Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.071
Filtrar
1.
Sci Rep ; 14(1): 22848, 2024 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354110

RESUMO

In contemporary floriculture, particularly within the cut flower industry, there is a burgeoning interest in innovative methodologies aimed at enhancing the aesthetic appeal and prolonging the postharvest longevity of floral specimens. Within this context, the application of nanotechnology, specifically the utilization of silicon and selenium nanoparticles, has emerged as a promising approach for augmenting the qualitative attributes and extending the vase life of cut roses. This study evaluated the impact of silicon dioxide (SiO2-NPs) and selenium nanoparticles (Se-NPs) in preservative solutions on the physio-chemical properties of 'Black Magic' roses. Preservative solutions were formulated with varying concentrations of SiO2-NPs (25 and 50 mg L-1) and Se-NPs (10 and 20 mg L-1), supplemented with a continuous treatment of 3% sucrose. Roses treated with 20 mg L-1 Se-NPs exhibited the lowest relative water loss, highest solution uptake, maximum photochemical performance of PSII (Fv/Fm), and elevated antioxidative enzyme activities. The upward trajectory of hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels in petals was mitigated by different levels of SiO2 and Se-NPs, with the lowest H2O2 and MDA observed in preservatives containing 50 mg L-1 SiO2- and 20 mg L-1 Se-NPs at the 15th day, surpassing controls and other treatments. Extended vase life and a substantial enhancement in antioxidative capacity were noted under Se and Si nanoparticles in preservatives. The levels of total phenols, flavonoids, and anthocyanin increased during the vase period, particularly in the 50 and 20 mg L-1 Se-NPs and SiO2-NPs. Petal carbohydrate exhibited a declining trend throughout the longevity, with reductions of 8% and 66% observed in 20 mg L-1 Se-NPs and controls, respectively. The longest vase life was achieved with Se-NPs (20 mg L-1), followed by SiO2-NPs (50 mg L-1) up to 16.6 and 15th days, respectively. These findings highlight the significant potential of SiO2- and Se-NPs in enhancing the vase life and physiological qualities of 'Black Magic' roses, with SiO2-NPs showing broad-spectrum efficacy.


Assuntos
Flores , Nanopartículas , Rosa , Selênio , Dióxido de Silício , Selênio/química , Selênio/farmacologia , Dióxido de Silício/química , Nanopartículas/química , Rosa/química , Flores/química , Antioxidantes/química , Antioxidantes/farmacologia , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo
2.
Front Plant Sci ; 15: 1356750, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39359628

RESUMO

Introduction: Prickles are often deemed undesirable traits in many crops, including roses (Rosa sp.), and there is demand for rose cultivars with no or very few prickles. This study aims to identify new and/or validate reported quantitative trait loci (QTLs) associated with stem and leaf rachis prickle density, characterize the effects of functional haplotypes for major QTLs, and identify the sources of QTL-alleles associated with increased/decreased prickle density in roses. Methods: QTL mapping using pedigree-based analysis (PBA), and haplotype analysis were conducted on two multi-parental diploid rose populations (TX2WOB and TX2WSE). Results and discussion: Twelve QTLs were identified on linkage groups (LGs) 2, 3, 4, and 6. The major QTLs for the stem prickle density were located between 42.25 and 45.66 Mbp on chromosome 3 of the Rosa chinensis genome assembly, with individual QTLs explaining 18 to 49% of phenotypic variance (PVE). The remaining mapped QTLs were minor. As for the rachis prickle density, several QTLs were detected on LG3, 4, and 6 with PVE 8 to 17%. Also, this study identified that ancestors R. wichurana 'Basye's Thornless', 'Old Blush', and the pollen parent of M4-4 were common sources of favorable alleles (q) associated with decreased prickle density, whereas 'Little Chief' and 'Srche Europy' were the source of unfavorable alleles (Q) in the TX2WOB and TX2WSE populations, respectively. The outcomes of this work complement other studies to locate factors that affect prickle density. These results can also be utilized to develop high-throughput DNA tests and apply parental selection to develop prickle-free rose cultivars.

3.
Int J Biol Macromol ; 281(Pt 2): 136344, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39374714

RESUMO

In the pursuit of sustainable advancements in bio-inspired fiber reinforced polymer composite materials, the exploration of novel natural fibers has become a focal point of research. This experimental study aims to elucidate the unexplored potential of Hibiscus Rosa-sinensis fiber (HRF) as a versatile reinforcement material for high-performance composites. Through an integrated approach, this research offers a meticulous analysis of the HRF's physico-chemical properties, and single fiber tensile strength. The crystalline structure are revealed by X-ray diffraction (XRD), thermal behavior are characterized through thermo-gravimetric analysis (TGA), and surface morphology has been visualized using field emission scanning electron microscopy (FESEM) studies. From the results, it is found that the HRF contains a cellulose content of 79.50 %, positioning it as a prime bast fiber among its counterparts. This composition is complemented by hemicellulose (10.36 %), lignin (4.62 %), wax (0.84 %), and ash (2.96 %). The Fourier-transform infrared spectroscopy (FTIR) spectra unveils the intricate functional groups present in the fibers. XRD analysis highlights a crystallinity index (CI) of 66.93 %, confirming a well-organized and structured crystalline arrangement. The thermal stability established through TGA underscores HRF's resilience up to 284 °C, presenting it is an optimal reinforcement material for bio-inspired green composites operating within 280 °C. The surface morphology of HRF is examined through FESEM and three-dimensional profiling, showcasing its inherent morphological intricacies. The multidimensional characterization provided herein contributes significantly to the evolving landscape of biocomposite research, fostering a platform for future advancements and innovations in HRF-based composite materials.

4.
Front Microbiol ; 15: 1447735, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39355423

RESUMO

Acute lung injury (ALI) is a severe pulmonary condition with high mortality and morbidity, lacking effective pharmacotherapeutic options. Rosa roxburghii Tratt, a unique fruit from southwestern China, is valued for its rich nutritional content and functional properties. Fermentation is known to enhance the nutritional value, flavor, and shelf life of foods. In this study, we investigated the effects of fermented Rosa roxburghii juice (RRFJ) on gut microbiota, metabolites, and the levels of short-chain fatty acids in the intestines, as well as its impact on lung tissue and intestine tissue injury, inflammation, and oxidative stress in murine models. The results showed that RRFJ modulated gut microbiota and metabolites, increased short-chain fatty acid levels, and consequently reduced lung tissue injury, inflammation, and oxidative stress in mice with ALI. These findings suggest that RRFJ has the potential to serve as a functional dietary adjunct in the management of acute lung injury, providing a scientific basis for its therapeutic role.

5.
J Ethnopharmacol ; 337(Pt 2): 118876, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39362325

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Rosa odorata Sweet var. gigantea (Coll. et Hemsl.) Rehd. et Wils is a commonly utilized traditional medicine among the Yi nationality, also known as "Gugongguo", for the treatment of gastrointestinal disorders. Previous studies have indicated that the extract of Rosa odorata sweet var. gigantea (FOE) fruit has demonstrated a protective effect on the stomach; however, its impact on chronic atrophic gastritis (CAG) with severe disease remains unknown. AIM OF THE STUDY: This study aimed to investigate the impact of FOE on CAG and its underlying mechanisms both in vitro and in vivo. MATERIALS AND METHODS: By employing Ultra Performance Liquid Chromatography/Quadrupole-Time of Flight Mass Spectrometry (UPLC-QTOF-MS/MS) and network pharmacology, the primary active compounds and action targets of FOE were identified. In vitro, the impact of FOE on CAG was investigated through scratch, migration, and invasion assays. Subsequently, guided by network pharmacology, EMT and TGF-ß signaling pathway-related proteins were assessed using Western blot and immunofluorescence experiments. Additionally, an in vivo CAG rat model was established to validate the effects of FOE and confirm its mechanism of action through hematoxylin-eosin (H&E), immunohistochemistry, Western blot, as well as untargeted metabolomics analysis of rat serum. It was observed that FOE inhibited scratch healing abilities, migration, invasion capabilities, as well as the expression of EMT-related proteins (E-cadherin, N-cadherin, Snail, Vimentin) in CAG model cells (MC cells), providing initial evidence for its efficacy. RESULTS: Through the analysis of UPLC-QTOF-MS/MS, a total of 51 major compounds were identified in the FOE. Subsequent network pharmacological analysis suggested that FOE may regulate Epithelial mesenchymal transition (EMT) through the transforming growth factor ß (TGF-ß) pathway. Furthermore, experimental verification demonstrated that FOE inhibited the protein expression of TGF-ß1 and its downstream protein Smad2/3 in vitro. In vivo findings also indicated similar mechanisms in MC cells, suggesting a reversal of the CAG process and significant inhibition of EMT and TGF-ß signaling pathways. Additionally, untargeted metabolomics of rat serum confirmed the therapeutic effect of FOE on CAG and predicted its potential involvement in the arachidonic acid metabolic pathway. CONCLUSION: This study initially demonstrated that FOE effectively reverses the process of EMT through the TGF-ß1/Smad2/3 signaling pathway, thereby providing a therapeutic benefit for CAG.

