Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Zebrafish ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980839

RESUMO

Using integrative tools can be effective for species identification, especially in complex groups like Astyanax. Astyanax bimaculatus group is composed of six valid species, including A. lacustris. "A. altiparanae", "A. asuncionensis", and "A. jacuhiensis" are considered as junior synonyms of A. lacustris. Seeking to test the operational taxonomic unit (OTU) status of the junior synonyms of A. lacustris ("A. altiparanae", "A. asuncionensis", and "A. jacuhiensis"), we used analyses through mitochondrial DNA (COI and Cytb), cytogenetic markers (classical and molecular), and morphometry ("truss network"). Analysis of mitochondrial DNA sequences separated A. lacustris from the other synonymized species. The cytogenetic and morphometric analyses did not corroborate the synonymization and suggest that besides A. lacustris, the OTUs A. altiparanae, A. asuncionensis, and A. jacuhiensis are valid species. The analysis of different characters proposed by the integrative taxonomy used on the same individuals could provide greater reliability and minimize the underestimation of biodiversity.

2.
Plants (Basel) ; 12(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37687365

RESUMO

Polyploidy is considered a driving force in plant evolution and diversification. Chinese cherry [Cerasus pseudocerasus (Lindl.) G.Don], an economically important fruit crop native to China, has evolved at the tetraploid level, with a few pentaploid and hexaploid populations. However, its auto- or allo-polyploid origin remains unclear. To address this issue, we analyzed the ploidy levels and rDNA chromosomal distribution in self- and open-pollinated seedling progenies of tetraploid and hexaploid Chinese cherry. Genomic in situ hybridization (GISH) analysis was conducted to reveal the genomic relationships between Chinese cherry and diploid relatives from the genus Cerasus. Both self- and open-pollinated progenies of tetraploid Chinese cherry exhibited tetraploids, pentaploids, and hexaploids, with tetraploids being the most predominant. In the seedling progenies of hexaploid Chinese cherry, the majority of hexaploids and a few pentaploids were observed. A small number of aneuploids were also observed in the seedling progenies. Chromosome 1, characterized by distinct length characteristics, could be considered the representative chromosome of Chinese cherry. The basic Chinese cherry genome carried two 5S rDNA signals with similar intensity, and polyploids had the expected multiples of this copy number. The 5S rDNA sites were located at the per-centromeric regions of the short arm on chromosomes 4 and 5. Three 45S rDNA sites were detected on chr. 3, 4 and 7 in the haploid complement of Chinese cherry. Tetraploids exhibited 12 signals, while pentaploids and hexaploids showed fewer numbers than expected multiples. Based on the GISH signals, Chinese cherry demonstrated relatively close relationships with C. campanulata and C. conradinae, while being distantly related to another fruiting cherry, C. avium. In combination with the above results, our findings suggested that Chinese cherry likely originated from autotetraploidy.

3.
Front Plant Sci ; 13: 906168, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35734244

RESUMO

The kiwifruit (Actinidia chinensis) has long been regarded as "the king of fruits" for its nutritional importance. However, the molecular cytogenetics of kiwifruit has long been hampered because of the large number of basic chromosome (x = 29), the inherent small size and highly similar morphology of metaphase chromosomes. Fluorescence in situ hybridization (FISH) is an indispensable molecular cytogenetic technique widely used in many plant species. Herein, the effects of post-hybridization washing temperature on FISH, blocking DNA concentration on genomic in situ hybridization (GISH), extraction method on nuclei isolation and the incubation time on the DNA fiber quality in kiwifruit were evaluated. The post-hybridization washing in 2 × saline sodium citrate (SSC) solution for 3 × 5 min at 37°C ensured high stringency and distinct specific FISH signals in kiwifruit somatic chromosomes. The use of 50 × blocking DNA provided an efficient and reliable means of discriminating between chromosomes derived from in the hybrids of A. chinensis var. chinensis (2n = 2x = 58) × A. eriantha (2n = 2x = 58), and inferring the participation of parental genitors. The chopping method established in the present study were found to be very suitable for preparation of leaf nuclei in kiwifruit. A high-quality linear DNA fiber was achieved by an incubation of 20 min. The physical size of 45S rDNA signals was approximately 0.35-0.40 µm revealed by the highly reproducible fiber-FISH procedures established and optimized in this study. The molecular cytogenetic techniques (45S rDNA-FISH, GISH, and high-resolution fiber-FISH) for kiwifruit was for the first time established and optimized in the present study, which is the foundation for the future genomic and evolutionary studies and provides chromosomal characterization for kiwifruit breeding programs.

4.
Front Plant Sci ; 12: 816946, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35154214

RESUMO

Interploidy cross commonly results in complex chromosome number and structural variations. In our previous study, a progeny with segregated ploidy levels was produced by an interploidy cross between diploid female parent Populus tomentosa × Populus bolleana clone TB03 and triploid male parent Populus alba × Populus berolinensis 'Yinzhong'. However, the chromosome compositions of aneuploid genotypes in the progeny were still unclear. In the present study, a microsatellite DNA allele counting-peak ratios (MAC-PR) method was employed to analyze allelic configurations of each genotype to clarify their chromosome compositions, while 45S rDNA fluorescence in situ hybridization (FISH) analysis was used to reveal the mechanism of chromosome number variation. Based on the MAC-PR analysis of 47 polymorphic simple sequence repeat (SSR) markers distributed across all 19 chromosomes of Populus, both chromosomal number and structural variations were detected for the progeny. In the progeny, 26 hypo-triploids, 1 hyper-triploid, 16 hypo-tetraploids, 10 tetraploids, and 5 hyper-tetraploids were found. A total of 13 putative structural variation events (duplications and/or deletions) were detected in 12 genotypes, involved in chromosomes 3, 6, 7, 14, 15, 16, and 18. The 46.2% (six events) structural variation events occurred on chromosome 6, suggesting that there probably is a chromosome breakpoint near the SSR loci of chromosome 6. Based on calculation of the allelic information, the transmission of paternal heterozygosity in the hypo-triploids, hyper-triploid, hypo-tetraploids, tetraploids, and hyper-tetraploids were 0.748, 0.887, 0.830, 0.833, and 0.836, respectively, indicating that the viable pollen gains of the male parent 'Yinzhong' were able to transmit high heterozygosity to progeny. Furthermore, 45S rDNA-FISH analysis showed that specific-chromosome segregation feature during meiosis and chromosome appointment in normal and fused daughter nuclei of telophase II of 'Yinzhong,' which explained that the formation of aneuploids and tetraploids in the progeny could be attributed to imbalanced meiotic chromosomal segregation and division restitution of 'Yinzhong,' The data of chromosomal composition and structural variation of each aneuploid in the full-sib progeny of TB03 × 'Yinzhong' lays a foundation for analyzing mechanisms of trait variation relying on chromosome or gene dosages in Populus.

5.
Comp Cytogenet ; 14(4): 577-588, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33244356

RESUMO

In this paper, we present new cytogenetic data for three species of the family Pentatomidae: Dichelops melacanthus (Dallas, 1851), Loxa viridis (Palisot de Beauvois, 1805), and Edessa collaris (Dallas, 1851). All studied species presented holocentric chromosomes and inverted meiosis for the sex chromosomes. D. melacanthus has 2n = 12 (10A + XY); L. viridis showed 2n = 14 (12A + XY); and E. collaris showed 2n = 14 (12A + XY). C-banding was performed for the first time in these species and revealed terminal and interstitial heterochromatic regions on the autosomes; DAPI/CMA3 staining showed different fluorescent patterns. In all species, fluorescence in situ hybridization (FISH) with 18S rDNA probe identified signals on one autosomal bivalent, this being the first report of FISH application in the species D. melacanthus and L. viridis. The results obtained add to those already existing in the literature, enabling a better understanding of the meiotic behavior of these insects.

6.
Comp Cytogenet ; 14(1): 107-138, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194919

RESUMO

Spiders represent one of the most studied arachnid orders. They are particularly intriguing from a cytogenetic point of view, due to their complex and dynamic sex chromosome determination systems. Despite intensive research on this group, cytogenetic data from African spiders are still mostly lacking. In this study, we describe the karyotypes of 38 species of spiders belonging to 16 entelegyne families from South Africa and Namibia. In the majority of analysed families, the observed chromosome numbers and morphology (mainly acrocentric) did not deviate from the family-level cytogenetic characteristics based on material from other continents: Tetragnathidae (2n♂ = 24), Ctenidae and Oxyopidae (2n♂ = 28), Sparassidae (2n♂ = 42), Gnaphosidae, Trachelidae and Trochanteriidae (2n♂ = 22), and Salticidae (2n♂ = 28). On the other hand, we identified interspecific variability within Hersiliidae (2n♂ = 33 and 35), Oecobiidae (2n♂ = 19 and 25), Selenopidae (2n♂ = 26 and 29) and Theridiidae (2n♂ = 21 and 22). We examined the karyotypes of Ammoxenidae and Gallieniellidae for the first time. Their diploid counts (2n♂ = 22) correspond to the superfamily Gnaphosoidea and support their placement in this lineage. On the other hand, the karyotypes of Prodidominae (2n♂ = 28 and 29) contrast with all other Gnaphosoidea. Similarly, the unusually high diploid number in Borboropactus sp. (2n♂ = 28) within the otherwise cytogenetically uniform family Thomisidae (mainly 2n♂ = 21-24) supports molecular data suggesting a basal position of the genus in the family. The implementation of FISH methods for visualisation of rDNA clusters facilitated the detection of complex dynamics of numbers of these loci. We identified up to five loci of the 18S rDNA clusters in our samples. Three different sex chromosome systems (X0, X1X20 and X1X2X30) were also detected among the studied taxa.

7.
Neotrop. ichthyol ; 18(4): e200055, 2020. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1135408

RESUMO

The South American giant fishes of the genus Arapaima, commonly known as pirarucu, are one of the most iconic among Osteoglossiformes. Previously cytogenetic studies have identified their karyotype characteristics; however, characterization of cytotaxonomic differentiation across their distribution range remains unknown. In this study, we compared chromosomal characteristics using conventional and molecular cytogenetic protocols in pirarucu populations from the Amazon and Tocantins-Araguaia river basins to verify if there is differentiation among representatives of this genus. Our data revealed that individuals from all populations present the same diploid chromosome number 2n=56 and karyotype composed of 14 pairs of meta- to submetacentric and 14 pairs of subtelo- to acrocentric chromosomes. The minor and major rDNA sites are in separate chromosomal pairs, in which major rDNA sites corresponds to large heterochromatic blocks. Comparative genomic hybridizations (CGH) showed that the genome of these populations shared a great portion of repetitive elements, due to a lack of substantial specific signals. Our comparative cytogenetic data analysis of pirarucu suggested that, although significant genetic differences occur among populations, their general karyotype patterns remain conserved.(AU)


Os peixes gigantes da América do Sul do gêneroArapaima, comumente conhecidos como pirarucus, são um dos mais icônicos de Osteoglossiformes. Estudos citogenéticos prévios identificaram suas características cariotípicas, entretanto a caracterização da diferenciação citotaxonômica através de suas distribuições geográficas ainda são desconhecidas. Nesse estudo, nós comparamos características cromossômicas utilizando técnicas de citogenética clássica e molecular em populações das bacias dos rios Amazonas e Tocantins-Araguaia, a fim de verificar se há alguma diferenciação entre representantes desse gênero. Nossos dados revelaram que indivíduos de todas as populações apresentam número diploide de 2n=56 cromossomos e que seus cariótipos são compostos de 14 pares de cromossomos meta- e submetacêntricos e 14 pares de subtelo- e acrocêntricos. Os sítios maiores e menores de rDNA estão localizados em pares cromossômicos separados, onde os sítios maiores de rDNA correspondem a grandes blocos heterocromáticos. Hibridizações genômicas comparativas (CGH) mostraram que o genoma dos espécimes dessas populações é amplamente compartilhado, devido à falta de sinais substanciais específicos. Nossos dados de citogenética comparativa do pirarucu sugerem que embora diferenças genéticas significativas ocorram entre populações, os padrões cariotípicos gerais se mantêm conservados.(AU)


Assuntos
Animais , DNA Ribossômico , Citogenética , Cariótipo , Peixes/genética , Inquéritos e Questionários , Ecossistema Amazônico , Rios , Análise de Dados
8.
Comp Cytogenet ; 13(4): 411-422, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31867090

RESUMO

In the present study, we analyzed individuals of Hypostomus soniae (Loricariidae) collected from the Teles Pires River, southern Amazon basin, Brazil. Hypostomus soniae has a diploid chromosome number of 2n = 64 and a karyotype composed of 12 metacentric (m), 22 submetacentric (sm), 14 subtelocentric (st), and 16 acrocentric (a) chromosomes, with a structural difference between the chromosomes of the two sexes: the presence of a block of heterochromatin in sm pair No. 26, which appears to represent a putative initial stage of the differentiation of an XX/XY sex chromosome system. This chromosome, which had a heterochromatin block, and was designated proto-Y (pY), varied in the length of the long arm (q) in comparison with its homolog, resulting from the addition of constitutive heterochromatin. It is further distinguished by the presence of major ribosomal cistrons in a subterminal position of the long arm (q). The Nucleolus Organizer Region (NOR) had different phenotypes among the H. soniae individuals in terms of the number of Ag-NORs and 18S rDNA sites. The origin, distribution and maintenance of the chromosomal polymorphism found in H. soniae reinforced the hypothesis of the existence of a proto-Y chromosome, demonstrating the rise of an XX/XY sex chromosome system.

9.
Chromosome Res ; 27(1-2): 95-108, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30604344

RESUMO

Ribosomal DNA (rDNA) gene codes for 18S, 5.8S, and 28S rRNA form tandem repetitive clusters, which occupy distinct chromosomal loci called nucleolar organizer regions (NORs). The number and position of NORs on chromosomes are genetic characteristics of the species although within a cell, the NOR sizes can significantly vary due to loss or multiplication of rDNA copies. In the current study, we used mouse L929 fibroblasts, the aneuploid cells which differ in the FISH- and Ag-NOR numbers, to examine whether the parental NOR variability is inherited in clones. By statistical analysis, we showed that the cloned fibroblasts were able to restore the NOR numerical characteristics of the parental cells after long-term culturing. These results support the idea that mammalian cells may have mechanisms which control the number and activity of NORs at the population level. In L929 fibroblasts, we also regularly observed laterally asymmetry of FISH-NORs that evidenced in an unequal distribution of the mother rDNA copies between the daughter cells in mitosis.


Assuntos
Instabilidade Cromossômica , Fibroblastos/metabolismo , Região Organizadora do Nucléolo/genética , Animais , Linhagem Celular Tumoral , Cromossomos , Células Clonais , DNA Ribossômico/genética , Hibridização in Situ Fluorescente , Camundongos , Sequências Repetitivas de Ácido Nucleico
10.
Zebrafish ; 15(3): 270-278, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29653070

RESUMO

Doradidae has been a target of phylogenetic studies over the last few years, but chromosomal information about the family is still scarce. Therefore, new cytogenetic data are provided herein and they are correlated with phylogenetic proposals to contribute to the knowledge of chromosomal evolution within doradids. Cytogenetic studies were performed on Trachydoras paraguayensis, Anadoras sp. "araguaia," Ossancora eigenmanni, Platydoras armatulus, and Rhinodoras dorbignyi. O. eigenmanni, P. armatulus, and R. dorbignyi had 2n = 58 chromosomes as found for most doradids, but T. paraguayensis and Anadoras sp. "araguaia" had 2n = 56 chromosomes, probably caused by a chromosomal reduction. There is a great maintenance of 2n = 58 verified in doradids, but karyotype formulas are diverse. Moreover, other markers (i.e., nucleolar organizer regions, heterochromatin distribution, and 5S and 18S rDNA) showed a great diversity among the analyzed species. Contrasting the variability in the chromosomal markers with the maintenance of diploid number, it is likely that inversions and translocations played an important role in chromosome differentiation in Doradidae. Herein, we created an integrative discussion linking cytogenetic data to phylogenetic proposals, based on morphological and genetic features, enabling us to identify possible cytogenetic traits, as well as probable chromosomal plesiomorphy and apomorphy of Doradidae species.


Assuntos
Peixes-Gato/genética , Cromossomos , Citogenética/métodos , Evolução Molecular , Filogenia , RNA Ribossômico 18S/genética , RNA Ribossômico 5S/genética , Animais , Peixes-Gato/classificação , Cariótipo
11.
Comp Cytogenet ; 11(2): 239-248, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28919962

RESUMO

A cytogenetic characterization, including heterochromatin content, and the analysis of the location of rDNA genes, was performed in Largus fasciatus Blanchard, 1843 and L. rufipennis Laporte, 1832. Mitotic and meiotic analyses revealed the same diploid chromosome number 2n = 12 + X0/XX (male/female). Heterochromatin content, very scarce in both species, revealed C-blocks at both ends of autosomes and X chromosome. The most remarkable cytological feature observed between both species was the different chromosome position of the NORs. This analysis allowed us to use the NORs as a cytological marker because two clusters of rDNA genes are located at one end of one pair of autosomes in L. fasciatus, whereas a single rDNA cluster is located at one terminal region of the X chromosome in L. rufipennis. Taking into account our results and previous data obtained in other heteropteran species, the conventional staining, chromosome bandings, and rDNA-FISH provide important chromosome markers for cytotaxonomy, karyotype evolution, and chromosome structure and organization studies.

12.
Ann Bot ; 120(2): 285-302, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28444200

RESUMO

Background and Aims: Knowledge of diploid phylogeny and ecogeography provide a foundation for understanding plant evolutionary history, diversification patterns and taxonomy. The genus Anthoxanthum (vernal grasses, Poaceae) represents a taxonomically intricate polyploid complex with large phenotypic variation and poorly resolved evolutionary relationships. The aims of the study were to reveal: (1) evolutionary lineages of the diploid taxa and their genetic differentiation; (2) the past distribution of the rediscovered 'Mediterranean diploid'; and (3) possible migration routes of diploids in the Mediterranean. Methods: A combined approach involving sequencing of two plastid regions ( trnL-trnF and rpl32-trnL ), nrDNA ITS, rDNA FISH analyses, climatic niche characterization and spatio-temporal modelling was used. Key Results: Among the examined diploid species, only two well-differentiated evolutionary lineages were recognized: Anthoxanthum gracile and A. alpinum . The other taxa - A. aristatum, A. ovatum, A. maderense and the 'Mediterranean diploid' - form a rather intermixed group based on the examined molecular data. In situ rDNA localization enabled identification of the ancestral Anthoxanthum karyotype, shared by A. gracile and two taxa from the crown group. For the studied taxa, ancestral location probabilities for six discrete geographical regions in the Mediterranean were proposed and likely scenarios of gradual expansion from them were suggested. Modelling past and present distributions shows that the 'Mediterranean diploid' has already been occurring in the same localities for 120 000 years. Conclusions: Highly congruent results were obtained and dated the origin and first diversification of Anthoxanthum to the Miocene. The later divergence probably took place in the Pleistocene and started polyploid evolution within the genus. The most recent diversification event is still occurring, and incomplete lineage sorting prevents full diversification of taxa at the molecular level, despite clear separation based on climatic niches. The 'Mediterranean diploid' is hypothesized to be a possible relic of the most recent common ancestor of Anthoxanthum due to their sharing of ancestral features.


Assuntos
Evolução Biológica , Diploide , Filogenia , Poaceae/classificação , DNA de Cloroplastos/genética , Região do Mediterrâneo
13.
Zebrafish ; 14(3): 236-243, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28192063

RESUMO

Karyotypes and other chromosomal markers as revealed by conventional and molecular cytogenetic protocols in four species of the catfish family Doradidae from the Araguaia-Tocantins river basin, namely Hassar wilderi, Leptodoras cataniae, Tenellus leporhinus and Tenellus trimaculatus were examined. All species had diploid chromosome number 2n = 58 and karyotypes dominated by biarmed chromosomes, simple NOR phenotype, that is, one chromosome pair bearing this site in terminal position, but some differences in karyotypes and distribution of constitutive heterochromatin, position of rDNA sites. Such characteristics appeared species-specific. A ZZ/ZW sex chromosome system was found in Tenellus trimaculatus, resulting likely from the amplification of the heterochromatin, followed by a paracentric inversion. Our results confirmed low karyotype differentiation observed until now among representatives of this endemic catfish family.


Assuntos
Peixes-Gato/genética , Heterocromatina , Cariotipagem/veterinária , Cromossomos Sexuais/fisiologia , Animais , Peixes-Gato/classificação , DNA Ribossômico/genética , Feminino , Cariótipo , Cariotipagem/métodos , Masculino , Especificidade da Espécie
14.
Genome ; 59(2): 79-86, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26835888

RESUMO

As the product of interspecific hybridization between its two ancestral octoploid (2n = 8x = 56) species (Fragaria chiloensis and F. virginiana), the cultivated strawberry (F. ×ananassa) is among the most genomically complex of crop plants, harboring subgenomic components derived from as many as four different diploid ancestors. To physically visualize the octoploids' subgenome composition(s), we launched molecular cytogenetic studies using genomic in situ hybridization (GISH), comparative GISH (cGISH), and rDNA-FISH techniques. First, GISH resolution in Fragaria was tested by using diploid and triploid hybrids with predetermined genome compositions. Then, observation of an octoploid genome was implemented by hybridizing chromosomes of pentaploid (2n = 5x = 35) hybrids from F. vesca × F. virginiana with genomic DNA probes derived from diploids (2n = 2x = 14) F. vesca and F. iinumae, which have been proposed by phylogenetic studies to be closely related to the octoploids yet highly divergent from each other. GISH and cGISH results indicated that octoploid-derived gametes (n = 4x = 28) carried seven chromosomes with hybridization affinities to F. vesca, while the remaining 21 chromosomes displayed varying affinities to F. iinumae, indicating differing degrees of subgenomic contribution to the octoploids by these two putatively ancestral diploids. Combined rDNA-FISH revealed severe 25S rDNA loss in both the F. vesca- and F. iinumae-like chromosome groups, while only the prior group retained its 5S loci.


Assuntos
Fragaria/genética , Cromossomos de Plantas/genética , DNA Ribossômico/genética , Genoma de Planta , Hibridização Genética , Hibridização in Situ Fluorescente , Ploidias
15.
Genetica ; 144(1): 37-46, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26650375

RESUMO

The genera Leptodactylus and Adenomera comprise 92 species distributed throughout the Neotropical region. These species have a modal diploid chromosome number 2n = 22. However, chromosome rearrangements are evident in the differentiation of five intra-generic groups in the genus Leptodactylus (L. fuscus, L. latrans, L. marmoratus (formally composed by the species of the genus Adenomera), L. melanonotus, L. pentadactylus), yet it is not clear if there is a karyotype pattern for each group. Aiming to understand the intra-generic and interspecific karyotype patterns of Leptodactylus and Adenomera, cytogenetic analyses were performed in A. andreae, L. macrosternum, L. pentadactylus, L. petersii, and L. riveroi using conventional staining, C-banding, nucleolus organizer region (NOR) and hybridization in situ fluorescent (FISH). The karyotype of Leptodactylus riveroi was described for the first time. Adenomera andreae had 2n = 26, while the remaining species 2n = 22. The NOR was found on pair No. 8 of A. andreae, L. macrosternum, L. pentadactylus, and L. riveroi, whereas L. petersii had it on pairs Nos. 6 and 10. These locations were confirmed by the FISH with 18S rDNA probe, except for pair No. 10 of L. petersii. The C-banding pattern was evident at the centromeres of chromosomes of all species and some interspecific variations were also observed. 2n = 22 was observed in the species of the L. latrans group, as well as in the intra-generic groups L. fuscus and L. pentadactylus; in the L. melanonotus group there were three diploid chromosome numbers 2n = 20, 22 and 24; and a larger variation in 2n was also evident in the L. marmoratus group.


Assuntos
Anuros/genética , Cariótipo , Animais , Anuros/classificação , Brasil , Bandeamento Cromossômico , Diploide , Feminino , Hibridização in Situ Fluorescente , Masculino , Região Organizadora do Nucléolo/genética , RNA Ribossômico 18S/genética , Especificidade da Espécie
16.
Comp Cytogenet ; 9(1): 51-65, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25893074

RESUMO

Karyotypes and chromosomal characteristics of both minor and major rDNAs in four fish species known popularly as "lambaris", namely Astyanaxabramis (Jenyns, 1842), Astyanaxasuncionensis Géry, 1972, Astyanaxcorrentinus (Holmberg, 1891) and Astyanax sp. collected from downstream of the Iguassu Falls (Middle Paraná River basin), preservation area of the Iguassu National Park, were analyzed by conventional and molecular protocols. Astyanaxabramis had diploid chromosome number 2n=50 (4m+30sm+8st+8a) and single AgNORs (pair 22), Astyanaxasuncionensis had 2n=50 (8m+24sm+6st+12a) and single AgNORs (pair 20), Astyanax sp. had 2n=50 (4m+26sm+8st+12a) and single AgNORs (pair 25), and Astyanaxcorrentinus had 2n=36 (12m+16sm+2st+6a) and multiple AgNORs (pairs 12, 15, 16, 17). FISH with 18S rDNA showed a single site for Astyanaxabramis, Astyanaxasuncionensis and Astyanax sp. and multiple for Astyanaxcorrentinus (14 sites). FISH with 5S rDNA showed single 5S-bearing loci chromosome pair only for Astyanaxasuncionensis and multiple for Astyanaxabramis (four sites), Astyanaxcorrentinus (five sites) and Astyanax sp. (four sites). Distinct distribution patterns of heterochromatin were observed for karyotypes of all species, with the exception of the first acrocentric chromosome pair characterized by centromeric, interstitial-proximal and telomeric blocks of heterochromatin on the long arm, which may represent homeology between karyotypes of Astyanaxabramis and Astyanaxasuncionensis. Our study showed species-specific characteristics which can serve in diagnosis and differentiation between Astyanaxabramis and Astyanaxasuncionensis, considered cryptic species, as well as strengthening the occurrence of a species of Astyanax not yet described taxonomically. In addition, the data obtained from first cytogenetic studies in Astyanaxcorrentinus suggest a high similarity with Astyanaxschubarti Britski, 1964, suggesting that these species may belong to the same morphological group and that can be phylogenetically related.

17.
Comp Cytogenet ; 9(1): 103-18, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25893078

RESUMO

The karyotypes of Luciliacluvia (Walker, 1849) and Luciliasericata (Meigen, 1826) from Argentina were characterized using conventional staining and the C- and G-like banding techniques. Besides, nucleolus organizer regions (NORs) were detected by fluorescent in situ hybridization (FISH) and silver staining technique. The chromosome complement of these species comprises five pairs of autosomes and a pair of sex chromosomes (XX/XY, female/male). The autosomes of both species have the same size and morphology, as well as C- and G-like banding patterns. The X and Y chromosomes of Luciliacluvia are subtelocentric and easily identified due to their very small size. In Luciliasericata, the X chromosome is metacentric and the largest of the complement, showing a secondary constriction in its short arm, whereas the Y is submetacentric and smaller than the X. The C-banding patterns reflect differences in chromatin structure and composition between the subtelocentric X and Y chromosomes of Luciliacluvia and the biarmed sex chromosomes of Luciliasericata. These differences in the sex chromosomes may be due to distinct amounts of constitutive heterochromatin. In Luciliacluvia, the NORs are placed at one end of the long-X and of the long-Y chromosome arms, whereas one of the NORs is disposed in the secondary constriction of the short-X chromosome arm and the other on the long-Y chromosome arm in Luciliasericata. Although the G-like banding technique does not yield G-bands like those in mammalian chromosomes, it shows a high degree chromosomal homology in both species because each pair of autosomes was correctly paired. This chromosome similarity suggests the absence of autosomal rearrangements during karyotype evolution in the two species studied.

18.
Mol Cytogenet ; 8: 11, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25674160

RESUMO

BACKGROUND: Rubus is a large and taxonomically complex genus exhibiting agamospermy, polyploidy and frequent hybridization. The objective of this work was to elucidate rDNA disrtibution pattern and investigate genomic composition of polyploids in 16 Rubus taxa (2n = 2x, 3x, 4x, 8x) of two subgenera Idaeobatus and Malachobatus by ISH method. RESULTS: The basic Rubus genome had one 45S rDNA locus, and all the polyploids (except R. setchuenensis) had the expected multiples of this number. Diploid and tetraploid Rubus taxa carried two 5S rDNA, whereas the triploid and octoploid species only had three. The duplicated 45S rDNA sites tended to be conserved, whereas those of 5S rDNA tended to be eliminated after polyploidization. The accession R03-20 was an autotriploid R. parvifolius, while R03-27 and R03-57 were naturally-occurred triploid hybrids between R. parvifolius and R. coreanus. GISH results suggested that R. parvifolius had close relationship with polyploids from Malachobatus. CONCLUSIONS: The polyploids from Malachobatus were probable allopolyploid. In addition, Rubus parvifolius might be involved in hybridization, polyploidization and speciation of some Idaeobatus and Malachobatus species.

19.
Comp Cytogenet ; 9(4): 625-44, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26753079

RESUMO

Lizards of the family Teiidae (infraorder Scincomorpha) were formerly known as Macroteiidae. There are 13 species of such lizards in the Amazon, in the genera Ameiva (Meyer, 1795), Cnemidophorus (Wagler, 1830), Crocodilurus (Spix, 1825), Dracaena (Daudin, 1801), Kentropyx (Spix, 1825) and Tupinambis (Daudin, 1802). Cytogenetic studies of this group are restricted to karyotype macrostructure. Here we give a compilation of cytogenetic data of the family Teiidae, including classic and molecular cytogenetic analysis of Ameiva ameiva (Linnaeus, 1758), Cnemidophorus sp.1, Kentropyx calcarata (Spix, 1825), Kentropyx pelviceps (Cope, 1868) and Tupinambis teguixin (Linnaeus, 1758) collected in the state of Amazonas, Brazil. Ameiva ameiva, Kentropyx calcarata and Kentropyx pelviceps have 2n=50 chromosomes classified by a gradual series of acrocentric chromosomes. Cnemidophorus sp.1 has 2n=48 chromosomes with 2 biarmed chromosomes, 24 uniarmed chromosomes and 22 microchromosomes. Tupinambis teguixin has 2n=36 chromosomes, including 12 macrochromosomes and 24 microchromosomes. Constitutive heterochromatin was distributed in the centromeric and terminal regions in most chromosomes. The nucleolus organizer region was simple, varying in its position among the species, as evidenced both by AgNO3 impregnation and by hybridization with 18S rDNA probes. The data reveal a karyotype variation with respect to the diploid number, fundamental number and karyotype formula, which reinforces the importance of increasing chromosomal analyses in the Teiidae.

20.
Comp Cytogenet ; 7(1): 63-71, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24260691

RESUMO

Auchenipteridae is divided in two subfamilies, Centromochlinae and Auchenipterinae. Centromochlinae has 31 valid species, from which 13 are included in the genus Tatia Miranda Ribeiro, 1911. Among these, Tatia jaracatia Pavanelli & Bifi, 2009 and Tatia neivai (Ihering, 1930) are the only two representative species from the Paraná-Paraguay basins. This study aimed to analyze cytogenetically these two species and thus provide the first chromosomal data for the genus. Although Tatia jaracatia and Tatia neivai presented 2n=58 chromosomes, some differences were observed in the karyotypic formula. The heterochromatin was dispersed in the centromeric and terminal regions of most chromosomes of Tatia jaracatia, and only in the terminal region of most chromosomes of Tatia neivai. The AgNORs were detected in the subtelocentric pair 28 for both species, which was confirmed by FISH with 18S rDNA probe. The 5S rDNA sites were detected in four chromosome pairs in Tatia jaracatia and three chromosome pairs in Tatia neivai. Both species of Tatia presented great chromosomal similarities among themselves; however, when compared to other species of Auchenipteridae, it was possible to identify some differences in the karyotype macrostructure, in the heterochromatin distribution pattern and in the number and position of 5S rDNA sites, which until now seems to be intrinsic to the genus Tatia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...