed by sharp distal dose fall-off. But, in the holistic management of head and neck cancer (HNC), limiting the potential of PT to a mere dosimetric advantage appears reductive. Indeed, the precise targeting of PT may help evaluate the effectiveness of de-escalation strategies, especially for patients with human papillomavirus associated-oropharyngeal cancer (OPC) and nasopharyngeal cancer (NPC). Furthermore, PT could have potentially greater immunogenic effects than conventional photon therapy, possibly enhancing both the radiotherapy (RT) capability to activate anti-tumor immune response and the effectiveness of immunotherapy drugs. Based on these premises, the aim of the present paper is to conduct a narrative review reporting the safety and efficacy of PT compared to photon RT focusing on NPC and OPC. We also provide a snapshot of ongoing clinical trials comparing PT with photon RT for these two clinical scenarios. Finally, we discuss new insights that may further develop clinical research on PT for HNC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...