6.
Foods ; 13(18)2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39335823

RESUMO

Rosa roxburghii (R. roxburghii), native to the southwest provinces of China, is a fruit crop of important economic value in Guizhou Province. However, the changes in fruit quality and flavor during R. roxburghii fruit ripening have remained unknown. Here, this study investigated the changes of seven active components and volatile organic compounds (VOCs) during the ripening of the R. roxburghii fruit at five different ripening stages including 45, 65, 75, 90, and 105 days after anthesis. The results indicated that during the ripening process, the levels of total acid, vitamin C, and soluble sugar significantly increased (p < 0.05), while the levels of total flavonoids, superoxide dismutase (SOD), and soluble tannin significantly decreased (p < 0.05). Additionally, the content of total phenol exhibited a trend of first decreasing significantly and then increasing significantly (p < 0.05). A total of 145 VOCs were detected by HS-SPME-GC-MS at five mature stages, primarily consisting of aldehydes, alcohols, esters, and alkenes. As R. roxburghii matured, both the diversity and total quantity of VOCs in the fruit increased, with a notable rise in the contents of acids, ketones, and alkenes. By calculating the ROAV values of these VOCs, 53 key substances were identified, which included aromas such as fruit, citrus, green, caramel, grass, flower, sweet, soap, wood, and fat notes. The aromas of citrus, caramel, sweet, and wood were predominantly concentrated in the later stages of R. roxburghii fruit ripening. Cluster heatmap analysis revealed distinct distribution patterns of VOCs across five different maturity stages, serving as characteristic chemical fingerprints for each stage. Notably, stages IV and V were primarily characterized by a dominance of alkenes. OPLS-DA analysis categorized the ripening process of R. roxburghii fruit into three segments: the first segment encompassed the initial three stages (I, II, and III), the second segment corresponded to the fourth stage (IV), and the third segment pertained to the fifth stage (V). Following the variable importance in projection (VIP) > 1 criterion, a total of 30 key differential VOCs were identified across the five stages, predominantly comprising ester compounds, which significantly influenced the aroma profiles of R. roxburghii fruit. By integrating the VIP > 1 and ROAV > 1 criteria, 21 differential VOCs were further identified as key contributors to the aroma changes in R. roxburghii fruit during the ripening process. This study provided data on the changes in quality and aroma of R. roxburghii fruit during ripening and laid the foundation for the investigation of the mechanism of compound accumulation during ripening.

7.
Dev Growth Differ ; 66(7): 384-393, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39305158

RESUMO

The development of new technologies opens new avenues in the research field. Gene knockout is a key method for analyzing gene function in mice. Currently, conditional gene knockout strategies are employed to examine temporal and spatial gene function. However, phenotypes are sometimes not observed because of the time required for depletion due to the long half-life of the target proteins. Protein knockdown using an improved auxin-inducible degron system, AID2, overcomes such difficulties owing to rapid and efficient target depletion. We observed depletion of AID-tagged proteins within a few to several hours by a simple intraperitoneal injection of the auxin analog, 5-Ph-IAA, which is much shorter than the time required for target depletion using conditional gene knockout. Importantly, the loss of protein is reversible, making protein knockdown useful to measure the effects of transient loss of protein function. Here, we also established several mouse lines useful for AID2-medicated protein knockdown, which include knock-in mouse lines in the ROSA26 locus; one expresses TIR1(F74G), and the other is the reporter expressing AID-mCherry. We also established a germ-cell-specific TIR1 line and confirmed the protein knockdown specificity. In addition, we introduced an AID tag to an endogenous protein, DCP2 via the CAS9-mediated gene editing method. We confirmed that the protein was effectively eliminated by TIR1(F74G), which resulted in the similar phenotype observed in knockout mouse within 20 h.


Assuntos
Ácidos Indolacéticos , Animais , Camundongos , Ácidos Indolacéticos/farmacologia , Ácidos Indolacéticos/metabolismo , Proteólise/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Degrons
8.
Front Plant Sci ; 15: 1461322, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39290741

RESUMO

WOXs are a class of plant-specific transcription factors that play key roles in plant growth and stress responses. However, the mechanism by which WOXs influence adventitious root development in Rosa hybrida remains unclear. In this study, RcWOX gene family in rose was identified and phylogenetically analyzed using bioinformatics analysis. A total of 381 RcWOX gene members were localized on seven chromosomes except of nine members. The main cis-acting elements involved in hormonal, light, developmental, and abiotic stress responses were identified in the promoters of RcWOX genes, suggesting their regulation by these signals. Nine RhWOX genes had significant different expression during rooting process of rose. RhWOX331, RhWOX308, RhWOX318 were positive with the formation of rose roots. RhWOX331 was positively involved in the formation of adventitious root primordia, which gene coding a transcription factor localized in the nucleus. The HOX conserved domain in the protein contributed to the self-activating activity of RhWOX331. We obtained genetically modified Arabidopsis to validate the function of RhWOX331. Overexpression of RhWOX331 gene alleviated the inhibition of root length of A. thaliana primary roots by high concentration of IBA and NPA, and significantly increased the number of lateral roots on the primary roots, as well as the height of A. thaliana plants. Additionally, RhWOX331 promoted adventitious root formation in A. thaliana and mitigated hormonal inhibition by exogenous 6-BA, NPA, and GA3. The RhWOX331 promoter contained cis-acting elements such as ABRE, Box 4 and CGTCA-motif et.al. GUS activity analysis showed that the gene acted at the cotyledon attachment site. Taken together, these studies identified a significant expansion of the RcWOX gene family, inferred roles of certain branch members in adventitious root formation, elucidated the function of RhWOX331 in adventitious root initiation, and laid the foundation for further research on the function of WOX gene family in roses.

9.
Ann Bot ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39292610

RESUMO

BACKGROUND AND AIMS: The section Synstylae in genus Rosa (Rosaceae) comprises 25-36 species and includes several major progenitors of modern rose cultivars. East Asian Synstylae species have recently diverged and are closely related, and their phylogenetic relationships remain unclear. In the present study, we employed a conserved ortholog set (COS) markers and genome-wide nuclear orthologs to elucidate their phylogenetic relationships and unravel their complex evolutionary history. METHODS: Utilising on eight Rosaceae COS (RosCOS) markers, we analysed a total of 137 accessions representing 15 East Asian Synstylae taxa to establish a robust phylogenetic framework and reconstruct ancestral areas. Furthermore, we constructed the species tree for eight representative species and estimated their divergence times based on 1,683 genome-wide orthologs. The species tree-gene tree coalescence time comparison, Patterson's D, f4-ratio, and f-branch statistics were analysed to identify incomplete lineage sorting (ILS), genetic introgression, and reticulation events using conserved ortholog data. KEY RESULTS: RosCOS markers and genome-wide orthologs effectively resolved the robust phylogeny of East Asian Rosa sect. Synstylae. Species divergence times estimated with genome-wide orthologs indicated that East Asian Synstylae species have recently diverged, with an estimated crown age of approximately 2 Mya. The rampant gene tree discordance indicated the possibility of ILS and/or genetic introgression. In the section Synstylae, deeper coalescence in the gene trees compared to the species tree suggested ILS as a source of gene tree discordance. Further, Patterson's D and f-branch statistics indicated that several lineages in the section were involved in genetic introgression. CONCLUSIONS: We have unravelled the complex evolutionary history of East Asian Rosa sect. Synstylae, including recent species divergences, ILS, and genetic introgression. Coupled with the geographical and ecological complexity of East Asia, ILS and genetic introgression may have contributed to the rapid diversification of East Asian Synstylae species by permitting adaptation to diverse environments.

10.
Metabol Open ; 23: 100317, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39310665

RESUMO

Background: Diabetes mellitus is becoming major health challenge with continually increasing burden. High costs of conventional medicines and numerous side effects associated with them, on the other hand, easy availability and accessibility of traditional herbal medicines calls upon experimental investigations to validate their effect on lowering blood glucose level. Methods: The dried fruit of Rosa abyssinica was macerated with 70 % ethanol and the extract's in vitro antidiabetic activity was investigated using dinitrosalisylic acid method for alpha amylase inhibitory activity. Furthermore, the in vivo hypoglycemic and Antihyperglycemic effects of various doses of the extract (100, 200 and 400 mg/kg) was determined on normoglycemic, glucose loaded (1500 mg/kg) and Streptozotocine (180 mg/kg)-induced diabetic mice models. Results: The acute oral toxicity study revealed the plant showed no toxic effect on swiss albino mice at 2000 mg/kg. The in vitro alpha amylase inhibitory activity study showed that the extract has comparable IC50 value of 21.37 ± 4.252 µg/ml with the standard drug acarbose (IC50 value of 26.72 ± 3.59 µg/ml). On the other hand, in normal mice, none of the dose levels except at 400 mg/kg significantly reduces blood glucose level. This is in contrast to the oral glucose tolerance test, which the extract produced significant reduction at 60, 90 and 120 min following glucose challenge. The 70 % ethanolic fruit extracts of Rosa abyssinica also experienced profound antidiabetic activity in streptozotocin-induced diabetic model. In the single-dose study, both RAFE200 and RAFE400 demonstrated a significant (P˂0.05) reduction in blood glucose levels at 1, 2, 3, and 4 h. Similarly, in the repeated-dose study, RAFE200 and RAFE400 not only significantly reduced blood glucose levels but also produced a notable improvement in animal body weight. Conclusion: The 70 % ethanolic fruit extracts of Rosa abyssinica have shown significant in vitro alpha amylase inhibition effect and an in vivo blood glucose level lowering effects in diabetic mice.Therefore, this study supports the traditional use of Rosa abyssinica in the management of diabetes mellitus.

