Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 192: 105411, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37105638

RESUMO

Acequinocyl and bifenazate are potent acaricides acting at the Qo site of complex III of the electron transport chain, but frequent applications of these acaricides have led to the development of resistance in spider mites. Target-site resistance caused by mutations in the conserved cd1- and ef-helices of the Qo pocket of cytochrome b has been elucidated as the main resistance mechanism. We therefore monitored Qo pocket mutations in European field populations of Tetranychus urticae and uncovered a new mutation, L258F. The role of this mutation was validated by revealing patterns of maternal inheritance and by the independently replicated introgression in an unrelated susceptible genetic background. However, the parental strain exhibited higher resistance levels than conferred by the mutation alone in isogenic lines, especially for acequinocyl, implying the involvement of strong additional resistance mechanisms. This was confirmed by revealing a polygenic inheritance pattern with classical genetic crosses and via synergism experiments. Therefore, a genome-wide expression analysis was conducted that identified a number of highly overexpressed detoxification genes, including many P450s. Functional expression revealed that the P450 CYP392A11 can metabolize bifenazate by hydroxylation of the ring structure. In conclusion, the novel cytochrome b target-site mutation L258F was uncovered in a recently collected field strain and its role in acequinocyl and bifenazate resistance was validated. However, the high level of resistance in this strain is most likely caused by a combination of target-site resistance and P450-based increased detoxification, potentially acting in synergism.


Assuntos
Acaricidas , Tetranychidae , Animais , Acaricidas/farmacologia , Citocromos b/genética , Citocromos b/metabolismo , Mutação
2.
Indian J Otolaryngol Head Neck Surg ; 74(Suppl 3): 4948-4953, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36742499

RESUMO

To study the specific effects of smoking on laryngeal mucosa and voice using video-stroboscopy, subjective and objective voice analysis. This cross-sectional and observational study was carried out in the Department of Otorhinolaryngology, M.G.M. Medical College & M.Y. Hospital, Indore on 103 subjects with dysphonia (49 smokers and 54 non-smokers), between October 2018 to October 2020. After detailed history and general examination, all the cases underwent video-stroboscopic analysis and voice analysis by simple parameters-Maximum Phonation Time (M.P.T.) & s/z score. The cases answered the Voice Related Quality Of Life questionnaire (V.R.Q.O.L.). The observations between smokers and non-smokers were compared. Statistically significant (P < 0.05) associations were observed between smoking and various vocal fold pathological characteristics. There was statistically significant association of smoking with overall possibility of benign vocal fold lesions (P = 0.0129). Significant association was noted of smoking with specific lesions like leukoplakia (P = 0.02), erythema (P = 0.0161) and Reinke's edema (P = 0.322). The mean M.P.T. was 9.5 s in smokers and 11 s in non-smokers. We observed statistically significant relationship between smoking and abnormal s/z ratio (P = 0.0165). This study shows the observable effects of smoking on vocal fold micro-anatomy and voice. Dysphonia was primary complaint in both groups, but all observations were worse in smokers, indicating harmful effects of smoking.

3.
J Cosmet Laser Ther ; 21(3): 166-170, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30067418

RESUMO

BACKGROUND: Hyaluronic acid fillers have become popular soft tissue filler augmentation agents over the past several years. Q.O.Fill (JW Pharmaceutical Co., Ltd., Seoul, Korea) is a newly developed soft tissue augmentation agent using Tissuefill (hyaluronic acid derivatives) mixed with platelet-rich plasma (PRP). The purposes of this study were to describe the Q.O.Fill method and evaluate the outcome of face augmentation. METHODS: A retrospective chart review was performed over a 2-year period. Seventy-five Asian participants with a mean age of 43.5 years were enrolled in the study. Mean total injection volume (baseline and touch-up) per participant was 8.9 mL. All participants underwent injection of Tissuefill mixed with PRP, Q.O.Fill. The results were evaluated using photographs and according to patients' satisfaction. RESULTS: Six months after the last injection, 100% of participants had improvement. At month 6, 97.3% of participants remained least improved over the baseline, and 90.7% felt much better or a little better until 2 years after the injection. The incidence of complications was low. CONCLUSIONS: The study showed that Q.O.Fill injection resulted in a very good aesthetic outcome and few adverse events. We believe that a facial augmentation with Tissuefill mixed with PRP is a safe and effective treatment method.


Assuntos
Técnicas Cosméticas/efeitos adversos , Ácido Hialurônico/análogos & derivados , Ácido Hialurônico/efeitos adversos , Sulco Nasogeniano , Plasma Rico em Plaquetas , Envelhecimento da Pele/efeitos dos fármacos , Adulto , Cânula , Edema/etiologia , Eritema/etiologia , Feminino , Seguimentos , Testa , Humanos , Injeções Intradérmicas/métodos , Masculino , Satisfação do Paciente , Fotografação , Rejuvenescimento/fisiologia , República da Coreia , Estudos Retrospectivos , Resultado do Tratamento
4.
Biochim Biophys Acta Bioenerg ; 1860(2): 167-179, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30550726

RESUMO

The ubihydroquinone:cytochrome (cyt) c oxidoreductase (or cyt bc1) is an important enzyme for photosynthesis and respiration. In bacteria like Rhodobacter capsulatus, this membrane complex has three subunits, the iron­sulfur protein (ISP) with its Fe2S2 cluster, cyt c1 and cyt b, forming two catalytic domains, the Qo (hydroquinone (QH2) oxidation) and Qi (quinone (Q) reduction) sites. At the Qo site, the electron transfer pathways originating from QH2 oxidation are known, but their associated proton release routes are less well defined. Earlier, we demonstrated that the His291 of cyt b is important for this latter process. In this work, using the bacterial cyt bc1 and site directed mutagenesis, we show that Lys329 of cyt b is also critical for electron and proton transfer at the Qo site. Of the mutants examined, Lys329Arg was photosynthesis proficient and had quasi-wild type cyt bc1 activity. In contrast, the Lys329Ala and Lys329Asp were photosynthesis-impaired and contained defective but assembled cyt bc1. In particular, the bifurcated electron transfer and associated proton(s) release reactions occurring during QH2 oxidation were drastically impaired in Lys329Asp mutant. Furthermore, in silico docking studies showed that in this mutant the location and the H-bonding network around the Fe2S2 cluster of ISP on cyt b surface was different than the wild type enzyme. Based on these experimental findings and theoretical considerations, we propose that the presence of a positive charge at position 329 of cyt b is critical for efficient electron transfer and proton release for QH2 oxidation at the Qo site of cyt bc1.


Assuntos
Citocromos b/química , Lisina/metabolismo , Rhodobacter capsulatus/metabolismo , Citocromos b/metabolismo , Transporte de Elétrons , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Mutagênese Sítio-Dirigida , Oxirredução , Fotossíntese/genética , Prótons , Rhodobacter capsulatus/enzimologia , Rhodobacter capsulatus/genética , Ubiquinona/metabolismo
5.
Biochim Biophys Acta ; 1857(11): 1796-1806, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27550309

RESUMO

The ubiquinol:cytochrome (cyt) c oxidoreductase (or cyt bc1) is an important membrane protein complex in photosynthetic and respiratory energy transduction. In bacteria such as Rhodobacter capsulatus it is constituted of three subunits: the iron-sulfur protein, cyt b and cyt c1, which form two catalytic domains, the Qo (hydroquinone (QH2) oxidation) and Qi (quinone (Q) reduction) sites. At the Qo site, the pathways of bifurcated electron transfers emanating from QH2 oxidation are known, but the associated proton release routes are not well defined. In energy transducing complexes, Zn2+ binding amino acid residues often correlate with proton uptake or release pathways. Earlier, using combined EXAFS and structural studies, we identified Zn coordinating residues of mitochondrial and bacterial cyt bc1. In this work, using the genetically tractable bacterial cyt bc1, we substituted each of the proposed Zn binding residues with non-protonatable side chains. Among these mutants, only the His291Leu substitution destroyed almost completely the Qo site catalysis without perturbing significantly the redox properties of the cofactors or the assembly of the complex. In this mutant, which is unable to support photosynthetic growth, the bifurcated electron transfer reactions that result from QH2 oxidation at the Qo site, as well as the associated proton(s) release, were dramatically impaired. Based on these findings, on the putative role of His291 in liganding Zn, and on its solvent exposed and highly conserved position, we propose that His291 of cyt b is critical for proton release associated to QH2 oxidation at the Qo site of cyt bc1.


Assuntos
Proteínas de Bactérias/química , Complexo III da Cadeia de Transporte de Elétrons/química , Histidina/metabolismo , Zinco/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Histidina/química , Histidina/genética , Oxirredução , Rhodobacter capsulatus/enzimologia , Rhodobacter capsulatus/metabolismo , Ubiquinona/metabolismo
6.
Biochim Biophys Acta ; 1827(10): 1156-64, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23800966

RESUMO

The impact of complex II (succinate:ubiquinone oxidoreductase) on the mitochondrial production of reactive oxygen species (ROS) has been underestimated for a long time. However, recent studies with intact mitochondria revealed that complex II can be a significant source of ROS. Using submitochondrial particles from bovine heart mitochondria as a system that allows the precise setting of substrate concentrations we could show that mammalian complex II produces ROS at subsaturating succinate concentrations in the presence of Q-site inhibitors like atpenin A5 or when a further downstream block of the respiratory chain occurred. Upon inhibition of the ubiquinone reductase activity, complex II produced about 75% hydrogen peroxide and 25% superoxide. ROS generation was attenuated by all dicarboxylates that are known to bind competitively to the substrate binding site of complex II, suggesting that the oxygen radicals are mainly generated by the unoccupied flavin site. Importantly, the ROS production induced by the Q-site inhibitor atpenin A5 was largely unaffected by the redox state of the Q pool and the activity of other respiratory chain complexes. Hence, complex II has to be considered as an independent source of mitochondrial ROS in physiology and pathophysiology.


Assuntos
Ciclo do Ácido Cítrico/efeitos dos fármacos , Ácidos Dicarboxílicos/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácido Succínico/metabolismo , Animais , Sítios de Ligação , Bovinos , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo I de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Piridonas/farmacologia , Superóxidos/metabolismo , Ubiquinona/metabolismo
7.
Biochim Biophys Acta ; 1827(11-12): 1309-19, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22985600

RESUMO

The cytochrome bc1 complex (ubiquinone:cytochrome c oxidoreductase) is the central integral membrane protein in the mitochondrial respiratory chain as well as the electron-transfer chains of many respiratory and photosynthetic prokaryotes. Based on X-ray crystallographic studies of cytochrome bc1, a mechanism has been proposed in which the extrinsic domain of the iron-sulfur protein first binds to cytochrome b where it accepts an electron from ubiquinol in the Qo site, and then rotates by 57° to a position close to cytochrome c1 where it transfers an electron to cytochrome c1. This review describes the development of a ruthenium photooxidation technique to measure key electron transfer steps in cytochrome bc1, including rapid electron transfer from the iron-sulfur protein to cytochrome c1. It was discovered that this reaction is rate-limited by the rotational dynamics of the iron-sulfur protein rather than true electron transfer. A conformational linkage between the occupant of the Qo ubiquinol binding site and the rotational dynamics of the iron-sulfur protein was discovered which could play a role in the bifurcated oxidation of ubiquinol. A ruthenium photoexcitation method is also described for the measurement of electron transfer from cytochrome c1 to cytochrome c. This article is part of a Special Issue entitled: Respiratory Complex III and related bc complexes.


Assuntos
Citocromos c/química , Complexo III da Cadeia de Transporte de Elétrons/química , Compostos Organometálicos/química , Rutênio/química , Citocromos c/metabolismo , Citocromos c1/metabolismo , Transporte de Elétrons , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Modelos Moleculares , Compostos Organometálicos/metabolismo , Oxirredução/efeitos da radiação , Conformação Proteica , Rutênio/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/química , Ubiquinona/metabolismo
8.
Biochim Biophys Acta ; 1827(11-12): 1346-61, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23220121

RESUMO

The bc1 complex or complex III is a central component of the aerobic respiratory chain in prokaryotic and eukaryotic organisms. It catalyzes the oxidation of quinols and the reduction of cytochrome c, establishing a proton motive force used to synthesize adenosine triphosphate (ATP) by the F1Fo ATP synthase. In eukaryotes, the complex III is located in the inner mitochondrial membrane. The genes coding for the complex III have a dual origin. While cytochrome b is encoded by the mitochondrial genome, all the other subunits are encoded by the nuclear genome. In this review, we compile an exhaustive list of the known human mutations and associated pathologies found in the mitochondrially-encoded cytochrome b gene as well as the fewer mutations in the nuclear genes coding for the complex III structural subunits and accessory proteins such as BCS1L involved in the assembly of the complex III. Due to the inherent difficulties of studying human biopsy material associated with complex III dysfunction, we also review the work that has been conducted to study the pathologies with the easy to handle eukaryotic microorganism, the yeast Saccharomyces cerevisiae. Phenotypes, biochemical data and possible effects due to the mutations are also discussed in the context of the known three-dimensional structure of the eukaryotic complex III. This article is part of a Special Issue entitled: Respiratory complex III and related bc complexes.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Miopatias Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/genética , Humanos , Miopatias Mitocondriais/genética , Modelos Moleculares , Mutação , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
9.
Biochim Biophys Acta ; 1827(11-12): 1320-31, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23269318

RESUMO

Apart from complex I (NADH:ubiquinone oxidoreductase) the mitochondrial cytochrome bc1 complex (complex III; ubiquinol:cytochrome c oxidoreductase) has been identified as the main producer of superoxide and derived reactive oxygen species (ROS) within the mitochondrial respiratory chain. Mitochondrial ROS are generally linked to oxidative stress, aging and other pathophysiological settings like in neurodegenerative diseases. However, ROS produced at the ubiquinol oxidation center (center P, Qo site) of complex III seem to have additional physiological functions as signaling molecules during cellular processes like the adaptation to hypoxia. The molecular mechanism of superoxide production that is mechanistically linked to the electron bifurcation during ubiquinol oxidation is still a matter of debate. Some insight comes from extensive kinetic studies with mutated complexes from yeast and bacterial cytochrome bc1 complexes. This review is intended to bridge the gap between those mechanistic studies and investigations on complex III ROS in cellular signal transduction and highlights factors that impact superoxide generation. This article is part of a Special Issue entitled: Respiratory complex III and related bc complexes.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Membranas Mitocondriais/metabolismo , Superóxidos/metabolismo , Transporte de Elétrons , Complexo III da Cadeia de Transporte de Elétrons/química , Heme/química , Heme/metabolismo , Humanos , Modelos Químicos , Modelos Moleculares , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Superóxidos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA