Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.447
Filtrar
1.
Sci Rep ; 14(1): 15086, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956152

RESUMO

Elevated levels of the gut pro-hormone Proneurotensin (proNT) have been found to predict development of cardiovascular disease. However, it is still unknown whether higher proNT levels are associated with subclinical vascular damage. Herein, we investigated the relationship between higher proNT concentrations and augmented pulse pressure (PP) and carotid intima-media thickness (cIMT), indicators of increased arterial stiffness and subclinical atherosclerosis, respectively. Clinical characteristics, PP and cIMT were evaluated in 154 non-diabetic individuals stratified into tertiles according to fasting serum proNT concentrations. We found that, subjects with higher proNT levels exhibited a worse lipid profile and insulin sensitivity, increased C-reactive protein levels, along with higher values of PP and cIMT as compared to the lowest proNT tertile. Prevalence of elevated PP (≥ 60 mmHg) and subclinical carotid atherosclerosis (IMT > 0.9 mm) was increased in the highest tertile of proNT. In a logistic regression analysis adjusted for several confounders, subjects with higher proNT levels displayed a fivefold raised risk of having elevated PP values (OR 5.36; 95%CI 1.04-27.28; P = 0.05) and early carotid atherosclerosis (OR 4.81; 95%CI 1.39-16.57; P = 0.01) as compared to the lowest proNT tertile. In conclusion, higher circulating levels of proNT are a biomarker of subclinical vascular damage independent of other atherosclerotic risk factors.


Assuntos
Pressão Sanguínea , Espessura Intima-Media Carotídea , Precursores de Proteínas , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Precursores de Proteínas/sangue , Adulto , Neurotensina/sangue , Doenças das Artérias Carótidas/sangue , Rigidez Vascular , Fatores de Risco , Proteína C-Reativa/metabolismo , Proteína C-Reativa/análise , Biomarcadores/sangue , Aterosclerose/sangue , Idoso
2.
Respir Med ; 231: 107727, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38959984

RESUMO

BACKGROUND: Pleural effusions in post-operative thoracic surgery patients are common. Effusions can result in prolonged hospitalizations or readmissions, with prior studies suggesting mixed effects of pleural drainage on hypoxia. We aimed to define the impact of pleural drainage on pulse oximetry (SpO2) in post-thoracic surgery patients. METHODS: A retrospective study of post-operative thoracic surgery patients undergoing pleural drainage was performed. SpO2 and supplemental oxygen (FiO2) values were recorded at pre- and post-procedure. The primary outcome was difference in pre-procedural and post-procedural SpO2. RESULTS: We identified 95 patients with a mean age of 65 (SD - 13.8) years undergoing 122 pleural drainage procedures. Mean drainage volume was 619 (SD-423) mL and the majority of procedures (88.5 %) included a drainage of <1000 mL. SpO2 was associated with an increase from 94.0 % (SD-2.6) to 97.3 % (SD-2.0) at 24-h (p < 0.0001). FiO2 was associated with a decrease from 0.31 (SD-0.15) to 0.29 (SD-0.12) at 24-h (p = 0.0081). SpO2/FiO2 was associated with an increase from 344.5 (SD-99.0) to 371.9 (SD-94.7) at 24-h post-procedure (p < 0.0001). CONCLUSIONS: Pleural drainage within post-operative thoracic surgery patients offers statistically significant improvements in oxygen saturation by peripheral pulse oximetry and oxygen supplementation; however the clinical significance of these changes remains unclear. Pleural drainage itself may be requested for numerous reasons, including diagnostic (fevers, leukocytosis, etc.) or therapeutic (worsening dyspnea) evaluation. However, pleural drainage may offer minimal clinical impact on pulse oximetry in post-operative thoracic surgery patients.

3.
Front Neurosci ; 18: 1420255, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962179

RESUMO

Unmatched by other non-invasive brain stimulation techniques, transcranial ultrasound (TUS) offers highly focal stimulation not only on the cortical surface but also in deep brain structures. These unique attributes are invaluable in both basic and clinical research and might open new avenues for treating neurological and psychiatric diseases. Here, we provide a concise overview of the expanding volume of clinical investigations in recent years and upcoming research initiatives concerning focused ultrasound neuromodulation. Currently, clinical TUS research addresses a variety of neuropsychiatric conditions, such as pain, dementia, movement disorders, psychiatric conditions, epilepsy, disorders of consciousness, and developmental disorders. As demonstrated in sham-controlled randomized studies, TUS neuromodulation improved cognitive functions and mood, and alleviated symptoms in schizophrenia and autism. Further, preliminary uncontrolled evidence suggests relieved anxiety, enhanced motor functions in movement disorders, reduced epileptic seizure frequency, improved responsiveness in patients with minimally conscious state, as well as pain reduction after neuromodulatory TUS. While constrained by the relatively modest number of investigations, primarily consisting of uncontrolled feasibility trials with small sample sizes, TUS holds encouraging prospects for treating neuropsychiatric disorders. Larger sham-controlled randomized trials, alongside further basic research into the mechanisms of action and optimal sonication parameters, are inevitably needed to unfold the full potential of TUS neuromodulation.

4.
Front Plant Sci ; 15: 1384237, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962245

RESUMO

The search for elite cultivars with better architecture has been a demand by farmers of the chickpea and lentil crops, which aims to systematize their mechanized planting and harvesting on a large scale. Therefore, the identification of genes associated with the regulation of the branching and architecture of these plants has currently gained great importance. Herein, this work aimed to gain insight into transcriptomic changes of two contrasting chickpea and lentil cultivars in terms of branching pattern (little versus highly branched cultivars). In addition, we aimed to identify candidate genes involved in the regulation of shoot branching that could be used as future targets for molecular breeding. The axillary and apical buds of chickpea cultivars Blanco lechoso and FLIP07-318C, and lentil cultivars Castellana and Campisi, considered as little and highly branched, respectively, were harvested. A total of 1,624 and 2,512 transcripts were identified as differentially expressed among different tissues and contrasting cultivars of chickpea and lentil, respectively. Several gene categories were significantly modulated such as cell cycle, DNA transcription, energy metabolism, hormonal biosynthesis and signaling, proteolysis, and vegetative development between apical and axillary tissues and contrasting cultivars of chickpea and lentil. Based on differential expression and branching-associated biological function, ten chickpea genes and seven lentil genes were considered the main players involved in differentially regulating the plant branching between contrasting cultivars. These collective data putatively revealed the general mechanism and high-effect genes associated with the regulation of branching in chickpea and lentil, which are potential targets for manipulation through genome editing and transgenesis aiming to improve plant architecture.

5.
Health SA ; 29: 2419, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962295

RESUMO

Background: Pro-inflammatory markers are linked with the development and progression of type 2 diabetes mellitus and arterial stiffening. Pulse Wave Velocity (PWV) and Augmentation Index (Aix) are non-invasive standard markers of arterial elasticity and predictors of cardiovascular mortality and morbidity. Aim: To investigate the effects of metformin alone and in combination with glimepiride on arterial elasticity, pro-inflammatory cytokines in black type 2 diabetes mellitus patients. Settings: Participants were enrolled from Sefako Makgatho Health Sciences University community, Gauteng, South Africa. Methods: PWV and Aix were measured using the AtCor SphygmoCor® system (AtCor Medical, Inc., Sydney, Australia). Cytokines levels were measured using Multiplexing with Bio-Plex Pro™ human inflammation panel I assay. Treatment naïve type 2 diabetes participants were divided into two groups: metformin (M) (n = 10) and metformin glimepiride (MS) (n = 14). The study participants were followed up at 4 and 8 months after treatment initiation. Results: In the M and MS, IL-1ß increased significantly at four months (58.19 ± 0.03 pg/ml, 58.35 ± 0.30 pg/ml) when compared to baseline (33.05 ± 18.56 pg/ml, 34.79 ± 18.77 pg/ml) then decreased significantly at eight months (29.25 ± 11.64 pg/ml, 32.54 ± 14.26 pg/ml) when compared to four months (58.19 ± 0.03 pg/ml, 58.35 ± 0.3 pg/ml) (p < 0.05). There were no significant changes in PWV, Aix, IL-1ra, IL-2, IL-6, IL-8, TNF-α and hs-CRP levels at both treatment intervals. Conclusion: Metformin alone or in combination with glimepiride did not improve arterial elasticity and did not reduce pro-inflammatory cytokines levels in T2DM black South African patients. Contribution: The context-based knowledge generated by the current study is expected to enhance the continuum of care for T2DM patients.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38950841

RESUMO

Infection during pregnancy is a substantial risk factor for the unborn child to develop autism or schizophrenia later in life, and is thought to be driven by maternal immune activation (MIA). MIA can be modelled by exposing pregnant mice to Polyinosinic: polycytidylic acid (Poly-I:C), a viral mimetic that induces an immune response and recapitulates in the offspring many neurochemical features of ASD and schizophrenia, including altered BDNF-TrkB signalling and disruptions to excitatory/inhibitory balance. Therefore, we hypothesised that a BDNF mimetic, 7,8-Dihydroxyflavone (7,8-DHF), administered prophylactically to the dam may prevent the neurobehavioural sequelae of disruptions induced by MIA. Dams were treated with 7,8-DHF in the drinking water (0.08 mg/ML) from gestational day (GD) 9-20 and were exposed to Poly-I:C at GD17 (20 mg/kg, i.p.). Foetal brains were collected 6 h post Poly-I:C exposure for RT-qPCR analysis of BDNF, cytokine, GABAergic and glutamatergic gene targets. A second adult cohort were tested in a battery of behavioural tests relevant to schizophrenia and the prefrontal cortex and ventral hippocampus dissected for RT-qPCR analysis. Foetal brains exposed to Poly-I:C showed increased IL-6, but reduced expression of Ntrk2 and multiple GABAergic and glutamatergic markers. Anxiety-like behaviour was observed in adult offspring prenatally exposed to poly-I:C, which was accompanied by altered expression of Gria2 in the prefrontal cortex and Gria4 in the ventral hippocampus. While 7-8 DHF normalised the expression of some glutamatergic (Grm5) and GABAergic (Gabra1) genes in Poly-I:C exposed offspring, it also led to substantial alterations in offspring not exposed to Poly-I:C. Furthermore, mice exposed to 7,8-DHF prenatally showed increased pre-pulse inhibition and reduced working memory in adulthood. These data advance understanding of how 7,8-DHF and MIA prenatal exposure impacts genes critical to excitatory/inhibitory pathways and related behaviour.

7.
Mikrochim Acta ; 191(8): 456, 2024 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980419

RESUMO

Polydopamine (PDA) has garnered significant interest for applications in biosensors, drug delivery, and tissue engineering. However, similar polycatecholamines like polynorepinephrine (PNE) with additional hydroxyl groups and poly-α-methylnorepinephrine (PAMN) with additional hydroxyl and methyl groups remain unexplored in the biosensing domain. This research introduces three innovative biosensing platforms composed of ternary nanocomposite based on reduced graphene oxide (RGO), gold nanoparticles (Au NPs), and three sister polycatecholamine compounds (PDA, PNE, and PAMN). The study compares and evaluates the performance of the three biosensing systems for the ultrasensitive detection of Mycobacterium tuberculosis (MTB). The formation of the nanocomposites was meticulously examined through UV-Visible, Raman, XRD, and FT-IR studies with FE-SEM and HR-TEM analysis. Cyclic voltammetry and differential pulse voltammetry measurements were also performed to determine the electrochemical characteristics of the modified electrodes. Electrochemical biosensing experiments reveal that the RGO-PDA-Au, RGO-PNE-Au, and RGO-PAMN-Au-based biosensors detected target DNA up to a broad detection range of 0.1 × 10-8 to 0.1 × 10-18 M, with a low detection limit (LOD) of 0.1 × 10-18, 0.1 × 10-16, and 0.1 × 10-17 M, respectively. The bioelectrodes were proved to be highly selective with excellent sensitivities of 3.62 × 10-4 mA M-1 (PDA), 7.08 × 10-4 mA M-1 (PNE), and 6.03 × 10-4 mA M-1 (PAMN). This study pioneers the exploration of two novel mussel-inspired polycatecholamines in biosensors, opening avenues for functional nanocoatings that could drive further advancements in this field.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Ouro , Grafite , Indóis , Limite de Detecção , Nanopartículas Metálicas , Polímeros , Técnicas Biossensoriais/métodos , Indóis/química , Polímeros/química , Técnicas Eletroquímicas/métodos , Grafite/química , Ouro/química , Animais , Nanopartículas Metálicas/química , Mycobacterium tuberculosis , Bivalves/química , Nanocompostos/química , Eletrodos , Norepinefrina/análise
8.
Ann Intensive Care ; 14(1): 108, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980442

RESUMO

BACKGROUND: Dynamic arterial elastance (Eadyn) has been investigated for its ability to predict hypotension during the weaning of vasopressors. Our study focused on assessing Eadyn's performance in the context of critically ill adult patients admitted to the intensive care unit, regardless of diagnosis. MAIN BODY: Our study was conducted in accordance with the Preferred Reported Items for Systematic Reviews and Meta-Analysis checklist. The protocol was registered in PROSPERO (CRD42023421462) on May 26, 2023. We included prospective observational studies from the MEDLINE and Embase databases through May 2023. Five studies involving 183 patients were included in the quantitative analysis. We extracted data related to patient clinical characteristics, and information about Eadyn measurement methods, results, and norepinephrine dose. Most patients (76%) were diagnosed with septic shock, while the remaining patients required norepinephrine for other reasons. The average pressure responsiveness rate was 36.20%. The synthesized results yielded an area under the curve of 0.85, with a sensitivity of 0.87 (95% CI 0.74-0.93), specificity of 0.76 (95% CI 0.68-0.83), and diagnostic odds ratio of 19.07 (95% CI 8.47-42.92). Subgroup analyses indicated no variations in the Eadyn based on norepinephrine dosage, the Eadyn measurement device, or the Eadyn diagnostic cutoff to predict cessation of vasopressor support. CONCLUSIONS: Eadyn, evaluated through subgroup analyses, demonstrated good predictive ability for the discontinuation of vasopressor support in critically ill patients.

9.
Ecol Evol ; 14(7): e11692, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38983706

RESUMO

Water availability strongly influences the survival, growth, and reproduction of most terrestrial plant species. Experimental evidence has well documented the effect of changes in total amount of water availability on non-native vs. native plants. However, little is known about how fluctuations in water availability affect these two groups, although more extreme fluctuations in water availability increasingly occur with prolonged drought and extreme precipitation events. Here, we grew seven non-native and seven native plant species individually in the greenhouse. Then, we exposed them to four watering treatments, each treatment with the same total amount of water, but with different divisions: W1 (added water 16 times with 125 mL per time), W2 (8 times, 250 mL per time), W3 (4 times, 500 mL per time), and W4 (2 times, 1000 mL per time). We found that both non-native and native plants produced the most biomass under medium frequency/magnitude watering treatments (W2 and W3). Interestingly, non-native plants produced 34% more biomass with the infrequent, substantial watering treatment (W4) than with frequent, minor watering treatment (W1), whereas native plants showed opposite patterns, producing 26% more biomass with W1 than with W4. Differences in the ratio of root to shoot under few/large and many/small watering treatments of non-native vs. native species probably contributed to their different responses in biomass production. Our results advance the current understanding of the effect of water availability on non-native plants, which are affected not only by changes in amount of water availability but also by fluctuations in water availability. Furthermore, our results indicate that an increased few/large precipitation pattern expected under climate change conditions might further promote non-native plant invasions. Future field experiments with multiple phylogenetically controlled pairs of non-native and native species will be required to enhance our understanding of how water availability fluctuations impact on non-native invasions.

10.
Hear Res ; 450: 109075, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38986164

RESUMO

Contemporary cochlear implants (CIs) use cathodic-leading symmetric biphasic (C-BP) pulses for electrical stimulation. It remains unclear whether asymmetric pulses emphasizing the anodic or cathodic phase may improve spectral and temporal coding with CIs. This study tested place- and temporal-pitch sensitivity with C-BP, anodic-centered triphasic (A-TP), and cathodic-centered triphasic (C-TP) pulse trains on apical, middle, and basal electrodes in 10 implanted ears. Virtual channel ranking (VCR) thresholds (for place-pitch sensitivity) were measured at both a low and a high pulse rate of 99 (Experiment 1) and 1000 (Experiment 2) pulses per second (pps), and amplitude modulation frequency ranking (AMFR) thresholds (for temporal-pitch sensitivity) were measured at a 1000-pps pulse rate in Experiment 3. All stimuli were presented in monopolar mode. Results of all experiments showed that detection thresholds, most comfortable levels (MCLs), VCR thresholds, and AMFR thresholds were higher on more basal electrodes. C-BP pulses had longer active phase duration and thus lower detection thresholds and MCLs than A-TP and C-TP pulses. Compared to C-TP pulses, A-TP pulses had lower detection thresholds at the 99-pps but not the 1000-pps pulse rate, and had lower MCLs at both pulse rates. A-TP pulses led to lower VCR thresholds than C-BP pulses, and in turn than C-TP pulses, at the 1000-pps pulse rate. However, pulse shape did not affect VCR thresholds at the 99-pps pulse rate (possibly due to the fixed temporal pitch) or AMFR thresholds at the 1000-pps pulse rate (where the overall high performance may have reduced the changes with different pulse shapes). Notably, stronger polarity effect on VCR thresholds (or more improvement in VCR with A-TP than with C-TP pulses) at the 1000-pps pulse rate was associated with stronger polarity effect on detection thresholds at the 99-pps pulse rate (consistent with more degeneration of auditory nerve peripheral processes). The results suggest that A-TP pulses may improve place-pitch sensitivity or spectral coding for CI users, especially in situations with peripheral process degeneration.

11.
Mikrochim Acta ; 191(8): 459, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985347

RESUMO

A renewable electrochemical screen-printed electrode (SPE) is proposed based on magnetic bamboo-like nitrogen-carbon (N-C) nanotubes loaded with nickel-cobalt alloy (NiCo) nanoparticles (NiCo@N-CNTs) for the determination of ractopamine (RAC). During the preparation of NiCo@N-CNTs, Co-MOF-67 (ZIF-67) was firstly synthesized, and then blended with dicyandiamide and nickel acetate, followed by a one-step pyrolysis procedure to prepare NiCo@N-doped carbon nanotubes. The surface morphology, structure, and chemical composition of NiCo@N-CNTs were characterized by SEM, TEM, XRD, XPS, and EDS. The electrocatalytic and electrochemical behavior of NiCo@N-CNTs were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results demonstrated that NiCo@N-CNTs possessed remarkable conductivity and electrocatalysis to the oxidation of ractopamine (RAC). By using screen-printed electrode (SPE), NiCo@N-CNTs, and a designed base support, a magnetic RAC sensor (NiCo@N-CNTs/SPE) was successfully constructed. It presented a detection linear range of 0.05-80 µM with a detection limit of 12 nM (S/N = 3). It also exhibited good sensitivity, reproducibility, and practicability in spiked real pork samples. Since the adhesion of NiCo/N-CNTs on SPE was controlled by magnet, the NiCo@N-CNTs was easily detached from the SPE surface by magnetism and thus displayed excellent renewability. This work broadened insights into portable devices for on-site and real-time analysis.

12.
NMR Biomed ; : e5210, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38993021

RESUMO

The aim of the current study is to demonstrate the feasibility of radiofrequency (RF) pulses generated via an optimal control (OC) algorithm to perform magnetic resonance elastography (MRE) and quantify the mechanical properties of materials with very short transverse relaxation times (T2 < 5 ms) for the first time. OC theory applied to MRE provides RF pulses that bring isochromats from the equilibrium state to a fixed target state, which corresponds to the phase pattern of a conventional MRE acquisition. Such RF pulses applied with a constant gradient allow to simultaneously perform slice selection and motion encoding in the slice direction. Unlike conventional MRE, no additional motion-encoding gradients (MEGs) are needed, enabling shorter echo times. OC pulses were implemented both in turbo spin echo (OC rapid acquisition with refocused echoes [RARE]) and ultrashort echo time (OC UTE) sequences to compare their motion-encoding efficiency with the conventional MEG encoding (classical MEG MRE). MRE experiments were carried out on agar phantoms with very short T2 values and on an ex vivo bovine tendon. Magnitude images, wave field images, phase-to-noise ratio (PNR), and shear storage modulus maps were compared between OC RARE, OC UTE, and classical MEG MRE in samples with different T2 values. Shear storage modulus values of the agar phantoms were in agreement with values found in the literature, and that of the bovine tendon was corroborated with rheometry measurements. Only the OC sequences could encode motion in very short T2 samples, and only OC UTE sequences yielded magnitude images enabling proper visualization of short T2 samples and tissues. The OC UTE sequence produced the best PNRs, demonstrating its ability to perform anatomical and mechanical characterization. Its success warrants in vivo confirmation in further studies.

13.
Animal Model Exp Med ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981680

RESUMO

BACKGROUND: An increase in epidural pressure around the stenosis has been observed in patients with lumbar spinal stenosis (LSS) with positive signs of sedimentation or redundant nerve roots. Further analysis of the pressure conditions in the stenotic area would be of great interest. We hypothesized that it would be possible to determine the physiological parameters of the epidural pulse wave and its course in pathological stenosis as a basis for objective identification of LSS based on pressure using a new measuring method with continuous spatial and temporal resolution. METHODS: We performed a single-case proof-of-principle in vivo animal trial and used a newly developed hybrid pressure-measurement probe with a fiber-tip Fabry-Pérot interferometer and several fiber Bragg gratings (FBG). RESULTS: With reproducible precision, we determined the mean epidural pressure to be 7.5 mmHg and the peak-to-peak value to be 4-5 mmHg. When analyzing the pressure measured by an FBG array, both the heart and respiratory rates can be precisely determined. This study was the first to measure the pulse wave velocity of the cerebrospinal fluid pressure wave as 0.97 m/s using the newly developed pressure probe. A simulated LSS was detected in real time and located exactly. CONCLUSIONS: The developed fiber-optic pressure sensor probe enables a new objective measurement of epidural pressure. We confirmed our hypothesis that physiological parameters of the epidural pulse wave can be determined and that it is possible to identify an LSS.

14.
J Biophotonics ; : e202300505, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982549

RESUMO

Spontaneous Raman spectroscopy is a well-established diagnostic tool, allowing for the identification of all Raman active species with a single measurement. Yet, it may suffer from low-signal intensity and fluorescent background. In contrast, coherent anti-Stokes Raman scattering (CARS) offers laser-like signals, but the traditional approach lacks the multiplex capability of spontaneous Raman spectroscopy. We present an ultrabroadband CARS setup which aims at exciting the full spectrum (300-3700 cm-1) of biological molecules. A dual-output optical parametric amplifier provides a ~7 fs pump/Stokes and a ~700 fs probe pulse. CARS spectra of DMSO, ethanol, and methanol show great agreement with spontaneous Raman spectroscopy and superiority in fluorescent environments. The spectral resolution proves sufficient to differentiate between the complex spectra of L-proline and hydroxyproline. Moreover, decay constants in the sub picosecond range are determined for individual Raman transitions, providing an additional approach for sample characterization.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38984878

RESUMO

OBJECTIVE: Pulse-synchronous tinnitus (PST) has been linked to multiple anatomical variants of the central venous outflow tract (CVOT) including sigmoid sinus (SS) dehiscence and diverticulum. This study investigates flow turbulence, pressure, and wall shear stress along the CVOT and proposes a mechanism that results in SS dehiscence and PST. STUDY DESIGN: Case series. SETTING: Tertiary Academic Center. METHODS: Venous models were reconstructed from computed tomography scans of 3 patients with unilateral PST. Two models for each patient are obtained: a symptomatic and contralateral asymptomatic side. A turbulent model-enabled commercial flow solver was used to simulate the pulsatile blood flow over the cardiac cycle through the models. Fluid flow through the transverse and SS junction was analyzed to observe the velocity, pressure, turbulent kinetic energy (TKE), and shear stress over a simulated cardiac cycle. RESULTS: Fluid flow on the symptomatic side showed increased vorticity in the presence of an SS diverticulum. Higher TKE with periodicity following the cardiac cycle was observed on the symptomatic side, and a sharp increase was observed if SS diverticulum was present. Shear stress was highest near the narrowest segments of the vessel. Pressure was observed to be lower on the symptomatic side at the transverse-SS junction for all 3 patients. CONCLUSION: Computational fluid dynamics modeling of blood flow through the CVOT in PST suggests that low pressure may be the cause of dehiscence, and tinnitus may result from periodic increases in TKE.

16.
Acta Cardiol ; : 1-7, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973345

RESUMO

INTRODUCTION: Subclinical hypothyroidism (SCH) is a biochemical condition that is diagnosed when peripheral free thyroid hormone levels are within normal reference laboratory range but serum thyroid-stimulating hormone (TSH) levels are mildly elevated. The aim of this study was to investigate the relationship between SCH and arterial stiffness using two different non-invasive methods, including echocardiography and oscillometric arteriography. MATERIAL AND METHODS: The study included 33 newly diagnosed SCH patients and 34 age- and gender-matched healthy controls. Systolic and diastolic diameters and elastic parameters of the aorta were calculated by 2D Transthoracic echocardiography (TTE). Central blood pressure and aortic stiffness values of patient groups were measured noninvasively from the brachial artery using Mobil-O-Graph arteriography. Pulse wave velocity (PWV) and augmentation index (AIx) were used as arterial stiffness indicators. RESULTS: There was no significant difference between SCH and control groups with regard to age, gender, and body mass index (BMI). Aortic strain and aortic distensibility, were significantly lower in the SCH group than in the control group (p < 0.001). PWV and AIx which measured by Mobil-O-Graph arteriography were found to be significantly higher in the subclinical hypothyroid group compared to the control group (p < 0.05). CONCLUSION: Aortic stiffness assessed by TTE and Mobil-O-Graph arteriography deteriorated in patients with SCH after excluding other cardiovascular risk factors. The assessment of aortic stiffness by the oscillometric method was easy and useful for widespread clinical use.

17.
Heliyon ; 10(12): e32530, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38975184

RESUMO

Cobalt has emerged as a vital material in 10 nm technology for localized interconnect layers, potentially offering a compelling alternative to Cu-based interconnects. In this study, we subjected the contamination arising from the presence of cobalt atoms in silicon to comprehensive investigation, employing electron transmission electron microscopy (TEM) observations in conjunction with first-principles calculations. The results show that a dense CoSi layer with a thickness of a few nanometers is formed at the interface of cobalt and Si. The CoSi layer blocks the diffusion of Co atoms into Si. This is due to the semiconducting nature of the covalent bond formed between Co and Si, leading to the emergence of a forbidden zone at the Co/CoSi interface. The diffusion of Co into CoSi is governed by the atomic exchange mechanism, however, the local distortion of the periodic atomic potential due to the presence of the forbidden zone at the Co/CoSi interface hinders the diffusion of Co into Si. Therefore, the deposition of a Co metal layer on a Si chip does not require an additional barrier layer.

18.
New Phytol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38952235

RESUMO

Ectomycorrhizal (ECM) fungi distribute tree-derived carbon (C) via belowground hyphal networks in forest ecosystems. Here, we asked the following: (1) Is C transferred belowground to a neighboring tree retained in fungal structures or transported within the recipient tree? (2) Is the overlap of ectomycorrhizal fungi in mycorrhizal networks related to the amount of belowground C transfer? We used potted sapling pairs of European beech (Fagus sylvatica) and North-American Douglas-fir (Pseudotsuga menziesii) for 13CO2 pulse-labeling. We compared 13C transfer from beech (donor) to either beech or Douglas-fir (recipient) and identified the ECM species. We measured the 13C enrichment in soil, plant tissues, and ECM fractions of fungal-containing parts and plant transport tissues. In recipients, only fungal-containing tissue of ectomycorrhizas was significantly enriched in 13C and not the plant tissue. Douglas-fir recipients shared on average one ECM species with donors and had a lower 13C enrichment than beech recipients, which shared on average three species with donors. Our results support that recently assimilated C transferred belowground is shared among fungi colonizing tree roots but not among trees. In mixed forests with beech and Douglas-fir, the links for C movement might be hampered due to low mycorrhizal overlap with consequences for soil C cycling.

19.
Resusc Plus ; 19: 100665, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38974929

RESUMO

Aim: Compare heart rate assessment methods in the delivery room on newborn clinical outcomes. Methods: A search of Medline, SCOPUS, CINAHL and Cochrane was conducted between January 1, 1946, to until August 16, 2023. (CRD 42021283438) Study Selection was based on predetermined criteria. Reviewers independently extracted data, appraised risk of bias and assessed certainty of evidence. Results: Two randomized controlled trials involving 91 newborns and 1 nonrandomized study involving 632 newborns comparing electrocardiogram (ECG) to auscultation plus pulse oximetry were included. No studies were found that compared any other heart rate measurement methods and reported clinical outcomes. There was no difference between the ECG and control group for duration of positive pressure ventilation, time to heart rate ≥ 100 beats per minute, epinephrine use or death before discharge. In the randomized studies, there was no difference in rate of tracheal intubation [RR 1.34, 95% CI (0.69-2.59)]. No participants received chest compressions. In the nonrandomized study, fewer infants were intubated in the ECG group [RR 0.75, 95% CI (0.62-0.90)]; however, for chest compressions, benefit or harm could not be excluded. [RR 2.14, 95% (CI 0.98-4.70)]. Conclusion: There is insufficient evidence to ascertain clinical benefits or harms associated with the use of ECG versus pulse oximetry plus auscultation for heart rate assessment in newborns in the delivery room.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...