Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Fungal Biol ; 128(1): 1590-1595, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38341264

RESUMO

Psychedelic fungi have experienced a surge in interest in recent years. Most notably, the fungal secondary metabolite psilocybin has shown tremendous promise in the treatment of various psychiatric disorders. The mushroom species that produce this molecule are poorly understood. Here we sought to examine for the first time, the response of a psilocybin-producing species Psilocybe cubensis to casing (peat moss and vermiculite) and supplementation with gypsum (calcium sulfate dihydrate), two common practices in commercial mushroom cultivation. Mycelial samples of genetically authenticated P. cubensis were used to inoculate popcorn grain bags. The fully colonized bags of popcorn grain (0.15 kg) were transferred to bins of 0.85 kg pasteurized horse manure, with or without 1 cm thick layer of casing and/or 5 % gypsum. Our results indicate that the use of a casing layer significantly increases the biological efficiency (161.5 %), by approximately four fold, in comparison to control (40.5 %), albeit with a slight delay (∼2 days) for obtaining fruiting bodies and a somewhat reduced total tryptamine content (0.85 %) as gauged by High Performance Liquid Chromatography measurements. Supplementation with both casing and gypsum, however, appears to promote maximal yields (896.6 g/kg of dried substrate), with a biological efficiency of 89.6 %, while also maintaining high total tryptamine expressions (0.95 %). These findings, revealing methods for maximizing yield of harvest and expressions of psychoactive tryptamines, may prove useful for both home growers and commercial cultivators of this species, and ultimately support the growth of a robust industry with high quality natural products.


Assuntos
Agaricales , Psilocybe , Psilocibina , Humanos , Animais , Cavalos , Psilocibina/análise , Sulfato de Cálcio , Vocalização Animal , Triptaminas , Agaricales/química
2.
Comput Biol Chem ; 104: 107854, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36990027

RESUMO

Nearly all mushrooms of the Psilocybe genus contain the natural product psilocybin, which is a psychoactive alkaloid derived from l-tryptophan. Considering their use in ancient times, as well as their psychedelic properties, these mushrooms have re-emerged with psychotherapeutic potential for treating depression, which has triggered increased pharmaceutical interest. However, the psilocybin biosynthesis pathway was only recently defined and, as such, little exists in the way of structural data. Accordingly, the aim of this study was to structurally characterize this pathway by generating homology models for the four Psilocybe cubensis enzymes involved in psilocybin biosynthesis (PsiD, a decarboxylase; PsiH, a monooxygenase; PsiK, a phosphotransferase; PsiM, a methyltransferase). Following initial model generation and alignment with the identified structural templates, repeated refinement of the models was carried out using secondary structure prediction, geometry evaluation, energy minimization, and molecular dynamics simulations in water. The final models were then evaluated using molecular docking interactions with their substrates, i.e., psilocybin precursors (l-tryptophan, tryptamine, 4-hydroxytryptamine, and norbaeocystin/baeocystin), all of which generated feasible binding modes for the expected biotransformation. Further plausibility of the psilocybin → aeruginascin, 4-hydroxytryptamine → norpsilocin, and tryptamine → N,N-dimethyltryptamine conversions, all mediated by the generated model for PsiM, suggests valid routes of formation for these key secondary metabolites. The structural characterization of these enzymes and their binding modes which emerged from this study can lead to a better understanding of psilocybin synthesis, thereby paving the way for the development of novel substrates and selective inhibitors, as well as improved biotechnological manipulation and production of psilocybin in vitro.


Assuntos
Agaricales , Psilocibina , Psilocibina/química , Psilocibina/metabolismo , Triptofano , Serotonina/metabolismo , Simulação de Acoplamento Molecular , Triptaminas/metabolismo
3.
Forensic Sci Res ; 7(3): 490-497, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36353314

RESUMO

Hallucinogenic mushroom is a kind of toxic strain containing psychoactive tryptamine substances such as psilocybin, psilocin and ibotenic acid, etc. The mushrooms containing hallucinogenic components are various, widely distributed and lack of standard to define, which made a great challenge to identification. Traditional identification methods, such as morphology and toxicology analysis, showed shortcomings in old or processed samples, while the DNA-based identification of hallucinogenic mushrooms would allow to identify these samples due to the stability of DNA. In this paper, four primer sets are designed to target Psilocybe cubensis DNA for increasing resolution of present identification method, and the target markers include largest subunit of RNA polymerase II (marked as PC-R1), psilocybin-related phosphotransferase gene (marked as PC-PT), glyceraldehyde 3-phosphate dehydrogenase (marked as PC-3) and translation EF1α (marked as PC-EF). Real-time PCR with high-resolution melting (HRM) assay were used for the differentiation of the fragments amplified by these primer sets, which were tested for specificity, reproducibility, sensitivity, mixture analysis and multiplex PCR. It was shown that the melting temperatures of PC-R1, PC-PT, PC-3 and PC-EF of P. cubensis were (87.93 ± 0.12) °C, (82.21 ± 0.14) °C, (79.72 ± 0.12) °C and (80.11 ± 0.19) °C in our kinds of independent experiments. Significant HRM characteristic can be shown with a low concentration of 62.5 pg/µL DNA sample, and P. cubensis could be detected in mixtures with Homo sapiens or Cannabis sativa. In summary, the method of HRM analysis can quickly and specifically distinguish P. cubensis from other species, which could be utilized for forensic science, medical diagnosis and drug trafficking cases. Supplemental data for this article are available online at https://doi.org/10.1080/20961790.2021.1875580.

4.
J Inflamm Res ; 14: 3729-3738, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34385833

RESUMO

PURPOSE: During a pathological inflammation, macrophages are activated to produce accumulation of inflammatory mediators such as induced-cyclooxygenase-2 (COX-2), 15-lipoxygenase (15-LOX) and pro-inflammatory cytokines. Pathological inflammation is a significant problem in many chronic diseases. As a result, more research into natural remedies with anti-inflammatory potential is crucial. Since ancient times, psilocybin-containing mushrooms, also known as magic mushrooms, were used for mind healing and also to advance the quality of life. However, not much is known about their anti-inflammatory potential. This study aimed at investigating the anti-inflammatory effects of four psilocybin-containing mushrooms (Panaeolus cyanescens, Psilocybe natalensis, Psilocybe cubensis and Psilocybe cubensis leucistic A+ strain) from genus Panaeolus and Psilocybe for the first time in vitro on 15-LOX activity and also on lipopolysaccharide (LPS)-induced inflammation in human U937 macrophage cells. METHODS: Mushrooms were grown and extracted with boiling hot water. Effects of the four water extracts on 15-LOX activity were determined. Confluent human U937 cells were differentiated with phorbol 12-myristate 13-acetate and treated with the hot-water extracts (25 and 50 µg/mL) 2 hours before being stimulated with 1 µg/mL LPS over 24 hours. Quercetin was used as a positive control. Control cells were differentiated but not LPS-induced nor treated. Tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6, and IL-10 concentrations were measured. Levels of COX-2 and mitochondrial activity were also determined. RESULTS: The four water extracts had poor 15-LOX inhibition activity with IC50 > 250 µg/mL. Extracts were safe at the concentration studied and inhibited the LPS-induced production of pro-inflammatory mediators, TNF-α and IL-1ß significantly and lowered IL-6 and COX-2 concentrations in treated human U937 macrophage cells. Water extracts also increased percentage viability of treated cells and levels of anti-inflammatory IL-10 non-significantly. CONCLUSION: The study suggested that the hot-water extracts of the four psilocybin-containing magic mushrooms have potential anti-inflammatory effects executed by down-regulating pro-inflammatory mediators.

5.
F1000Res ; 10: 281, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34322225

RESUMO

We describe the use of high-fidelity single molecule sequencing to assemble the genome of the psychoactive Psilocybe cubensis mushroom. The genome is 46.6Mb, 46% GC, and in 32 contigs with an N50 of 3.3Mb. The BUSCO completeness scores are 97.6% with 1.2% duplicates. The Psilocybin synthesis cluster exists in a single 3.2Mb contig. The dataset is available from NCBI BioProject with accessions PRJNA687911 and PRJNA700437.


Assuntos
Agaricales , Psilocybe , Agaricales/genética , Psilocibina
6.
Genes (Basel) ; 12(2)2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572950

RESUMO

In recent years, trafficking and abuse of hallucinogenic mushrooms have become a serious social problem. It is therefore imperative to identify hallucinogenic mushrooms of the genus Psilocybe for national drug control legislation. An internal transcribed spacer (ITS) is a DNA barcoding tool utilized for species identification. Many methods have been used to discriminate the ITS region, but they are often limited by having a low resolution. In this study, we sought to analyze the ITS and its fragments, ITS1 and ITS2, by using high-resolution melting (HRM) analysis, which is a rapid and sensitive method for evaluating sequence variation within PCR amplicons. The ITS HRM assay was tested for specificity, reproducibility, sensitivity, and the capacity to analyze mixture samples. It was shown that the melting temperatures of the ITS, ITS1, and ITS2 of Psilocybe cubensis were 83.72 ± 0.01, 80.98 ± 0.06, and 83.46 ± 0.08 °C, and for other species, we also obtained species-specific results. Finally, we performed ITS sequencing to validate the presumptive taxonomic identity of our samples, and the sequencing output significantly supported our HRM data. Taken together, these results indicate that the HRM method can quickly distinguish the DNA barcoding of Psilocybe cubensis and other fungi, which can be utilized for drug trafficking cases and forensic science.


Assuntos
Agaricales/química , DNA Intergênico/genética , Genética Forense , Alucinógenos/isolamento & purificação , Psilocybe/química , DNA Intergênico/isolamento & purificação , Técnicas Genéticas , Alucinógenos/química , Humanos , Psilocybe/isolamento & purificação , Temperatura
7.
Metab Eng ; 60: 25-36, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32224264

RESUMO

Psilocybin is a tryptamine-derived psychoactive alkaloid found mainly in the fungal genus Psilocybe, among others, and is the active ingredient in so-called "magic mushrooms". Although its notoriety originates from its psychotropic properties and popular use as a recreational drug, clinical trials have recently recognized psilocybin as a promising candidate for the treatment of various psychological and neurological afflictions. In this work, we demonstrate the de novo biosynthetic production of psilocybin and related tryptamine derivatives in Saccharomyces cerevisiae by expression of a heterologous biosynthesis pathway sourced from Psilocybe cubensis. Additionally, we achieve improved product titers by supplementing the pathway with a novel cytochrome P450 reductase from P. cubensis. Further rational engineering resulted in a final production strain producing 627 ± 140 mg/L of psilocybin and 580 ± 276 mg/L of the dephosphorylated degradation product psilocin in triplicate controlled fed-batch fermentations in minimal synthetic media. Pathway intermediates baeocystin, nor norbaeocystin as well the dephosphorylated baeocystin degradation product norpsilocin were also detected in strains engineered for psilocybin production. We also demonstrate the biosynthetic production of natural tryptamine derivative aeruginascin as well as the production of a new-to-nature tryptamine derivative N-acetyl-4-hydroxytryptamine. These results lay the foundation for the biotechnological production of psilocybin in a controlled environment for pharmaceutical applications, and provide a starting point for the biosynthetic production of other tryptamine derivatives of therapeutic relevance.


Assuntos
Engenharia Metabólica/métodos , Psilocibina/análogos & derivados , Psilocibina/biossíntese , Saccharomyces cerevisiae/metabolismo , Triptaminas/biossíntese , Escherichia coli/metabolismo , Fermentação , NADPH-Ferri-Hemoproteína Redutase/biossíntese , NADPH-Ferri-Hemoproteína Redutase/genética , Psilocybe/genética , Psilocybe/metabolismo , Psilocibina/metabolismo , Triptofano/metabolismo
8.
Microb Pathog ; 143: 104138, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32173495

RESUMO

Mushrooms have an important role in sustainability since they have long been used as valuable food source and traditional medicine around the world. Regrettably, they are among the most rigorously affected populations, along with several plants and animals, due to the destructive activities of mankind. Thus the authentication and conservation of mushroom species are constantly needed to exploit the remarkable potential in them. In this perspective, an attempt has been made to identify and assess the biological attributes of psychedelic mushrooms collected from Kodaikanal, Tamil Nadu, India. The macromorphological features of the psychedelic mushroom DPT1 helped its presumptive identification and the molecular characters depicted by DNA marker revealed its close relationship with the genus Psilocybe. Accordingly, the psychedelic mushroom was identified as Psilocybe cubensis DPT1 and its crude ethyl acetate extract on analysis revealed the occurrence of phytoconstituents like alkaloids, flavonoids, tannins, saponins and carbohydrates. Moreover, it exhibited 80% larvicidal activity against Culex quinquefasciatus mosquito at 800 ppm concentration and an array of antibacterial effects with utmost susceptibility of Proteus vulgaris, and the identification of bioactive compounds by different analytical techniques substantiate that the bioactivities might be due to the presence of phytochemicals. The results of the study indicated that the extract of P. cubensis DPT1 having notable antibacterial and mosquito larvicidal efficacies which could be probed further for the isolation of medicinally important as well as bio-control compounds.


Assuntos
Antibacterianos/farmacologia , Culex , Inseticidas/farmacologia , Psilocybe/química , Animais , DNA Fúngico/genética , Cromatografia Gasosa-Espectrometria de Massas , Larva , Testes de Sensibilidade Microbiana , Filogenia , Proteus vulgaris/efeitos dos fármacos , Psilocybe/genética , RNA Ribossômico 18S/genética , Análise de Sequência de DNA
9.
J Forensic Sci ; 63(5): 1500-1505, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29194645

RESUMO

Psilocybe cubensis, or "magic mushroom," is the most common species of fungus with psychedelic characteristics. Two primer sets were designed to target Psilocybe DNA using web-based software and NBCI gene sequences. DNA was extracted from eighteen samples, including twelve mushroom species, using the Qiagen DNeasy® Plant Mini Kit. The DNA was amplified by the polymerase chain reaction (PCR) using the primers and a master mix containing either a SYBR® Green I, Radiant™ Green, or LCGreen Plus® intercalating dye; amplicon size was determined using agarose gel electrophoresis. The PCR assays were tested for amplifiability, specificity, reproducibility, robustness, sensitivity, and multiplexing with primers that target marijuana. The observed high resolution melt (HRM) temperatures for primer sets 1 and 7 were 78.85 ± 0.31°C and 73.22 ± 0.61°C, respectively, using SYBR® Green I dye and 81.67 ± 0.06°C and 76.04 ± 0.11°C, respectively, using Radiant™ Green dye.


Assuntos
DNA Fúngico/isolamento & purificação , Psilocybe/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Corantes , Primers do DNA , Reprodutibilidade dos Testes , Temperatura
10.
Rev. bras. farmacogn ; 20(3): 397-402, jun.-jul. 2010. ilus, graf
Artigo em Inglês | LILACS | ID: lil-555921

RESUMO

Psilocybe cubensis (Ear.) Sing., Strophariaceae, is a hallucinogen mushroom that has been used since the old times by humans, causing several psychotic effects. P. cubensis contains two tryptamine derivates: psilocybin and psilocin, agonists of the 5-HT2 receptor (serotonin). The main objective of this study was to investigate the acute toxicity effects of P. cubensis aqueous extract (PCAE) administration in mice. Male and female adult Swiss mice received PCAE 0.1 mL/10 g i.p., and were observed individually, directly in a glass box and in an open-field. In relation to the data of the control group, PCAE-treated animals presented: an increased gnawing, appearance of wet-dog shakes and a decreased locomotion and rearing frequencies after 29-38 min. Also a clear gender difference was detected, being female mice more sensible to the PCAE than males. It was suggested that PCAE administration produced specific effects on mice behaviors, characteristic of drugs which interfere on central serotonergic and dopaminergic systems. Finally, the observational methods here employed were efficient to evaluate the toxic effects of the extract.


O Psilocybe cubensis (Ear.) Sing., Strophariaceae, é um cogumelo alucinógeno usado pelos humanos desde a antiguidade, causando diversos efeitos psicóticos. Ele contém dois derivados triptamínicos: psilocibina e psilocina, agonistas do receptor 5-HT2 (serotonina). O objetivo deste trabalho foi investigar os efeitos da administração do extrato aquoso do P. cubensis (EAPC) na toxicidade aguda de camundongos. Camundongos Swiss adultos machos e fêmeas receberam o EAPC e foram observados individualmente, diretamente em uma caixa de vidro e em um campo aberto. Com relação ao grupo controle, animais tratados com EAPC apresentaram: aumento de roer, tremores, decréscimo da locomoção e do levantar após 29-38 min e nenhuma alteração na auto-limpeza. Além disso, foram observadas diferenças quanto ao gênero, sendo camundongos fêmeas mais sensíveis que os machos ao EAPC. Foi sugerido que a administração do EAPC leva a alterações específicas no comportamento dos camundongos, característico de drogas que interferem nos sistemas serotoninérgicos e dopaminérgicos centrais. Finalmente, os métodos de observação aqui empregados foram eficientes em avaliar os efeitos tóxicos do extrato.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...