Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
ACS Nano ; 11(7): 7189-7200, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28657719

RESUMO

TDP-43 and FUS are two mRNA-binding proteins associated with neurodegenerative diseases that form cytoplasmic inclusions with prion-like properties in affected neurons. Documenting the early stages of the formation of TDP-43 or FUS protein aggregates and the role of mRNA stress granules that are considered as critical intermediates for protein aggregation is therefore of interest to understand disease propagation. Here, we developed a single molecule approach via atomic force microscopy (AFM), which provides structural information out of reach by fluorescence microscopy. In addition, the aggregation process can be probed in the test tube without separating the interacting partners, which would affect the thermodynamic equilibrium. The results demonstrate that isolated mRNA molecules serve as crucibles to promote TDP-43 and FUS multimerization. Their subsequent merging results in the formation of mRNA granules containing TDP-43 and FUS aggregates. Interestingly, TDP-43 or FUS protein aggregates can be released from mRNA granules by either YB-1 or G3BP1, two stress granule proteins that compete for the binding to mRNA with TDP-43 and FUS. Altogether, the results indicate that age-related successive assembly/disassembly of stress granules in neurons, regulated by mRNA-binding proteins such as YB-1 and G3BP1, could be a source of protein aggregation.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Microscopia de Força Atômica/métodos , Agregados Proteicos , Agregação Patológica de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Grânulos Citoplasmáticos/metabolismo , DNA Helicases/metabolismo , Humanos , Doenças Neurodegenerativas/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteína 1 de Ligação a Y-Box/metabolismo
2.
ACS Nano ; 9(5): 4950-6, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25933202

RESUMO

RNA nanotechnology has been established by employing the molecular architecture of RNA structural motifs. Here, we report two designed RNA-protein complexes (RNPs) composed of ribosomal protein L1 (RPL1) and its RNA-binding motif that are square-shaped nano-objects. The formation and the shape of the objects were confirmed by gel electrophoresis analysis and atomic force microscopy, respectively. Any protein can be attached to the RNA via a fusion protein with RPL1, indicating that it can be used as a scaffold for loading a variety of functional proteins or for building higher-order structures. In summary, the RNP object will serve as a useful tool in the fields of bionanotechnology and synthetic biology. Moreover, the RNP interaction enhances the RNA stability against nucleases, rendering these complexes stable in cells.


Assuntos
Biotecnologia/métodos , RNA/química , RNA/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Biologia Sintética/métodos , Motivos de Aminoácidos , Modelos Moleculares , Nanotecnologia , Conformação de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA