Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 575
Filtrar
1.
JACC Basic Transl Sci ; 9(5): 631-648, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38984049

RESUMO

RNA-binding proteins play multiple roles in several biological processes. However, the roles of RBM15-an important RNA-binding protein and a significant regulator of RNA methylation-in cardiovascular diseases remain elusive. This study aimed to investigate the biological function of RBM15 and its fundamental mechanisms in myocardial infarction (MI). Methylated RNA immunoprecipitation sequencing was used to explore the N6-methyladenosine (m6A) difference between MI and normal tissues. Our findings showed the elevated level of m6A in MI, and its transcription profile in both MI and normal tissues. RBM15 was the main regulator and its overexpression attenuated apoptosis in cardiomyocytes and improved cardiac function in mice after MI. Then, we used one target NEDD8 activating enzyme E1 subunit and its inhibitor (MLN4924) to investigate the impact of RBM15 targets on cardiomyocytes. Finally, the enhanced m6A methylation in the presence of RBM15 overexpression led to the increased expression and stability of NEDD8 activating enzyme E1 subunit. Our findings suggest that the enhanced m6A level is a protective mechanism in MI, and RBM15 is significantly upregulated in MI and promotes cardiac function. This study showed that RBM15 affected MI by stabilizing its target on the cell apoptosis function, which might provide a new insight into MI therapy.

3.
MedComm (2020) ; 5(7): e633, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38952575

RESUMO

cAMP responsive element binding protein 3 (CREB3), belonging to bZIP family, was reported to play multiple roles in various cancers, but its role in hepatocellular carcinoma (HCC) is still unclear. cAMP responsive element binding protein 3 like 3 (CREB3L3), another member of bZIP family, was thought to be transcription factor (TF) to regulate hepatic metabolism. Nevertheless, except for being TFs, other function of bZIP family were poorly understood. In this study, we found CREB3 inhibited growth and metastasis of HCC in vitro and in vivo. RNA sequencing indicated CREB3 regulated AKT signaling to influence HCC progression. Mass spectrometry analysis revealed CREB3 interacted with insulin receptor (INSR). Mechanistically, CREB3 suppressed AKT phosphorylation by inhibiting the interaction of INSR with insulin receptor substrate 1 (IRS1). In our study, CREB3 was firstly proved to affect activation of substrates by interacting with tyrosine kinase receptor. Besides, CREB3 could act as a TF to transactivate RNA-binding motif protein 38 (RBM38) expression, leading to suppressed AKT phosphorylation. Rescue experiments further confirmed the independence between the two functional manners. In conclusion, CREB3 acted as a tumor suppressor in HCC, which inhibited AKT phosphorylation through independently interfering interaction of INSR with IRS1, and transcriptionally activating RBM38.

4.
FASEB J ; 38(11): e23718, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38847487

RESUMO

Female carriers of a Duchenne muscular dystrophy (DMD) gene mutation manifest exercise intolerance and metabolic anomalies that may be exacerbated following menopause due to the loss of estrogen, a known regulator of skeletal muscle function and metabolism. Here, we studied the impact of estrogen depletion (via ovariectomy) on exercise tolerance and muscle mitochondrial metabolism in female mdx mice and the potential of estrogen replacement therapy (using estradiol) to protect against functional and metabolic perturbations. We also investigated the effect of estrogen depletion, and replacement, on the skeletal muscle proteome through an untargeted proteomic approach with TMT-labelling. Our study confirms that loss of estrogen in female mdx mice reduces exercise capacity, tricarboxylic acid cycle intermediates, and citrate synthase activity but that these deficits are offset through estrogen replacement therapy. Furthermore, ovariectomy downregulated protein expression of RNA-binding motif factor 20 (Rbm20), a critical regulator of sarcomeric and muscle homeostasis gene splicing, which impacted pathways involving ribosomal and mitochondrial translation. Estrogen replacement modulated Rbm20 protein expression and promoted metabolic processes and the upregulation of proteins involved in mitochondrial dynamics and metabolism. Our data suggest that estrogen mitigates dystrophinopathic features in female mdx mice and that estrogen replacement may be a potential therapy for post-menopausal DMD carriers.


Assuntos
Estrogênios , Camundongos Endogâmicos mdx , Músculo Esquelético , Proteínas de Ligação a RNA , Animais , Feminino , Camundongos , Estrogênios/metabolismo , Estrogênios/farmacologia , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/genética , Camundongos Endogâmicos C57BL , Ovariectomia , Mitocôndrias/metabolismo , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/efeitos dos fármacos
5.
BMC Cancer ; 24(1): 758, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914961

RESUMO

BACKGROUND: Colon cancer (CC) is a malignancy associated with significant morbidity and mortality within the gastrointestinal tract. Recurrence and metastasis are the main factors affecting the prognosis of CC patients undergoing radical surgery; consequently, we attempted to determine the impact of immunity-related genes. RESULT: We constructed a CC risk model based on ZG16, MPC1, RBM47, SMOX, CPM and DNASE1L3. Consistently, we found that a significant association was found between the expression of most characteristic genes and tumor mutation burden (TMB), microsatellite instability (MSI) and neoantigen (NEO). Additionally, a notable decrease in RBM47 expression was observed in CC tissues compared with that in normal tissues. Moreover, RBM47 expression was correlated with clinicopathological characteristics and improved disease-free survival (DFS) and overall survival (OS) among patients with CC. Lastly, immunohistochemistry and co-immunofluorescence staining revealed a clear positive correlation between RBM47 and CXCL13 in mature tertiary lymphoid structures (TLS) region. CONCLUSION: We conclude that RBM47 was identified as a prognostic-related gene, which was of great significance to the prognosis evaluation of patients with CC and was correlated with CXCL13 in the TLS region.


Assuntos
Biomarcadores Tumorais , Neoplasias do Colo , Instabilidade de Microssatélites , Humanos , Neoplasias do Colo/genética , Neoplasias do Colo/imunologia , Neoplasias do Colo/patologia , Neoplasias do Colo/mortalidade , Prognóstico , Masculino , Feminino , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Pessoa de Meia-Idade , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Idoso , Mutação , Regulação Neoplásica da Expressão Gênica , Intervalo Livre de Doença
6.
Biomolecules ; 14(6)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38927106

RESUMO

Dilated cardiomyopathy (DCM) is a common cause of heart failure (HF) and heart transplantation (HTx), with genetic factors playing a significant role. In recent years, the RNA-binding protein motif 20 (RBM20), which affects the gene splicing of various proteins with different cellular functions, was identified as the first DCM gene with regulatory properties. Variants of RBM20 have been associated with severe forms of DCM. The aim of this critical systematic review was to analyse RBM20 cardiomyopathy clinical features and outcomes. According to PRISMA guidelines, a search was run in the PubMed, Scopus and Web of Science electronic databases using the following keywords: "RBM20"; "cardiomyopathy"; "arrhythmias"; "heart failure". A total of 181 records were screened, of which 27 studies were potentially relevant to the topic. Through the application of inclusion and exclusion criteria, eight papers reporting 398 patients with RBM20 pathogenic variants were analysed. The mean age at presentation was 41 years. Familiarity with cardiomyopathy was available in 59% of cases, with 55% of probands reporting a positive family history. Imaging data indicated a mild reduction of left ventricular ejection fraction (mean LVEF 40%), while tissue characterization was reported in 24.3% of cases, showing late gadolinium enhancement in 33% of patients. Composite outcomes of sustained monomorphic ventricular tachycardia or ventricular fibrillation occurred in 19.4% of patients, with 12% undergoing HTx. There were no gender differences in arrhythmic outcomes, while 96.4% of patients who underwent HTx were male. In conclusion, RBM20 cardiomyopathy exhibits a severe phenotypic expression, both in terms of arrhythmic burden and HF progression.


Assuntos
Cardiomiopatia Dilatada , Proteínas de Ligação a RNA , Humanos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Cardiomiopatia Dilatada/genética , Masculino , Feminino , Adulto
7.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167304, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38878830

RESUMO

Pancreatic cancer (PC) responds weakly to conventional immunotherapy. RNA N6-methyladenosine (m6A) modification has an essential role in the immune response, while its potential role in PC tumor microenvironment (TME) immune cell infiltration remains unknown. In this study, we thoroughly assessed the m6A modification patterns of 472 PC samples using 19 m6A regulators, and we systematically correlated these modification patterns with TME immune cell infiltration characteristics. We also created the m6Ascore and evaluated the m6A modification patterns of individual tumors, identified three different m6A modification patterns, and explored the role of the important m6A "writer" RBM15 in the regulation of macrophage function in PC. Two independent PC cohorts confirmed that patients with higher m6Ascore showed significant survival benefit. We verified that knockdown of RBM15 has the ability to inhibit PC growth and to promote macrophage infiltration and enhance phagocytosis of PC cells by macrophages. In conclusion, m6A modifications play a non-negligible role in the formation of TME diversity and complexity in PC. We reveal that inhibition of RBM15 suppresses PC development and modulates macrophage phagocytosis, and provide a more effective immunotherapeutic strategy for PC.

8.
Front Oncol ; 14: 1375942, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915367

RESUMO

In the contemporary epoch, cancer stands as the predominant cause of premature global mortality, necessitating a focused exploration of molecular markers and advanced therapeutic strategies. N6-methyladenosine (m6A), the most prevalent mRNA modification, undergoes dynamic regulation by enzymes referred to as methyltransferases (writers), demethylases (erasers), and effective proteins (readers). Despite lacking methylation activity, RNA-binding motif protein 15 (RBM15), a member of the m6A writer family, assumes a crucial role in recruiting the methyltransferase complex (MTC) and binding to mRNA. Although the impact of m6A modifications on cancer has garnered widespread attention, RBM15 has been relatively overlooked. This review briefly outlines the structure and operational mechanism, and delineates the unique role of RBM15 in various cancers, shedding light on its molecular basis and providing a groundwork for potential tumor-targeted therapies.

9.
Cell Rep ; 43(6): 114338, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38850530

RESUMO

The game between therapeutic monoclonal antibodies (mAbs) and continuously emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has favored the virus, as most therapeutic mAbs have been evaded. Addressing this challenge, we systematically explored a reproducible bispecific antibody (bsAb)-dependent synergistic effect in this study. It could effectively restore the neutralizing activity of the bsAb when any of its single mAbs is escaped by variants. This synergy is primarily attributed to the binding angle of receptor-binding domain (RBD)-5, facilitating inter-spike cross-linking and promoting cryptic epitope exposure that classical antibody cocktails cannot achieve. Furthermore, RBD-5 with RBD-2, RBD-6, and RBD-7, alongside RBD-8, also exhibit significantly enhanced effects. This study not only shifts the paradigm in understanding antibody interactions but paves the way for developing more effective therapeutic antibodies against rapidly mutating SARS-CoV-2, with Dia-19 already showing promise against emerging variants like BA.2.86, EG.5.1, and JN.1.


Assuntos
Anticorpos Biespecíficos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2/imunologia , Humanos , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/farmacologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/virologia , COVID-19/terapia , Glicoproteína da Espícula de Coronavírus/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Epitopos/imunologia , Ligação Proteica , Animais
10.
Transl Oncol ; 46: 102018, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38838436

RESUMO

Invasion and migration are the primary factors for mortality in lung adenocarcinoma (LUAD) patients. The precise role of RNA-binding motif protein15 (RBM15)-mediated m6A modification in LUAD is not yet fully clarified. This research aims to elucidate the mechanism of RBM15 in the invasion and migration of LUAD. Western blot and dot blot assay results showed that RBM15 and methylation levels of m6A were highly expressed in LUAD tissues. Overexpression of RBM15 by lentivirus transfection increased m6A levels and promoted the invasion, migration, and proliferation of A549 and H1734 cells. Knockdown of RBM15 by lentivirus transfection had opposite effects on m6A levels, invasion, migration, and proliferation of A549 and H1734 cells. The results of nude mouse proliferation models confirmed that RBM15 knockdown inhibited in vivo tumor proliferation . Sequencing and immunoprecipitation identified RASSF8 as an interacting protein of RBM15 involved in cell invasion and migration. RBM15-mediated m6A modification inhibited RASSF8 protein levels and increased LUAD cell invasion and migration. The rescue assays demonstrated that the regulation of RBM15 on LUAD cell invasion and migration was partially rescued by RASSF8. In conclusion, RBM15-mediated m6A modification inhibits the RASSF8 protein levels and increases cell invasion and migration. Thus, targeting the RBM15-m6A-RASSF8 axis may be a promising strategy for repressing LUAD cell invasion and migration.

11.
Development ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884383

RESUMO

The specialized cell cycle of meiosis transforms diploid germ cells into haploid gametes. In mammals, diploid spermatogenic cells acquire the competence to initiate meiosis in response to retinoic acid. Previous mouse studies revealed that MEIOC interacts with RNA-binding proteins YTHDC2 and RBM46 to repress mitotic genes and promote robust meiotic gene expression in spermatogenic cells that have initiated meiosis. Here, we used the enhanced resolution of scRNA-seq, and bulk RNA-seq of developmentally synchronized spermatogenesis, to define how MEIOC molecularly supports early meiosis in spermatogenic cells. We demonstrate that MEIOC mediates transcriptomic changes before meiotic initiation, earlier than previously appreciated. MEIOC, acting with YTHDC2 and RBM46, destabilizes its mRNA targets, including transcriptional repressors E2f6 and Mga, in mitotic spermatogonia. MEIOC thereby derepresses E2F6- and MGA-repressed genes, including Meiosin and other meiosis-associated genes. This confers on spermatogenic cells the molecular competence to, in response to retinoic acid, fully activate transcriptional regulator STRA8-MEIOSIN, required for the meiotic G1/S phase transition and meiotic gene expression. We conclude that in mice, mRNA decay mediated by MEIOC-YTHDC2-RBM46 enhances the competence of spermatogenic cells to initiate meiosis.

12.
Cancer Lett ; 595: 217002, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-38823761

RESUMO

The mechanism underlying N6-methyladenosine (m6A) modification in bladder cancer (BC) remains elusive. We identified that the RBM15/METTL3 complex enhances m6A modification and promotes the ENO1 protein translation efficiency through its 359A site by depending on YTHDF1 in BC cells. In the tumor microenvironment, TGF-ß effectively stimulates RBM15/METTL3 expression to improve ENO1 mRNA m6A modification through the Smad2/3 pathway. Reduced ENO1 m6A levels hamper tumor proliferation both in vitro and in vivo. Mechanistically, ENO1 augments PCNA protein stability by reducing its K48-linked ubiquitination and thus prevents protein degradation through the endoplasmic reticulum-associated degradation pathway. According to the subsequent experiments, the ENO1 inhibitor significantly reduced tumor proliferation both in vitro and in vivo. Our study highlights the significance of RBM15/METTL3 complex-mediated ENO1 mRNA m6A modification in ENO1 expression. It also reveals a novel mechanism by which ENO1 promotes BC progression, thereby suggesting that ENO1 can be a therapeutic target for BC.


Assuntos
Adenosina , Proliferação de Células , Proteínas de Ligação a DNA , Progressão da Doença , Fosfopiruvato Hidratase , Proteínas de Ligação a RNA , Proteínas Supressoras de Tumor , Ubiquitinação , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Humanos , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Animais , Fosfopiruvato Hidratase/metabolismo , Fosfopiruvato Hidratase/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Camundongos , Metiltransferases/metabolismo , Metiltransferases/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Camundongos Nus , Biomarcadores Tumorais , Antígeno Nuclear de Célula em Proliferação
13.
Heliyon ; 10(11): e32287, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38912481

RESUMO

Background: RBM10 is commonly mutated in lung adenocarcinoma (LUAD). However, its role in the pathogenesis of LUAD remains undefined. EGFR-mutant LUAD represents a distinct subset of non-small cell lung cancer (NSCLC). The function of RBM10 in tumor pathogenesis is supposed to differ between EGFR-mutant and EGFR-wt LUAD. This study aimed to interrogate the prevalence of RBM10 mutation in a large cohort of Chinese patients with LUAD and investigate the association of RBM10 mutation with clinical and molecular characteristics of EGFR-mutant and EGFR-wt LUAD. Methods: Tumor sequencing data from 2848 Chinese patients with LUAD were retrospectively reviewed and analyzed. The prevalence of RBM10 was also compared with other three cohorts: OrigMed (n = 1222), MSKCC (n = 1267), and TCGA (n = 566). The associations of RBM10 mutation with clinical and molecular characteristics were assessed. An external cohort of 182 patients with LUAD who received PD-1 inhibitor were used to investigate the association of RBM10 mutation with clinical outcomes upon immunotherapy. Results: Our cohort showed a higher prevalence of RBM10 in EGFR-mutant LUAD than in EGFR-wt LUAD (14.8 % vs. 6.5 %, p < 0.001). The enrichment of RBM10 mutations in EGFR-mutant LUAD was also seen in another Chinese cohort (OrigMed: 14.9 % vs. 7.8 %, p < 0.001), but not in the two western cohorts (MSKCC: 7.4 % vs. 9.5 %, p = 0.272; TCGA: 8.1 % vs. 6.7 %, p = 0.624). RBM10 mutations co-occurred more frequently with EGFR L858R mutations (23.7 %) than with other types of EGFR mutations (19 del: 7.7 %; other: 7.1 % in others, p < 0.001). In EGFR-mutant LUAD, RBM10 mutations were more commonly found in stage I (18.2 %) and II (21.8 %) vs. stage III (9.4 %) and IV (11.3 %) tumors (p < 0.001). The proportion of PD-L1 positive expression in EGFR-mutant LUAD with concomitant RBM10 mutation was not different from that those without RBM10 mutations (41.8 % vs. 47.9 %, p = 0.566). In contrast, RBM10 mutation occurred more frequently in EGFR-wt LUAD at stage II-IV (stage II: 12.0 %, stage III: 8.7 %, stage IV: 6.6 %) than at stage I (2.8 %). EGFR-wt LUAD with concomitant RBM10 mutations had higher proportions of PD-L1 expression positivity (78.9 % vs. 61.9 %, p = 0.014) and higher tumor mutational load (8.97 vs. 2.99 muts/Mb, p < 0.001) than those without. Patients with EGFR-wt LUAD who also harbored RBM10 loss of function (LOF) mutations had a longer median PFS upon immunotherapy than those with RBM10 non-LOF mutations (7.15 m vs. 2.60 m, HR = 4.83 [1.30-17.94], p = 0.010). Conclusion: We comprehensively investigated RBM10 mutations in a Chinese cohort with LUAD. Compared to western cohorts, a significant enrichment of RBM10 mutations in EGFR-mutant LUAD compared to EGFR-wildtype LUAD in the Chinese population. RBM10 mutation shows different associations with clinical and molecular characteristics between EGFR-mutant and EGFR-wt LUAD, suggesting a divergent mechanism between these two subsets via which RBM10 deficiency contribute to tumor pathogenesis. The findings contribute to our understanding of the molecular landscape of LUAD and highlight the importance of considering population-specific factors in cancer genomics research.

14.
Adv Exp Med Biol ; 1441: 467-480, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884726

RESUMO

Although atrial septal defects (ASD) can be subdivided based on their anatomical location, an essential aspect of human genetics and genetic counseling is distinguishing between isolated and familiar cases without extracardiac features and syndromic cases with the co-occurrence of extracardiac abnormalities, such as developmental delay. Isolated or familial cases tend to show genetic alterations in genes related to important cardiac transcription factors and genes encoding for sarcomeric proteins. By contrast, the spectrum of genes with genetic alterations observed in syndromic cases is diverse. Currently, it points to different pathways and gene networks relevant to the dysregulation of cardiomyogenesis and ASD pathogenesis. Therefore, this chapter reflects the current knowledge and highlights stable associations observed in human genetics studies. It gives an overview of the different types of genetic alterations in these subtypes, including common associations based on genome-wide association studies (GWAS), and it highlights the most frequently observed syndromes associated with ASD pathogenesis.


Assuntos
Estudo de Associação Genômica Ampla , Comunicação Interatrial , Humanos , Comunicação Interatrial/genética , Predisposição Genética para Doença/genética , Mutação
15.
Transl Cancer Res ; 13(5): 2122-2140, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38881928

RESUMO

Background: Osteosarcoma (OS) is an exceptionally aggressive bone neoplasm that predominantly impacts the paediatric and adolescent population, exhibiting unfavourable prognosis. The importance of RNA binding motif protein 14 (RBM14) in the aetiology of OS is not well understood, despite its established involvement in several other types of cancer. Methods: In this study, we conducted an analysis of the expression profiles of RBM14 in cancer tissues and cell lines. To achieve this, we will utilised data obtained from various databases including The Cancer Genome Atlas Program (TCGA) project, The Genotype-Tissue Expression (GTEx) Project, Gene Expression Omnibus (GEO) database, and cancer cell line encyclopedia (CCLE) data. Furthermore, this study also aims to examine the effects of RBM14 on the proliferation, migration, and invasive properties of OS cells using cell functional gain and loss studies. In this study, we carried out an in-depth investigation to explore possible molecular pathways that underlie the regulation of the malignant phenotype found in OS by RBM14. This investigation involved integrating data from RBM14 overexpression, RBM14 knockdown RNA-seq experiments, and an array comprising 6,096 perturbed genes obtained from the Genetic Perturbation Similarity Analysis Database (GPSAdb). This research offers an opportunity to build a robust conceptual framework for the potential advancement of novel therapeutic approaches that are especially aimed at attacking OS. Results: RBM14 plays an active role in OS by significantly contributing to the enhancement of cellular proliferation, migration, and invasion. At the molecular level, it is probable that RBM14 exerts control over the malignant characteristics of OS through its modulation of the Hippo signalling system. Conclusions: The above-mentioned findings underscore the significant importance of RBM14 as an intriguing target for therapy for the mitigation and management of OS. This particular protein holds an excellent opportunity for the development of novel and efficacious therapeutic approaches that possess the potential to yield favorable results for patients affected with OS.

16.
Cancer Lett ; 596: 216988, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38797234

RESUMO

Type I interferons exhibit anti-proliferative and anti-cancer activities, but their detailed regulatory mechanisms in cancer have not been fully elucidated yet. RNA binding proteins are master orchestrators of gene regulation, which are closely related to tumor progression. Here we show that the upregulated RNA binding protein RBM45 correlates with poor prognosis in breast cancer. Depletion of RBM45 suppresses breast cancer progression both in cultured cells and xenograft mouse models. Mechanistically, RBM45 ablation inhibits breast cancer progression through regulating type I interferon signaling, particularly by elevating IFN-ß production. Importantly, RBM45 recruits TRIM28 to IRF7 and stimulates its SUMOylation, thereby repressing IFNB1 transcription. Loss of RBM45 reduced the SUMOylation of IRF7 by reducing the interaction between TRIM28 and IRF7 to promote IFNB1 transcription, leading to the inhibition of breast cancer progression. Taken together, our finding uncovers a vital role of RBM45 in modulating type I interferon signaling and cancer aggressive progression, implicating RBM45 as a potential therapeutic target in breast cancer.


Assuntos
Neoplasias da Mama , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Fator Regulador 7 de Interferon , Proteínas de Ligação a RNA , Sumoilação , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Animais , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fator Regulador 7 de Interferon/genética , Fator Regulador 7 de Interferon/metabolismo , Camundongos , Transcrição Gênica , Linhagem Celular Tumoral , Interferon beta/metabolismo , Interferon beta/genética , Transdução de Sinais , Camundongos Nus , Proliferação de Células , Proteína 28 com Motivo Tripartido/metabolismo , Proteína 28 com Motivo Tripartido/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Endogâmicos BALB C
17.
Conserv Physiol ; 12(1): coae025, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779431

RESUMO

Body temperature is universally recognized as a dominant driver of biological performance. Although the critical distinction between the temperature of an organism and its surrounding habitat has long been recognized, it remains common practice to assume that trends in air temperature-collected via remote sensing or weather stations-are diagnostic of trends in animal temperature and thus of spatiotemporal patterns of physiological stress and mortality risk. Here, by analysing long-term trends recorded by biomimetic temperature sensors designed to emulate intertidal mussel temperature across the US Pacific Coast, we show that trends in maximal organismal temperature ('organismal climatologies') during aerial exposure can differ substantially from those exhibited by co-located environmental data products. Specifically, using linear regression to compare maximal organismal and environmental (air temperature) climatologies, we show that not only are the magnitudes of body and air temperature markedly different, as expected, but so are their temporal trends at both local and biogeographic scales, with some sites showing significant decadal-scale increases in organismal temperature despite reductions in air temperature, or vice versa. The idiosyncratic relationship between the spatiotemporal patterns of organismal and air temperatures suggests that environmental climatology cannot be statistically corrected to serve as an accurate proxy for organismal climatology. Finally, using quantile regression, we show that spatiotemporal trends vary across the distribution of organismal temperature, with extremes shifting in different directions and at different rates than average metrics. Overall, our results highlight the importance of quantifying changes in the entire distribution of temperature to better predict biological performance and dispel the notion that raw or 'corrected' environmental (and specially air temperature) climatologies can be used to predict organismal temperature trends. Hence, despite their widespread coverage and availability, the severe limitations of environmental climatologies suggest that their role in conservation and management policy should be carefully considered.

18.
Transl Cancer Res ; 13(4): 1606-1622, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38737697

RESUMO

Background: RNA-binding motif protein 39 (RBM39) is a well-known RNA-binding protein involved in tumorigenesis; however, its role in hepatocellular carcinoma (HCC) remains unclear. The aim of this study was to investigate the role of RBM39 in HCC. Methods: The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were used to analyze the differential expression of RBM39 in HCC and normal tissues. The prognostic and diagnostic value of RBM39 in HCC was accessed by Kaplan-Meier analysis, Cox regression, and receiver operating characteristic (ROC) curve analyses. Quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry were used to validate the mRNA and protein expression of RBM39 in HCC. Moreover, gene set enrichment analysis (GSEA) was performed to identify key pathways related to RBM39. The correlation between RBM39 expression and immune cell infiltration was evaluated using a single-sample gene set enrichment analysis (ssGSEA). CCK8 and wound healing assays were performed to investigate the proliferation and migration abilities of HCC cells with RBM39 knockdown. Results: RBM39 expression was upregulated in the HCC tissues. High RBM39 expression was significantly associated with advanced T stage, histological grade, and pathological stage and predicted poor overall survival (OS), disease-specific survival (DSS), and progress-free interval (PFI) in HCC patients. The upregulation of RBM39 expression was an independent prognostic factor for OS. Moreover, GSEA enrichment analysis indicated that RBM39 was functionally involved in pathways associated with the cell cycle, DNA replication, the p53 signaling pathway, and primary immunodeficiency. RBM39 expression was associated with infiltration of Th2 cells and dendritic cells (DC). RBM39 knockdown significantly inhibited the proliferation and migration of HCC cells. Conclusions: These findings suggest that high RBM39 expression is associated with poor prognosis and promotes HCC cell proliferation and migration. Based on these results, RBM39 is a promising prognostic biomarker with functional significance for HCC.

19.
Cell Rep ; 43(5): 114163, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38678556

RESUMO

Dysregulation of O-GlcNAcylation has emerged as a potential biomarker for several diseases, particularly cancer. The role of OGT (O-GlcNAc transferase) in maintaining O-GlcNAc homeostasis has been extensively studied; nevertheless, the regulation of OGA (O-GlcNAcase) in cancer remains elusive. Here, we demonstrated that the multifunctional protein RBM14 is a regulator of cellular O-GlcNAcylation. By investigating the correlation between elevated O-GlcNAcylation and increased RBM14 expression in lung cancer cells, we discovered that RBM14 promotes ubiquitin-dependent proteasomal degradation of OGA, ultimately mediating cellular O-GlcNAcylation levels. In addition, RBM14 itself is O-GlcNAcylated at serine 521, regulating its interaction with the E3 ligase TRIM33, consequently affecting OGA protein stability. Moreover, we demonstrated that mutation of serine 521 to alanine abrogated the oncogenic properties of RBM14. Collectively, our findings reveal a previously unknown mechanism for the regulation of OGA and suggest a potential therapeutic target for the treatment of cancers with dysregulated O-GlcNAcylation.


Assuntos
Estabilidade Proteica , Proteínas de Ligação a RNA , Humanos , Acetilglucosamina/metabolismo , Antígenos de Neoplasias , beta-N-Acetil-Hexosaminidases/metabolismo , Linhagem Celular Tumoral , Glicosilação , Células HEK293 , Histona Acetiltransferases , Hialuronoglucosaminidase , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , N-Acetilglucosaminiltransferases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/metabolismo
20.
Genome Biol ; 25(1): 102, 2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641822

RESUMO

BACKGROUND: Splicing factors are vital for the regulation of RNA splicing, but some have also been implicated in regulating transcription. The underlying molecular mechanisms of their involvement in transcriptional processes remain poorly understood. RESULTS: Here, we describe a direct role of splicing factor RBM22 in coordinating multiple steps of RNA Polymerase II (RNAPII) transcription in human cells. The RBM22 protein widely occupies the RNAPII-transcribed gene locus in the nucleus. Loss of RBM22 promotes RNAPII pause release, reduces elongation velocity, and provokes transcriptional readthrough genome-wide, coupled with production of transcripts containing sequences from downstream of the gene. RBM22 preferentially binds to the hyperphosphorylated, transcriptionally engaged RNAPII and coordinates its dynamics by regulating the homeostasis of the 7SK-P-TEFb complex and the association between RNAPII and SPT5 at the chromatin level. CONCLUSIONS: Our results uncover the multifaceted role of RBM22 in orchestrating the transcriptional program of RNAPII and provide evidence implicating a splicing factor in both RNAPII elongation kinetics and termination control.


Assuntos
Fator B de Elongação Transcricional Positiva , RNA Polimerase II , Humanos , Cromatina , Fator B de Elongação Transcricional Positiva/genética , Fator B de Elongação Transcricional Positiva/metabolismo , RNA Polimerase II/metabolismo , Splicing de RNA , Fatores de Processamento de RNA/genética , Transcrição Gênica , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...