11.
J Sci Food Agric ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39286895

RESUMO

BACKGROUND: Insomnia, a prevalent sleep disorder, detrimentally affects quality of life and is often challenging to manage with conventional treatments. This study delved into identifying and quantifying the main compounds by employing ultra-performance liquid chromatography-Q-Exactive-Orbitrap mass spectrometry, and further to evaluate the therapeutic potential of Rosa roxburghii folium (RRF) extract, with multiple pharmacological activities. Previous research had hinted at the efficacy of glycosides in influencing the γ-aminobutyric acid (GABAergic) system, which plays a pivotal role in sleep regulation. Utilizing a p-chlorophenylalanine-induced insomnia model in BALB/C mice, this investigation aimed to unravel the effects of various dosages of RRF extract on sleep quality and elucidated its mechanism of action. RESULTS: A total of 66 compounds in the RRF extract were analyzed. Behavioral assessments demonstrated notable enhancements in sleep duration and latency. Biochemical analyses further corroborated these findings, revealing modulation in neurotransmitter levels indicative of a potential mechanism through the GABAergic and serotoninergic pathways. Additionally, histological evaluations suggested anti-inflammatory and antioxidant effects of the RRF extract. CONCLUSION: The findings from this study underscored the therapeutic efficacy of RRF extract in combating insomnia, particularly highlighting its glycoside components' role. The extract's significant improvement in sleep duration and latency, alongside its modulation of neurotransmitter levels, showcases its potential as a natural remedy for insomnia. Through its action on the GABAergic and serotoninergic pathways, as well as its anti-inflammatory and antioxidant effects, RRF extract emerges as a promising candidate for insomnia treatment, offering a holistic approach to sleep disorder management. © 2024 Society of Chemical Industry.

12.
Plant Physiol Biochem ; 216: 109126, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39288572

RESUMO

Rosa rugosa is limited in landscaping applications due to its monotonous color, especially the lack of red-flowered varieties. Comprehensive assessment of petal color diversity in R. rugosa could promote to explore the mechanism of flower color formation. In this study, the variation and diversity of petal coloring of 193 R. rugosa germplasms were assessed by chromatic values (L∗, a∗, and b∗), and then divided into seven clusters belonging to three groups with pinkish-purple (185 individuals), white (6), and red (2) petals, respectively. Total anthocyanin content was the most important factor affecting flower color diversity and red hue formation of R. rugosa petals. There were significant correlations between petal color chromatic indexes and the sum content and the ratio of two major anthocyanin, namely cyanidin 3,5-O-diglucoside (Cy3G5G), peonidin 3,5-O-diglucoside (Pn3G5G). Both high levels of Cy3G5G + Pn3G5G and Cy3G5G/Pn3G5G were necessary conditions for red phenotype formation. Five cyanidin up-stream structural genes (RrF3'H1, RrDFR1, RrANS1, RrUF3GT1, RrUF35GT1) and one cyanidin down-stream structural gene (RrCCoAOMT1) were the key indicators which contributed to Cy3G5G + Pn3G5G and Cy3G5G/Pn3G5G, respectively. Functional verification showed that overexpression of RrDFR1, combined with silent expression of RrCCoAOMT1, could make R. rugosa petals redder by increasing the levels of Cy3G5G + Pn3G5G and Cy3G5G/Pn3G5G. These results provided a robust theoretical basis for further revealing the molecular mechanism of red petals coloration in R. rugosa.

13.
BMC Plant Biol ; 24(1): 874, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39304829

RESUMO

BACKGROUND: Global warming has greatly increased the impact of high temperatures on crops, resulting in reduced yields and increased mortality. This phenomenon is of significant importance to the rose flower industry because high-temperature stress leads to bud dormancy or even death, reducing ornamental value and incurring economic losses. Understanding the molecular mechanisms underlying the response and resistance of roses to high-temperature stress can serve as an important reference for cultivating high-temperature-stress-resistant roses. RESULTS: To evaluate the impact of high temperatures on rose plants, we measured physiological indices in rose leaves following heat stress. Protein and chlorophyll contents were significantly decreased, whereas proline and malondialdehyde (MDA) contents, and peroxidase (POD) activity were increased. Subsequently, transcriptomics and metabolomics analyses identified 4,652 common differentially expressed genes (DEGs) and 57 common differentially abundant metabolites (DAMs) in rose plants from four groups. Enrichment analysis showed that DEGs and DAMs were primarily involved in the mitogen-activated protein kinases (MAPK) signaling pathway, plant hormone signal transduction, alpha-linolenic acid metabolism, phenylpropanoid biosynthesis, and flavonoid biosynthesis. The combined analysis of the DEGs and DAMs revealed that flavonoid biosynthesis pathway-related genes, such as chalcone isomerase (CHI), shikimate O-hydroxycinnamoyl transferase (HCT), flavonol synthase (FLS), and bifunctional dihydroflavonol 4-reductase/flavanone 4-reductase (DFR), were downregulated after heat stress. Moreover, in the MAPK signaling pathway, the expression of genes related to jasmonic acid exhibited a decrease, but ethylene receptor (ETR/ERS), P-type Cu + transporter (RAN1), ethylene-insensitive protein 2/3 (EIN2), ethylene-responsive transcription factor 1 (ERF1), and basic endochitinase B (ChiB), which are associated with the ethylene pathway, were mostly upregulated. Furthermore, heterologous overexpression of the heat stress-responsive gene RcHSP70 increased resistance to heat stress in Arabidopsis thaliana. CONCLUSION: The results of this study indicated that the flavonoid biosynthesis pathway, MAPK signaling pathway, and plant hormones may be involved in high-temperature resistance in roses. Constitutive expression of RcHSP70 may contribute to increasing high-temperature tolerance. This study provides new insights into the genes and metabolites induced in roses in response to high temperature, and the results provide a reference for analyzing the molecular mechanisms underlying resistance to heat stress in roses.


Assuntos
Resposta ao Choque Térmico , Metabolômica , Rosa , Rosa/genética , Rosa/metabolismo , Rosa/fisiologia , Resposta ao Choque Térmico/genética , Perfilação da Expressão Gênica , Transcriptoma , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Folhas de Planta/metabolismo , Folhas de Planta/genética , Folhas de Planta/fisiologia
14.
Food Res Int ; 195: 114950, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39277228

RESUMO

Rosa roxburghii Tratt (RRT), a traditional Chinese plant known as the 'King of Vitamin C (VitC; ascorbic acid, AsA)', contains a wealth of nutrients and functional components, including polysaccharides, organic acids, flavonoids, triterpenes, and high superoxide dismutase (SOD) activity. The various functional components of RRT suggest that it may theoretically have a stronger potential for alleviating colitis compared to VitC. This study aims to verify whether RRT has a stronger ability to alleviate colitis than equimolar doses of VitC and to explore the mechanisms underlying this improvement. Results showed that RRT significantly mitigated body weight loss, intestinal damage, elevated inflammation levels, and compromised barriers in mice induced by Dextran sulfate sodium (DSS). Additionally, RRT enhanced the diversity and composition of intestinal microbiota in these DSS-induced mice. Colon RNA sequencing analysis revealed that compared to VitC, RRT further downregulated multiple immune-related signaling pathways, particularly the B cell receptor (BCR) pathway, which is centered around genes like Btk and its downstream PI3K-AKT, NF-κB, and MAPK signaling pathways. Correlation analysis between microbiota and genes demonstrated a significant relationship between the taxa improved by RRT and the key genes in the BCR and its downstream signaling pathways. Overall, RRT exhibited superior capabilities in alleviating DSS-induced colitis compared to VitC by decreasing intestinal inflammation and modulating BCR and its downstream signaling pathways, potentially regulated by the improved intestinal microbiota.


Assuntos
Ácido Ascórbico , Colite , Sulfato de Dextrana , Microbioma Gastrointestinal , Rosa , Transdução de Sinais , Animais , Colite/induzido quimicamente , Colite/metabolismo , Colite/microbiologia , Rosa/química , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Extratos Vegetais/farmacologia , Masculino , Colo/metabolismo , Colo/microbiologia , Colo/efeitos dos fármacos , Modelos Animais de Doenças
15.
Plant Biol (Stuttg) ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39265058

RESUMO

Discontinuous hydration and dehydration (HD) cycles refer to controlled imbibition followed by dehydration before seed germination. Here, we investigated whether the level of imbibition before HD cycles affects the physiology of Tabebuia heterophylla seeds and seedlings. Seeds were imbibed for 10 h (T1; phase I of imbibition) or 35 h (T2; phase II), dehydrated, and progressively rehydrated one to four times (HD cycles). Germination and biochemical parameters (membrane integrity; total soluble, reducing, and nonreducing (NRS) sugars; proteins, amino acids, proline, H2O2, catalase, ascorbate peroxidase, and glutathione reductase activity) were quantified at the last rehydration step of each cycle. Biometric and biochemical parameters (including pigments) were analysed in seedlings 60 days after germination. HD cycles at T1 led to reduced seed germination and greater plasma membrane damage, higher enzyme activity (catalase and glutathione reductase) and accumulation of NRS, total amino acids, and proline compared to the controls and T2 treatment. Cellular damage became more severe with more HD cycles. HD cycles at T2 synchronized germination regardless of the number of cycles and also had a priming effect. T2 seeds had less NRS, total amino acids, and proline content than T1. HD cycles at T1 produced seedlings with higher carotenoid and total chlorophyll content than controls and T2, while seedlings from HD cycles at T2 had higher amounts of osmoprotectants. HD cycles at T2 benefited seeds and seedlings more than at T1. This suggests that the physiological and biochemical effects of HD cycles in seeds modulate seedling plasticity, depending on water availability, potentially promoting increased tolerance to recurrent droughts that will be intensified with ongoing climate changes.

16.
Food Chem ; 463(Pt 2): 141164, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39265303

RESUMO

The consumption of rose tea has gained popularity due to its unique flavor and health benefits. In particular, previous data exemplified the protective role of N1, N5, N10-(E)-tri-p-coumaroylspermidine (ETCS; a phenolamide) against alcohol-induced hepatic injuries. This study evaluated the customer acceptance and physicochemical properties of eight rose tea varieties that available in the market. In general, Qianye rose (Rosa centifolia) exhibits better flavor and taste, while Hetian rose (Rosa damascena Mill.) has the highest ETCS level. Moreover, a negative correlation between ETCS content and both vitamin C and anthocyanins content in rose is observed. Additionally, the optimal brewing conditions for rose tea is 95 °C mineral water for 5 min in a thermos bottle, based on ETCS level in the infusion. And rose tea can be brewed for at least three times. Collectively, our findings provide valuable insights for rose tea drinkers and individuals interested in the dietary hepatic-protective benefits.

17.
J Exp Bot ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39230685

RESUMO

Petal size, a crucial trait in the economically important ornamental rose (Rosa hybrida), is synergistically regulated by cell division and cell expansion. Cell division primarily occurs during the early development of petals. However, the molecular mechanism underlying the regulation of petal size is far from clear. In this study, we isolated the transcription factor gene RhSCL28, which is highly expressed at the early stage of rose petal development and is induced by cytokinin. Silencing RhSCL28 resulted in a reduced final petal size and reduced cell number in rose petals. Further analysis showed that RhSCL28 participates in the regulation of cell division by positively regulating the expression of the cyclin genes RhCYCA1;1 and RhCYCB1;2. To explore the potential mechanism for cytokinin-mediated regulation of RhSCL28 expression, we investigated the cytokinin response factor RhRR1 and determined that it positively regulates RhSCL28 expression. Like RhSCL28, silencing RhRR1 also resulted in smaller petals by decreasing cell number. Taken together, these results reveal that the RhRR1-RhSCL28 module positively regulates petal size by promoting cell division in rose.

18.
Ying Yong Sheng Tai Xue Bao ; 35(7): 1897-1906, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39233419

RESUMO

Rosa multiflora, originated from East Asia, is one of the original ancestors of modern roses. It is also an important genetic resource and rootstock for rose cultivation. Due to its high resistance and vigorous growth, R. multiflora has become an invasive species in some introduction sites, such as North America. To explore the correlation between the suitable habitat of R. multiflora and climate change, we predicted its potential geographic distribution with an optimized MaxEnt model based on 1246 distribution records and nine bioclimatic variables. The results showed that the mean temperature of the coldest quarter, minimum temperature of the coldest month, precipitation of the warmest quarter, and isothermality were significant bioclimatic variables affecting the potential geographic distribution of R. multiflora. Under current climate conditions, R. multiflora naturally distributed in the plains and hilly areas to the east and south of the Loess Plateau. The distribution pattern in the mid-holocene was similar to its current distribution, but the highly suitable distribution area was in the south of North China Plain, the Sichuan Basin, and parts of the Middle-Lower Yangtze Plain. During the last interglacial, the suitable areas generally contrac-ted southward, while the highly suitable areas significantly expanded and mainly located in the Sichuan Basin, the Middle-Lower Yangtze Plains, the Yunnan-Guizhou Plateau, and the Southeast Hills. Beyond its natural distribution in East Asia, R. multiflora had been introduced and spread to most parts of Europe and the central and eastern United States. The distribution area of R. multiflora would expand under three warming scenarios of different shared socioeconomic pathways (SSP1-2.6, SSP2-4.5, and SSP5-8.5) during 2041-2060 and 2081-2100. Its average distribution center (centroid) would shift towards higher latitude, indicating that the distribution of R. multiflora was closely related to climate change and that global warming might lead to an expansion of its distribution area. These results would improve our understanding of the ecological adaptability of R. multiflora, facilitate the predicting of its future distribution, and provide a theoretical basis for monitoring and early warning measures following its introduction.


Assuntos
Mudança Climática , Ecossistema , Espécies Introduzidas , Rosa , Rosa/crescimento & desenvolvimento , China , Simulação por Computador , Dispersão Vegetal
19.
Ying Yong Sheng Tai Xue Bao ; 35(6): 1534-1542, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-39235011

RESUMO

We analyzed age structure and dynamics, spatial distribution patterns, and reproductive capabilities of four Rosa persica populations in Xinjiang, to evaluate the survival status of the species and explore the reasons behind its endangerment. The results showed that the populations had fewer individuals in the youngest (Ⅰ) and oldest (Ⅵ-Ⅷ) age classes, with a predominance of middle-aged individuals, resulting in an irregular pyramid-shaped distribution, described as "high in the middle, low on both sides". The populations were generally growing, but were susceptible to external environmental disturbances (Vpi'>0, Pmax>0). The mortality rate (qx) and vanish rate (Kx) peaked at age Ⅴ, leading to a sharp decline in plant abundance. The life expectancy (ex) decreased progressively with the increases of age class, reaching its lowest at age Ⅷ, which indicated minimal vitality at this stage. A time sequence analysis predicted a future dominance of individuals at age Ⅴ-Ⅷ, suggesting an aging trend. Spatially, the four populations were predominantly clumped, with the intensity of clumping ranked from highest to lowest as P4, P3, P1, and P2. P3 and P4 exhibited better reproductive capabilities than P1 and P2. There was a significant positive correlation between hundred-fruit weight and plant height and crown width, and between total seed number and crown width and hundred-fruit weight.


Assuntos
Dinâmica Populacional , Rosa , Rosa/crescimento & desenvolvimento , China , Frutas/crescimento & desenvolvimento , Reprodução , Ecossistema , Conservação dos Recursos Naturais
20.
Plant Dis ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300851

RESUMO

Rosa roxburghii Tratt, known as Cili in China, is a fruit crop that grows in the mountains of southwest China at altitudes of 500 - 2500 m, especially in Guizhou province (Huang et al. 2022). In July 2021, leaf spot symptoms were observed on approximately 20 to 30% of R. roxburghii plants in a field of 6,000 m2 in Guiding County (107°14'E, 26°45'N), Guizhou Province, China. Severe leaf spot can lead to excessive leaf drop, significantly weakening the tree and adversely affecting its growth and fruit quality, which in turn can result in reduced or even lost harvests. The symptoms appeared as irregular brown spots (0.5 to 9.5 mm), which could coalesce when densely clustered and could lead to yellowing of the leaves in severe cases. To isolate the pathogen, 10 symptomatic leaves were collected from 10 trees. Symptomatic leaves were washed with sterile distilled water and then portions of the tissue (0.5×0.5cm) were cut at the junction of infected and healthy tissues. After surface sterilization (0.5 min with 75% ethanol, 2 min with 3% NaOCl, washed three times with sterilized distilled water), the leaves were dried and placed flat on potato dextrose agar (PDA) and left for 3-4 days incubated at 25°C (Fang, 2007). From this process, three isolates, denoted as F3-Y-21, F3-Y-22 and F3-Y-23, were obtained through single spore isolation, all displaying identical morphology. Subsequently, isolate F3-Y-21 was selected for further study. The colonies had dense aerial hyphae, initially white and later turning gray near the colony center when cultured on PDA at 28℃. Pycnidia were dark, spherical or flat spherical, and 42.2 to 52.6 µm × 51.5 to 55.2 µm in diameter (n = 50). Conidia were oval, smooth, aseptate, usually guttulate, and the size was 3.0 to 4.6 µm × 2.3 to 2.8 µm (n = 50). These morphological attributes were consistent with the description of Didymella segeticola (Chen et al. 2015). The isolate F3-Y-21 was confirmed to be D. segeticola by amplification and sequencing of the rDNA internal transcribed spacer region (ITS; primers ITS5/ITS4), large subunit ribosomal RNA gene (LSU; primers LROR/LR5), beta-tubulin gene (TUB2; primers Bt2a/Bt2b), and RNA polymerase II second largest subunit gene (RPB2; primers RPB2-5F2/fRPB2-7cR) (Liu et al. 1999; Suwannarachetal. 2019). Sequences from PCR amplification were deposited in GenBank under accessions PP159078 (ITS), PP159081 (LSU), PP178656 (TUB2), and PP178653 (RPB2). BLASTn searches of the sequences in GenBank revealed 100.00% identity of ITS (486/486 bp), 100.00% identity of LSU (574/574 bp), 98.93% identity of TUB2 (277/280 bp), and 99.05% identity of RPB2 (838/846 bp) with those sequences of D. segeticola CGMCC 3.17489 (accessions KP330443, KP330455, KP330399, and KP330414, respectively). A phylogenetic tree was constructed by MEGA7.0 using the maximum likelihood method. The isolate F3-Y-21 clustered in the same branch with D. segeticola. To assess its pathogenicity, a pot assay was conducted. Twelve leaves of three healthy R. roxburghii plants were spray-inoculated with a spore suspension (106 spores/ml), and an additional three plants were sprayed with sterile water. The plants were maintained at 25°C and 75% relative humidity in a growth chamber. The experiment was repeated three times. After 7 days, the inoculated leaves developed brown lesions similar to those in the field, while the control had no symptoms. The pathogen was reisolated from diseased leaves and identified by morphological characterization and molecular analyses (ITS, LSU, TUB2 and RPB2), and the reisolated pathogen was identical to D. segeticola, thus fulfilling Koch's postulates. Similar results were obtained from three replications of the pathogenicity test. To our knowledge, this is the first report of leaf spot diseases of R. roxburghii plants caused by D. segeticola in China, although it has been previously reported to cause diseases on other hosts in China (Guo et al. 2020). It provides a theoretical basis for the detection and prevention of R. roxburghii leaf spot disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA