Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Comp Neurol ; 532(9): e25670, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39315417

RESUMO

The brain changes of Alzheimer's disease (AD) include Abeta (Aß) amyloid plaques ("A"), abnormally phosphorylated tau tangles ("T"), and neurodegeneration ("N"). These have been used to construct in vivo and postmortem diagnostic and staging classifications for evaluating the spectrum of AD in the "ATN" and "ABC" ("B" for Braak tau stage, "C" for Consortium to Establish a Registry for Alzheimer's Disease [CERAD] neuritic plaque density) systems. Another common AD feature involves cerebral amyloid angiopathy (CAA). We report the first experiment to examine relationships among cognition, brain distribution of amyloid plaques, CAA, tau/tangles, and magnetic resonance imaging (MRI)-determined volume changes (as a measure of "N") in the same group of behaviorally characterized nonhuman primates. Both ATN and ABC systems were applied to a group of 32 rhesus macaques aged between 7 and 33 years. When an immunohistochemical method for "T" and "B" was used, some monkeys were "triple positive" on ATN, with a maximum ABC status of A1B2C3. With silver or thioflavin S methods, however, all monkeys were classified as T-negative and B0, indicating the absence of mature neurofibrillary tangles (NFTs) and hence neuropathologically defined AD. Although monkeys at extremes of the ATN and ABC classifications, or with frequent CAA, had significantly lower scores on some cognitive tests, the lack of fully mature NFTs or dementia-consistent cognitive impairment indicates that fully developed AD may not occur in rhesus macaques. There were sex differences noted in the types of histopathology present, and only CAA was significantly related to gray matter volume.


Assuntos
Envelhecimento , Doença de Alzheimer , Encéfalo , Substância Cinzenta , Macaca mulatta , Imageamento por Ressonância Magnética , Animais , Doença de Alzheimer/patologia , Doença de Alzheimer/diagnóstico por imagem , Masculino , Feminino , Imageamento por Ressonância Magnética/métodos , Envelhecimento/patologia , Envelhecimento/fisiologia , Humanos , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , Placa Amiloide/patologia , Placa Amiloide/diagnóstico por imagem , Emaranhados Neurofibrilares/patologia , Cognição/fisiologia , Transtornos Cognitivos/patologia , Transtornos Cognitivos/diagnóstico por imagem , Proteínas tau/metabolismo
2.
J Neurosci Res ; 101(6): 881-900, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36647571

RESUMO

Aging and neurodegenerative disorders, such as Alzheimer's disease (AD), trigger an immune response known as glial activation in the brain. Recent evidence indicates species differences in inflammatory responses to AD pathology, highlighting the need for additional comparative studies to further understand human-specific neuropathologies. In the present study, we report on the occurrence of astrogliosis, microglial activation, and their relationship with age and AD-like pathology in a cohort of male and female chimpanzees (Pan troglodytes). Chimpanzees with severe astrogliosis exhibited widespread upregulation of hypertrophic astrocytes immunoreactive for glial fibrillary acidic protein (GFAP) throughout all layers of the dorsolateral prefrontal cortex and a loss of the interlaminar palisade. In addition, extreme astrogliosis was associated with increased astrocyte density in the absence of significant microglial activation and AD lesions. A shift from decreased resting to increased phagocytotic microglia occurred with aging, although proliferation was absent and no changes in astrogliosis was observed. Vascular amyloid correlated with decreased astrocyte and microglia densities, while tau lesions were associated with morphological changes in microglia and greater total glia density and glia: neuron ratio. These results further our understanding of inflammatory processes within the chimpanzee brain and provide comparative data to improve our understanding of human aging and neuropathological processes.


Assuntos
Doença de Alzheimer , Animais , Masculino , Humanos , Feminino , Doença de Alzheimer/metabolismo , Pan troglodytes , Microglia/metabolismo , Gliose/patologia , Encéfalo/metabolismo , Astrócitos/metabolismo
3.
J Neurosci Res ; 100(4): 1084-1104, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35170061

RESUMO

Tau protein abnormalities are associated with various neurodegenerative disorders, including Alzheimer's disease (AD) and traumatic brain injury (TBI). In tau-overexpressing SHSY5Y cells and iPSC-derived neuron models of frontotemporal dementia (FTD), axonal tau translocates into the nuclear compartment, resulting in neuronal dysfunction. Despite extensive research, the mechanisms by which tau translocation results in neurodegeneration remain elusive thus far. We studied the nuclear displacement of different P-tau species [Cis phosphorylated Thr231-tau (cis P-tau), phosphorylated Ser202/Thr205-tau (AT8 P-tau), and phosphorylated Thr212/Ser214-tau (AT100 P-tau)] at various time points using starvation in primary cortical neurons and single severe TBI (ssTBI) in male mouse cerebral cortices as tauopathy models. While all P-tau species translocated into the somatodendritic compartment in response to stress, cis P-tau did so more rapidly than the other species. Notably, nuclear localization of P-tau was associated with p53 apoptotic stabilization and nucleolar stress, both of which resulted in neurodegeneration. In summary, our findings indicate that P-tau nuclear translocation results in p53-dependent apoptosis and nucleolar dispersion, which is consistent with neurodegeneration.


Assuntos
Doença de Alzheimer , Tauopatias , Doença de Alzheimer/metabolismo , Animais , Masculino , Camundongos , Transporte Proteico , Proteína Supressora de Tumor p53/metabolismo , Proteínas tau/metabolismo
4.
J Comp Neurol ; 528(1): 108-113, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31273784

RESUMO

Domestic cats (Felis catus) are known to develop cognitive impairment, and several small series have demonstrated both ß-amyloid and tau aggregation, including neurofibrillary tangles, with age, making them a promising physiologic model of Alzheimer disease (AD). We therefore report the largest feline autopsy cohort to date of 32 cats ranging from 1.5 to 22.1 years of age, with systematic neuropathologic assessment according to NIA-Alzheimer's Association Criteria. Formalin-fixed paraffin-embedded tissue sections of brain were obtained retrospectively from cats autopsied at the Iowa State College of Veterinary Medicine. We found ß-amyloid staining, predominantly in Cortical Layers IV and VI in 27 of the 32 cats used in the study, with four of these animals showing tau-positive tangles and neuropil threads. In 75% of these cases (3/4), tau deposition was limited to entorhinal cortex, while one case showed diffuse positive staining throughout the hippocampal formation and neocortex. This last case showed positive staining for all phospho-tau-specific antibodies tested, similar to the pattern seen in human AD. Interestingly, we saw a higher ratio of pretangles to tangles than that in human AD, and none of the cases showed neuritic plaques on any of the stains used. Our findings indicate that aging domestic cats spontaneously develop both ß-amyloid and tau pathology similar, but not identical to that seen in human AD. This suggests that the domestic cat may serve as a potential model for mechanistic and therapeutic AD studies, but that additional research is needed to identify differences between the neuropathology of aging in humans and felines.


Assuntos
Envelhecimento/patologia , Peptídeos beta-Amiloides/análise , Química Encefálica , Encéfalo/patologia , Proteínas tau/análise , Animais , Gatos
5.
J Comp Neurol ; 527(7): 1179-1195, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30578640

RESUMO

Astrocytes are the main homeostatic cell of the central nervous system. In addition, astrocytes mediate an inflammatory response when reactive to injury or disease known as astrogliosis. Astrogliosis is marked by an increased expression of glial fibrillary acidic protein (GFAP) and cellular hypertrophy. Some degree of astrogliosis is associated with normal aging and degenerative conditions such as Alzheimer's disease (AD) and other dementing illnesses in humans. The recent observation of pathological markers of AD (amyloid plaques and neurofibrillary tangles) in aged chimpanzee brains provided an opportunity to examine the relationships among aging, AD-type pathology, and astrocyte activation in our closest living relatives. Stereologic methods were used to quantify GFAP-immunoreactive astrocyte density and soma volume in layers I, III, and V of the prefrontal and middle temporal cortex, as well as in hippocampal fields CA1 and CA3. We found that the patterns of astrocyte activation in the aged chimpanzee brain are distinct from humans. GFAP expression does not increase with age in chimpanzees, possibly indicative of lower oxidative stress loads. Similar to humans, chimpanzee layer I astrocytes in the prefrontal cortex are susceptible to AD-like changes. Both prefrontal cortex layer I and hippocampal astrocytes exhibit a high degree of astrogliosis that is positively correlated with accumulation of amyloid beta and tau proteins. However, unlike humans, chimpanzees do not display astrogliosis in other cortical layers. These results demonstrate a unique pattern of cortical aging in chimpanzees and suggest that inflammatory processes may differ between humans and chimpanzees in response to pathology.


Assuntos
Envelhecimento/patologia , Doença de Alzheimer/veterinária , Astrócitos/patologia , Encéfalo/patologia , Gliose/veterinária , Pan troglodytes/anatomia & histologia , Doenças dos Primatas/patologia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/análise , Animais , Biomarcadores , Química Encefálica , Feminino , Proteína Glial Fibrilar Ácida/análise , Gliose/patologia , Masculino , Especificidade de Órgãos , Placa Amiloide/química , Placa Amiloide/patologia , Proteínas tau/análise
6.
J Comp Neurol ; 526(18): 2921-2936, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30069930

RESUMO

In Alzheimer's disease (AD), the brain's primary immune cells, microglia, become activated and are found in close apposition to amyloid beta (Aß) protein plaques and neurofibrillary tangles (NFT). The present study evaluated microglia density and morphology in a large group of aged chimpanzees (n = 20, ages 37-62 years) with varying degrees of AD-like pathology. Using immunohistochemical and stereological techniques, we quantified the density of activated microglia and morphological variants (ramified, intermediate, and amoeboid) in postmortem chimpanzee brain samples from prefrontal cortex, middle temporal gyrus, and hippocampus, areas that show a high degree of AD pathology in humans. Microglia measurements were compared to pathological markers of AD in these cases. Activated microglia were consistently present across brain areas. In the hippocampus, CA3 displayed a higher density than CA1. Aß42 plaque volume was positively correlated with higher microglial activation and with an intermediate morphology in the hippocampus. Aß42-positive vessel volume was associated with increased hippocampal microglial activation. Activated microglia density and morphology were not associated with age, sex, pretangle density, NFT density, or tau neuritic cluster density. Aged chimpanzees displayed comparable patterns of activated microglia phenotypes as well as an association of increased microglial activation and morphological changes with Aß deposition similar to AD patients. In contrast to human AD brains, activated microglia density was not significantly correlated with tau lesions. This evidence suggests that the chimpanzee brain may be relatively preserved during normal aging processes but not entirely protected from neurodegeneration as previously assumed.


Assuntos
Envelhecimento/patologia , Doença de Alzheimer/patologia , Encéfalo/patologia , Microglia/patologia , Animais , Feminino , Masculino , Emaranhados Neurofibrilares/patologia , Pan troglodytes , Placa Amiloide/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA