RESUMO
This research aimed to produce gluten-free snacks on a pilot scale from quinoa flour. These snacks experienced an extrusion process, followed by baking. The effects of these technological processes on carbohydrate and protein digestibility, extractable phenolic compounds (EPP), hydrolyzable phenolic compounds (HPP), antioxidant capacity, and physical properties were evaluated in raw quinoa flour and extruded snacks. Extrusion increased digestible starch (RDS) from 7.33 g/100 g bs to 77.33 g /100 g bs. Resistant starch (RS) showed a variation of 2 g/100 g bs. It is noteworthy that protein digestibility increased up to 94.58 g/100 bs after extrusion and baking. These processes increased HPP content, while EPP and carotenoid content decreased. The samples showed significant differences (p < 0.05) in the antioxidant properties determined through the DPPH and ABTS methods. Values of 19.72 ± 0.81 µmol T/g were observed in snacks and 13.16 ± 0.2 µmol T/g in raw flour, but a reduction of up to 16.10 ± 0.68 µmol T/g was observed during baking. The baking process reduced the work of crispness (Wcr) from 0.79 to 0.23 N.mm, while the saturation (C*) was higher in baked ones, showing higher color intensity. The baking process did not influence the viscosity profile. The results in this study respond to the growing interest of the food industry to satisfy consumer demand for new, healthy, and expanded gluten-free snacks with bioactive compounds.
RESUMO
BACKGROUND: Lately, there has been an increasing interest in using plant-derived proteins for wine phenolic fining. Proteins extracted from cereals, potatoes, and legumes have been proposed as effective fining agents, but only those from pea, wheat, and potatoes have been approved for their use in wine. This work aimed at determining the fining ability of quinoa (Chenopodium quinoa Willd.) protein extracts (QP), compared to commercial fining agents, on red wines. RESULTS: The trials compared the performance of QP (30 and 50 g/hL), two potato protein extracts and gelatin, at two different contact times (48 and 96 h), using Petit Verdot, Malbec, and Cabernet Sauvignon wines. Turbidity, total phenolics, precipitable tannins, catechins, and color characteristics were determined. QP reduced the turbidity of all wines in a similar way to commercial fining agents. Both doses of QP significantly reduced tannins and other phenolic measures, including color intensity reductions, in a similar way to commercial fining agents. CONCLUSION: QP behaved as an effective fining agent that deserves further studies in order to improve its performance and advance its characterization. © 2022 Society of Chemical Industry.
Assuntos
Chenopodium quinoa , Solanum tuberosum , Vitis , Gelatina , Fenóis , Proteínas de Plantas , Taninos/química , Vitis/químicaRESUMO
Supercritical fluids' extraction (SFE) and conventional solvent extraction (CSE) for defatting of quinoa flour as pretreatments to produce the quinoa protein hydrolysate (QPH) were studied. The objective was to extract the oil and separate the phenolic compounds (PC) and the defatted quinoa flour for subsequent quinoa protein extraction and enzymatic hydrolysis. The oil extraction yield (OEY), total flavonoid content (TFC), and QPH yield were compared. SuperPro Designer 9.0® software was used to estimate the cost of manufacturing (COM), productivity, and net present value (NPV) on laboratory and industrial scales. SFE allows higher OEY and separation of PC. The SFE oil showed a higher OEY (99.70%), higher antioxidant activity (34.28 mg GAE/100 g), higher QPH yield (197.12%), lower COM (US$ 90.10/kg), and higher NPV (US$ 205,006,000) as compared to CSE (with 77.59%, 160.52%, US$ 109.29/kg, and US$ 28,159,000, respectively). The sensitivity analysis showed that the sale of by-products improves the economic results: at the industrial scale, no significant differences were found, and both processes are economically feasible. However, results indicate that SFE allows the recovery of an oil and QPH of better nutritional quality and a high level of purity-free organic solvents for further health and nutraceutical uses.
RESUMO
Red, black and white seeds quinoa were germinated at 28 °C during 24 (G1), 48 and 72 h (G3). Red quinoa presented a higher percentage of germination with a value of 46% of germination at 72 h. Quinoa protein isolate (QPI) was obtained by alkaline extraction (pH 8.0) followed by an isoelectric precipitation (pH 4.5) from white, red and black quinoa seeds, germinated QPI-G1 or QPI-G3 and non-germinated QPI-NG, Chenopodium quinoa Willd var. Real. QPI-G1, QPI-G3 and QPI-NG were subject to a simulated gastric digestion (DG) and in vitro duodenal digestion (DD). The antioxidant activity was evaluated using the 1, 1-diphenyl-2-picryl hydrazyl (DPPH), azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and oxygen radical absorbance capacity (ORAC) methods. Gastric and duodenal digest of QPI-NG and QPI-G1 and QPI-G3 from white, red and black quinoa presented antioxidant activity. QPI-G1-DD of white quinoa presented the highest antioxidant activity with a DPPH value of 167.98 µmoL TE/g of digest, QPI-G1-DD of red quinoa with an ABTS value of 204.86 µmoL TE/g of digest and QPI-G1-DD of black quinoa with an ORAC value of 401.42 µmoL TE/g of digest. QPI-G3-DD of white quinoa presented higher antioxidant activity with a DPPH value of 186.28 µmoL TE/g of sample, QPI-G3-DD of red quinoa with an ABTS value of 144.06 µmoL TE/g of digest and QPI-G3-DD of black quinoa with an ORAC value of 395.14 µmoL TE/g of digest. The inhibition of reactive oxygen species (ROS) production in the zebrafish embryo model (Danio rerio) was evaluated. Protein profiles of QPI from white, red and black from germinated quinoa and non-germinated quinoa were similar with proteins between 10 kDa to 100 kDa with the presence of globulins 11S and 7S and 2S albumins.
RESUMO
Because of the continuous and direct interaction between the digestive tract and foods, dietary compounds represent an interesting source of chemopreventive agents for gastrointestinal health. In this study, the influence of a standardized static in vitro gastrointestinal digestion model on the release of peptides with chemopreventive potential from quinoa protein was investigated. Gastroduodenal digests and fractions collected by ultrafiltration were evaluated for their in plate oxygen radical absorbance capacity and in vitro colon cancer cell viability inhibitory activity. Highest effects were observed in the digests obtained during the intestinal phase, with fraction containing peptides <5kDa as the main responsible for the antioxidant activity and peptides >5kDa showing the greatest anti-cancer effects. Seventeen potential bioactive peptides derived from quinoa proteins have been identified. These proteins might be utilized as new ingredients in the development of functional foods or nutraceuticals with the aim of reducing oxidative stress-associated diseases, including cancer.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Chenopodium quinoa/química , Neoplasias do Colo/tratamento farmacológico , Proteínas Alimentares/farmacologia , Digestão , Suco Gástrico/química , Secreções Intestinais/química , Fragmentos de Peptídeos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/patologia , Proteínas Alimentares/química , Proteínas Alimentares/metabolismo , Relação Dose-Resposta a Droga , Células HCT116 , Células HT29 , Humanos , Concentração de Íons de Hidrogênio , Concentração Inibidora 50 , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismoRESUMO
Thymol nanoemulsions were produced by spontaneous emulsification, ultrasound, and a combination of both methods. The best result in terms of size and polydispersion was spontaneous emulsification where thymol was efficiently encapsulated, the nanoemulsions inhibited Botrytis cinerea at 110â¯ppm of thymol. A 10% dilution of this nanoemulsion in water was used to prepare quinoa-chitosan films. The film microstructure was porous and heterogeneous. The tensile strength of the film was significantly lower but its mean elongation at break was similar to that of the control film. The water vapour permeability was similar to that of the control film. The effect of nanoemulsion-thymol-quinoa protein/chitosan coating on mould growth in inoculated cherry tomatoes was evaluated. Compared with control samples (tomatoes without coating and those coated with quinoa protein/chitosan), tomatoes with this coating and inoculated with B. cinerea showed a significant decrease in fungal growth after 7â¯days at 5⯰C.
Assuntos
Antifúngicos/farmacologia , Chenopodium quinoa/química , Embalagem de Alimentos/métodos , Solanum lycopersicum/efeitos dos fármacos , Timol/química , Antifúngicos/química , Botrytis/efeitos dos fármacos , Quitosana/química , Emulsões/química , Microbiologia de Alimentos , Solanum lycopersicum/microbiologia , Nanoestruturas/química , Permeabilidade , Proteínas de Plantas/química , Timol/farmacologia , Água/químicaRESUMO
Quinoa protein concentrate (QPC) was extracted and digested under in vitro gastrointestinal conditions. The protein content of QPC was in the range between 52.40 and 65.01% depending on the assay used. Quinoa proteins were almost completely hydrolyzed by pepsin at pH of 1.2, 2.0, and 3.2. At high pH, only partial hydrolysis was observed. During the duodenal phase, no intact proteins were visible, indicating their susceptibility to the in vitro simulated digestive conditions. Zebrafish larvae model was used to evaluate the in vivo ability of gastrointestinal digests to inhibit lipid peroxidation. Gastric digestion at pH 1.2 showed the highest lipid peroxidation inhibition percentage (75.15%). The lipid peroxidation activity increased after the duodenal phase. The digest obtained at the end of the digestive process showed an inhibition percentage of 82.10%, comparable to that showed when using BHT as positive control (87.13%).
Assuntos
Chenopodium quinoa/química , Peroxidação de Lipídeos/efeitos dos fármacos , Proteínas de Plantas/farmacologia , Animais , Digestão/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Larva , Proteínas de Plantas/química , Peixe-ZebraRESUMO
BACKGROUND: The aim of this study was to evaluate quinoa protein (Q), chitosan (CH) and sunflower oil (SO) as edible film material as well as the influence of this coating in extending the shelf-life of fresh blueberries stored at 4 °C and 75% relative humidity. These conditions were used to simulate the storage conditions in supermarkets and represent adverse conditions for testing the effects of the coating. The mechanical, barrier, and structural properties of the film were measured. The effectiveness of the coating in fresh blueberries (CB) was evaluated by changes in weight loss, firmness, color, molds and yeast count, pH, titratable acidity, and soluble solids content. RESULTS: The tensile strength and elongation at break of the edible film were 0.45 ± 0.29 MPa and 117.2% ± 7%, respectively. The water vapor permeability was 3.3 × 10(-12) ± 4.0 × 10(-13) g s(-1) m(-1) Pa(-1). In all of the color parameters CB presented significant differences. CB had slight delayed fruit ripening as evidenced by higher titratable acidity (0.3-0.5 g citric acid 100 g(-1)) and lower pH (3.4-3.6) than control during storage; however, it showed reduced firmness (up to 38%). CONCLUSION: The use of Q/CH/SO as a coating in fresh blueberries was able to control the growth of molds and yeasts during 32 days of storage, whereas the control showed an increasing of molds and yeast, between 1.8 and 3.1 log cycles (between 20 and 35 days).
Assuntos
Mirtilos Azuis (Planta) , Embalagem de Alimentos , Conservação de Alimentos/métodos , Frutas , Chenopodium quinoa/química , Quitosana , Embalagem de Alimentos/instrumentação , Frutas/microbiologia , Fungos/crescimento & desenvolvimento , Microscopia Eletrônica de Varredura , Permeabilidade , Óleos de Plantas , Proteínas de Plantas , Óleo de Girassol , Resistência à Tração , Fatores de Tempo , Água , LevedurasRESUMO
Background Strawberries are non-climacteric fruits with a low respiration rate, but are subject to serious fungal deterioration during postharvest handling. The edible coatings based on chitosan (CH), quinoa protein-chitosan (Q/CH) and quinoa protein-chitosan-sunflower oil (Q/CH/SO) may provide a solution to this problem. Thus, in this work CH, Q/CH and Q/CH/SO were elaborated and applied to fresh strawberries, and its effect on the strawberries shelf life during storage for 15 d was evaluated by mold and yeast count, fungal decay, carbon dioxide rate, physicochemical properties, and sensory evaluation. Results On all analysis days, the strawberries coated with the film-forming CH, Q/CH and Q/CH/SO solutions presented a significant lower amount of mold and yeast growth than the uncoated strawberries. Coated strawberries with Q/CH/SO decreased the CO2 emission rate by 60% compared to the uncoated strawberries. The color of the strawberries was not influenced by the films. There was no significant difference between the different coating groups and the uncoated group in the physicochemical parameters. Sensory analysis showed that the coating application retained the total sensorial quality. Conclusions Fresh strawberries coated with CH, Q/CH/SO and Q/CH edible films had longer shelf lives than uncoated fruits.