Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.385
Filtrar
1.
Phys Med ; 124: 103431, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39059250

RESUMO

PURPOSE: The objective of our IAEA-coordinated international study was to assess CT practices and radiation doses from multiple hospitals across several African countries. METHODS: The study included 13 hospitals from Africa which contributed information on minimum of 20 consecutive patients who underwent head, chest, and/or abdomen-pelvis CT. Prior to the data recording step, all hospitals had a mandatory one-hour training on the best practices in recording the relevant data elements. The recorded data elements included patient age, weight, protocol name, scanner information, acquisition parameters, and radiation dose descriptors including phase-specific CT dose index volume (CTDIvol in mGy) and dose length product (DLP in mGy.cm). We estimated the median and interquartile range of body-region specific CTDIvol and DLP and compared data across sites and countries using the Kruskal-Wallis H Test for non-normal distribution, analysis of variance. RESULTS: A total of 1061 patients (mean age 50 ± 19 years) were included in the study. 16 % of CT exams had no stated clinical indications for CT examinations of the head (32/343, 9 %), chest (50/281, 18 %), abdomen-pelvis (67/243, 28 %), and/or chest-abdomen-pelvis CT (24/194, 12 %). Most hospitals used multiphase CT protocols for abdomen-pelvis (9/11 hospitals) and chest CT (10/12 hospitals), regardless of clinical indications. Total median DLP values for head (953 mGy.cm), chest (405 mGy.cm), and abdomen-pelvis (1195 mGy.cm) CT were above the UK, German, and American College of Radiology Diagnostic Reference Levels (DRLs). CONCLUSIONS: Concerning variations in CT practices and protocols across several hospitals in Africa were demonstrated, emphasizing the need for better protocol optimization to improve patient safety.

2.
Biomed Pharmacother ; 177: 117029, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38991305

RESUMO

Amifostine (AMF) as the first-line radiation protection drug, usually suffered from low compliance and short half-life upon clinical applications. The development of oral drug delivery system (DDS) for AMF is a promising solution. However, the inherent shortages of AMF present significant challenges in the design of suitable oral DDS. Here in this study, we utilized the ability of calcium ions to bind with AMF and prepared AMF loaded calcium carbonate (CC) core, CC/AMF, using phase transferred coprecipitation method. We further modified the CC/AMF using phospholipids to prepare AMF loaded lipid-calcium carbonate (LCC) hybrid nanoparticles (LCC/AMF) via a thin-film dispersion method. LCC/AMF combines the oral advantages of lipid nanoparticles with the drug-loading capabilities of CC, which was shown as uniform nano-sized formulation with decent stability in aqueous solution. With favorable intestinal transport and absorption effects, it effectively enhances the in vivo radiation protection efficacy of AMF through oral administration. More importantly, we further investigated the cellular accumulation profile and intracellular transport mechanism of LCC/AMF using MDCK and Caco-2 cell lines as models. This research not only alters the current administration method of AMF to enhance its convenience and compliance, but also provides insights and guidance for the development of more suitable oral DDS for AMF in the future.


Assuntos
Amifostina , Carbonato de Cálcio , Nanopartículas , Protetores contra Radiação , Carbonato de Cálcio/química , Administração Oral , Animais , Humanos , Células CACO-2 , Protetores contra Radiação/administração & dosagem , Protetores contra Radiação/química , Protetores contra Radiação/farmacologia , Protetores contra Radiação/farmacocinética , Nanopartículas/química , Amifostina/administração & dosagem , Amifostina/farmacologia , Cães , Lipídeos/química , Células Madin Darby de Rim Canino , Sistemas de Liberação de Medicamentos/métodos , Proteção Radiológica/métodos , Portadores de Fármacos/química
3.
Front Bioeng Biotechnol ; 12: 1392339, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962664

RESUMO

Objective: Polyvinylpyrrolidone (PVP) is a commonly used biomedical polymer material with good water solubility, biocompatibility, low immunogenicity, and low toxicity. The aim of this study is to investigate the antioxidant mechanism and clinical potential of PVP modified selenium nanoparticles (PVP-Se NPs) as a new radioprotective agent. Methods: A laser particle size analyzer and transmission electron microscope were used to characterize PVP-Se nanoparticles prepared by chemical reduction. Human umbilical vein endothelial cells (HUVECs) were used to evaluate the radiation protective effects of PVP-Se NPs. SD rats were employed as an in vivo model to identify the most effective concentration of PVP-Se NPs and assess their potential radioprotective properties. Western blot (WB) was used to detect the expression of nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling proteins in human umbilical vein endothelial cells (HUVECs) and rat liver and kidney tissues. Results: PVP-Se NPs could reduce the oxidative stress injury and inflammatory response caused by X-ray irradiation in HUVECs and rats, and inhibit cell apoptosis by modulating NF-κB and MAPK signaling pathways. PVP-Se NPs could increase HUVECs viability, reduce apoptosis, inhibit inflammatory factors IL-1ß, IL-6 and TNF-α, improve the survival rate of rats, promote antioxidant enzyme activities in cells and rats, reduce malondialdehyde concentration in serum, and reduce the expression of inflammatory factors such as IL-1ß, IL-6 and TNF-α in cell supernatant and liver and kidney tissues. PVP-Se NPs could significantly reduce the phosphorylation levels of NF-κB and MAPK pathway-associated proteins in HUVECs and rat liver and kidney tissues (p < 0.05). Conclusion: PVP-Se NPs can protect against radiation-induced oxidative damage by modulating NF-kB and MAPK pathways, providing a theoretical basis and experimental data for their use as an effective radioprotective agent.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38970301

RESUMO

AIM: To evaluate the performance of low-dose cone beam computed tomography (CBCT) protocols with regard to linear bone measurements in the posterior mandible for implant planning compared with higher dose protocols. MATERIALS AND METHODS: Forty-two edentulous posterior sites in human cadaveric mandibles were imaged in three CBCT scanners using three or four protocols with varying exposure parameters to achieve lower dose. Co-registration was performed to generate sagittal and cross-sectional image sections representative of the implant site. Three observers measured bone height, from the alveolar crest to the mandibular canal, and width, three mm from the top of the alveolar crest. Intra- and interobserver reproducibility were assessed for the cases rated as nonmeasurable as well as for completed measurements. The measurements were analyzed using paired t-tests for differences among the CBCT protocols and the frequency distribution of nonmeasurable cases with a Pearson Chi-square test. RESULTS: Reproducibility for registering nonmeasurable cases varied among observers; however, no consistent significant differences were found in the frequency distribution of these cases among observers, units, and protocols. Intraclass correlation coefficients (ICC) were >0.9 for all measurements of bone height and width. Mean differences of <0.5 mm were found regardless of protocol; however, one observer did in some cases produce larger differences. CONCLUSION: Linear bone measurements did not differ significantly and could be performed with excellent reliability, using low-dose CBCT protocols compared with standard and high-resolution ones. Varying approaches for rating nonmeasurable cases were found, indicating differences in diagnostic strategies related to implant planning among observers.

5.
Artigo em Inglês | MEDLINE | ID: mdl-39020222

RESUMO

To enhance stakeholder engagement and foster the inclusion of interests of citizens in radiation protection research, a comprehensive online survey was developed within the framework of the European Partnership PIANOFORTE. This survey was performed in 2022 and presented an opportunity for a wide range of stakeholders to voice their opinions on research priorities in radiation protection for the foreseeable future. Simultaneously, it delved into pertinent issues surrounding general radiation protection. The PIANOFORTE e-survey was conducted in the English language, accommodating a diverse range of participants. Overall, 440 respondents provided their insights and feedback, representing a broad geographical reach encompassing 29 European countries, as well as Canada, China, Colombia, India, and the United States. To assess the outcomes, the Positive Matrix Factorization numerical model was applied, in addition to qualitative and quantitative assessment of individual responses, enabling the discernment of four distinct stakeholder groups with varying attitudes. While the questionnaire may not fully represent all stakeholders due to the limited respondent pool, it is noteworthy that approximately 70% of the participants were newcomers to comparable surveys, demonstrating a proactive attitude, a strong willingness to collaborate and the necessity to continuously engage with stakeholder groups. Among the individual respondents, distinct opinions emerged particularly regarding health effects of radiation exposure, medical use of radiation, radiation protection of workers and the public, as well as emergency and recovery preparedness and response. In cluster analysis, none of the identified groups had clear preferences concerning the prioritization of future radiation protection research topics.

6.
Artigo em Inglês | MEDLINE | ID: mdl-39031187

RESUMO

Monitoring of internal exposure to short-lived alpha-emitting radionuclides such as actinium-225 (225Ac), which are becoming increasingly important in nuclear medicine, plays an important role in the radiation protection of occupationally exposed persons. After having tested gamma spectrometry, liquid scintillation counting and alpha spectrometry for monitoring of internal exposure, the focus of the present study was on solid phase extraction of 225Ac from urine in combination with alpha spectrometry. The development of the method was based on recent findings from the literature on this topic. The method was used in a pilot phase to monitor internal exposure of four workers who were directly or indirectly involved in the manufacture and/or use of 225Ac. The monitoring protocol allowed a relatively short 24-hour urine sample analysis with excellent recovery of the internal standard, but it did not allow for a detection limit of less than 1 mBq nor a sufficient yield of 225Ac. Based on these results it is concluded that an in vitro excretion analysis alone is not appropriate for monitoring internal exposure to 225Ac. Instead, different radiation monitoring techniques have to be combined to ensure the radiation protection of employees.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38950775

RESUMO

In recent years, concern about the effects of ionizing radiation on exposed individuals has led to the need to regulate and quantify the use of diagnostic and therapeutic techniques. Geopolitical events in recent times have also increased the population's perception of insecurity regarding ionizing radiation, and we increasingly face patients reluctant to undergo certain types of scans in our nuclear medicine services and, albeit less frequently, in radiology services. This article aims to summarise the extent to which ionizing radiation is present in our daily lives and how diagnostic and therapeutic procedures can affect our health, particularly from the perspective of their effects on the thyroid gland, one of the body's most radiation-sensitive organs.

10.
J Radiol Prot ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39053496

RESUMO

This study explores the conversion coefficients from air kerma to operational quantities for radiation protection, using X-ray spectrometry for the narrow-beam qualities below 300 keV as defined by ISO 4037-1. By employing custom spectral correction algorithms combined with modern cadmium telluride (CdTe) semiconductor detectors, we effectively corrected spectral distortions caused by detection processes, ensuring more reliable measurements. These measurements are crucial for meeting radiation protection standards. The study also analyzes the sources of uncertainty associated with the determination of conversion coefficients, thereby providing improved accuracy and reproducibility in photon dosimetry.

11.
J Biomed Phys Eng ; 14(3): 255-266, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39027705

RESUMO

Background: High-dose radiation altering the genetic material in patients' bone marrow cells can lead to hematopoietic radiation syndrome. Accordingly, the presence of radiation protections agents is critical to preventing these adverse effects. Objective: This study aimed to evaluate the radioprotection of the exclusive or combination effect of resveratrol and crocin extracts at various concentrations on irradiated human lymphocytes. Material and Methods: In this experimental study, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method was used to evaluate the cell viability in pre-treatment with resveratrol, crocin, or a combination of both, using a concentration range of 5 to 4800 µM / ml in 24 h. The chromosomal aberration test was employed to determine the aberration frequency in 48 h. This study was performed on human peripheral blood lymphocytes treated with 2 Gy radiation and reliability of measurements performed by the triplicate repeat. Results: MTT results showed that the groups treated with either resveratrol or crocin at concentrations of 5 to 4800 µM had no significant reduction in cell viability. The cytogenetic analysis of irradiated lymphocytes with 2 Gy X-rays revealed a reduction in the frequency of dicentric chromosomes in all treated groups in contrast with the control group. The most significant reduction occurred in those treated with a single agent at the concentration of 100 µM and a combined drug at the concentration of 50 µM. Conclusion: The combination of resveratrol and crocin is considered a potential radioprotector and prophylactic for patients before radiation therapy.

12.
J Biomed Phys Eng ; 14(3): 245-254, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39027715

RESUMO

Background: Nuclear medicine is an integral and developing field in diagnosing and treating diseases. Monitoring individuals' protection and radiation contamination in the workplace is vital for preserving working environments. Objective: This study aimed to monitor the nuclear medicine department's personnel, environment, and wastes to determine the level of occupational radiation and environmental pollution in Bushehr's nuclear medicine department. Material and Methods: In this cross-sectional study, the initial activity of each radioisotope, radiopharmaceutical, and radioactive waste was measured using a "well counter" daily for three months. Three irradiators' absorbed doses were measured using a direct reading dosimeter. The contamination was determined using an indirect wipe test method on various surfaces. A Geiger Müller dosimeter was employed to examine personnel's hands, clothing, and footwear. Results: The highest activity was observed in technetium waste (1118.31 mCi). Every irradiator received a lower absorption dose than the International Commission on Radiological Protection (ICRP) standard threshold. The majority of contamination was associated with the exercise test room (0.04 Bq/cm2) and its work surface (0.013 Bq/cm2), which were both below the threshold (0.5 Bq/cm2). Staff monitoring indicated that two nurses (10 and 11 individuals) had the highest contamination rate (23.7%). Conclusion: Daily assessment of the type, activity, and method of radiopharmaceutical administration to the patient is advantageous for waste management. Surface contamination monitoring can significantly contribute to the estimation of the level of radiation pollution in the environment.

13.
J Biomed Phys Eng ; 14(3): 229-244, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39027711

RESUMO

Radiation protection is an essential issue in diagnostic radiology to ensure the safety of patients, healthcare professionals, and the general public. Lead has traditionally been used as a shielding material due to its high atomic number, high density, and effectiveness in attenuating radiation. However, some concerns related to the long-term health effects of toxicity, environmental disease as well as heavy weight of lead have led to the search for alternative lead-free shielding materials. Leadfree multilayered polymer composites and non-lead nano-composite shields have been suggested as effective shielding materials to replace conventional lead-based and single metal shields. Using several elements with high density and atomic number, such as bismuth, barium, gadolinium, and tungsten, offer significant enhancements in the shielding ability of composites. This review focuses on the development and use of lead-free materials for radiation shielding in medical settings. It discusses the drawbacks of traditional lead shielding, such as toxicity, weight, and recycling challenges, and highlights the benefits of lead-free alternatives.

14.
J Biomed Phys Eng ; 14(3): 319-322, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39027714

RESUMO

Professor John Roderick Cameron (1922-2005) stands out as a trailblazer in the field of medical physics, whose innovative work has deeply influenced radiation protection and the broader medical radiation field through sound technical judgment and insight. Best known for inventing the bone densitometry device, his pioneering efforts have reshaped modern medical practices far beyond his initial breakthroughs. Cameron's explorations extended into the realms of space biomedical science and models of terrestrial radiation, areas where his insights continue to resonate today. As the Emeritus Professor of Medical Physics at the University of Wisconsin-Madison and a founding member of the American Association of Physicists in Medicine, Cameron laid crucial groundwork for safety standards in environments with high natural radiation levels. His leadership was instrumental in advancing thermoluminescence dosimetry, radiation measurement, and image quality assurance, driving progress in both academia and clinical practices. Moreover, through establishing Medical Physics Publishing, Cameron played a pivotal role in spreading vital research and educational materials across the fields of health physics and medical physics. This commentary reflects on Cameron's far-reaching contributions, highlighting his critical work in space radiation research and terrestrial radiation models-key to the future of interplanetary travel and potential human settlement on planets like Mars. His research in areas of high background radiation, like Ramsar, Iran, has been fundamental in developing strategies for biological protection in space, which are essential for ensuring astronaut safety during long-duration space missions. We honor Professor Cameron's profound legacy, celebrating his visionary spirit and the lasting impact of his contributions on generations of scientists in radiation science.

15.
Med Phys ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922963

RESUMO

BACKGROUND: Historically, [131I]I has been a common isotope in radionuclide therapy, with [177Lu]Lu-labelled radiopharmaceuticals now seeing a surge in use. These can include no-carrier-added or carrier-added [177Lu]Lu with slight impurities of [177mLu]Lu with a significantly longer half-life than [131I]I. Wastewater from therapy wards can contain a mixture of these radioisotopes. In some countries, national regulations require wastewater to be stored in dedicated systems before it is discharged into the public sewage system. To fulfill legal requirements, the nuclide specific activity concentration must be verified. PURPOSE: We evaluate a method for determining the activity concentration of [177mLu]Lu /[177Lu]Lu at equilibrium and [131I]I in pure and mixed samples in order to prove that the determined values are reliably below the limits for release. METHODS: We analysed the emitted energy spectrum of 1 L samples with a wastewater counter using an energy window-based approach by evaluating measurements from two different time points. Based on the law of decay and the time and energy-dependent measured values, equation systems were set up to calculate the count rates for [131I]I and [177mLu]Lu, which were converted into activity concentration using calibration factors. RESULTS: There is strong linear correlation between the nominal and determined activity concentrations (correlation coefficients R = 0.99; coefficient of determinations R2 = 0.99). We underestimate the actual activity concentration by a median of -1.4% for [177mLu]Lu and overestimate the activity concentration for [131I]I by a median of 7.1%. CONCLUSION: We show that an undercut of the clearance levels for material release is measurable. We analyse and determine activity concentrations of mixed samples consisting of [131I]I and [177mLu]Lu/[177Lu]Lu in equilibrium. The method is simple to implement using a conventional wastewater counter, however with a slightly increased effort, as two samples and measurements are required. The methodology can be adapted for the analysis of other nuclide mixtures.

16.
Radiologie (Heidelb) ; 2024 Jun 14.
Artigo em Alemão | MEDLINE | ID: mdl-38877140

RESUMO

CLINICAL-METHODOLOGICAL PROBLEM: Imaging procedures employing ionizing radiation require compliance with European directives and national regulations in order to protect patients. Each exposure must be indicated, individually adapted, and documented. Unacceptable dose exceedances must be detected and reported. These tasks are time-consuming and require meticulous diligence. STANDARD RADIOLOGICAL METHODS: Computed tomography (CT) is the most important contributor to medical radiation exposure. Optimizing the patient's dose is therefore mandatory. Use of modern technology and reconstruction algorithms already reduces exposure. Checking the indication, planning, and performing the examination are further important process steps with regard to radiation protection. Patient exposure is usually monitored by dose management systems (DMS). In special cases, a risk assessment is required by calculating the organ doses. METHODOLOGICAL INNOVATIONS: Artificial intelligence (AI)-assisted techniques are increasingly used in various steps of the process: they support examination planning, improve patient positioning, and enable automated scan length adjustments. They also provide real-time estimates of individual organ doses. EVALUATION: The integration of AI into medical imaging is proving successful in terms of dose optimization in various areas of the radiological workflow, from reconstruction to examination planning and performing exams. However, the use of AI in conjunction with DMS has not yet been considered on a large scale. PRACTICAL RECOMMENDATION: AI processes offer promising tools to support dose management. However, their implementation in the clinical setting requires further research, extensive validation, and continuous monitoring.

17.
J Med Imaging Radiat Sci ; 55(3): 101440, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38908031

RESUMO

BACKGROUND: According to current literature, there is a lack of information regarding the radiation protection (RP) practices of interventional radiology (IR) and cardiology catheter laboratory (CCL) staff. This study aims to determine the RP practices of staff within IR and CCLs internationally and to suggest areas for improvement. METHODS: A cross-sectional study in the form of an online questionnaire was developed. Participation was advertised via online platforms and through email. Participants were included if they were healthcare professionals currently working in IR and CCLs internationally. Questionnaire design included Section 1 demographic data, Section 2 assessed RP training and protocols, Section 3 surveyed the use of different types of RP lead shields, both personal and co-worker use and Section 4 assessed other methods of minimising radiation dose within practice. Questions were a mix of open and closed ended, descriptive statistics were used for closed questions and thematic analysis was employed for open ended responses. RESULTS: A total of 178 responses to the questionnaire were recorded with 130 (73 %) suitable for analysis. Most respondents were female (n = 94, 72 %) and were radiographers (n = 97, 75 %). Only 68 (53 %) had received training, the majority receiving this in-house (n = 54, 79 %). 118 (98 %) of respondents had departmental protocols in place for RP. Radiology managers (n = 106, 82 %) were most likely to contribute to such protocols. Multiple methods of dose minimisation exist, these include low-dose fluoroscopy, staff rotation, radiation dose audits and minimal time in the controlled areas. Respondents reported that lead apron shields were wore personally by 99 % of respondents and by co-workers in 95 % of cases. CONCLUSION: The practices of RP by IR and CCL staff in this survey was variable and can be improved. The unavailability of basic radiation protection tools and RP specific training courses/modules were some of the reasons for sub-optimal self-protection against ionising radiation reported by respondents.

18.
Egypt Heart J ; 76(1): 69, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829551

RESUMO

BACKGROUND: Awareness of radiation hazards and methods to reduce radiation dose is a sine qua non for all staff working in the cath-lab for their own safety and their patient's safety. RESULTS: There were large variations in the implementation of radiation protection techniques with overall inadequate radiation risk knowledge. Some members of the cath-lab team are at higher risk of radiation-induced side effects, including the fellows, nurses, technicians, and anaesthesiologists because they spent longer time in the cath-lab and/or their position in relation to the source of radiation. About 10% of the participants have reported different health problems potentially induced by radiation exposure. CONCLUSIONS: There is lack of radiation risks knowledge with inadequate radiation protection practice among cath-lab team. Some members such as fellows, nurse, technicians, and cardiac anaesthesiologist are at higher risks. They represent the forgotten members of the Cath-Lab team.

19.
J Radiol Prot ; 44(2)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38838649

RESUMO

Protection against ionizing radiations is important in laboratories with radioactive materials and high energy cyclotron beams. The Cyclotron and Radioisotope Center (CYRIC) located in Tohoku University in Miyagi prefecture, Japan and is a well-known nuclear science laboratory with cyclotron beams and substantial number of high activity radioactive materials. Considering this, it is important to perform complete radiation transport computations to ensure the safety of non-occupational and occupational workers. In the present work, we have developed a complete 3-dimensional model of the main cyclotron building and radiation labs using Monte Carlo method. We have found that the dispersed photons and neutrons inside and in the surrounding of the CYRIC building pose no significant risk to occupational and non-occupational workers. The present work and the developed models would be useful in the field of radiation protection.


Assuntos
Ciclotrons , Método de Monte Carlo , Proteção Radiológica , Japão , Exposição Ocupacional/prevenção & controle , Exposição Ocupacional/análise , Doses de Radiação , Simulação por Computador , Humanos , Universidades
20.
Appl Radiat Isot ; 211: 111403, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38889530

RESUMO

Recently, a new radiation therapy using a high-energy accelerator irradiation vault has attracted significant attention. This therapy is very effective in destroying cancer cells because it uses much higher energy than conventional radiation therapy. Nevertheless, it also has disadvantages due to its high energy and dose, resulting in the generation of secondary radiation such as X-rays and neutrons. In particular, neutrons have a higher radiation weighting factor than photons; therefore, they are more harmful to normal tissues. However, the popular neutron dosimeter CR-39 cannot evaluate high-dose neutrons. This paper proposes a novel method for measuring high-dose neutrons generated during cancer treatment. LR-115, which has low detection efficiency but is expected to be useful for evaluating high-dose neutrons, was used to evaluate the effective dose of neutrons in a high-energy accelerator irradiation room. The results were verified using MCNP 6.2, a Monte Carlo-based particle transport code. This study provides the lower limit for evaluating neutron effective dose using LR-115. The experimental results showed that the neutron effective dose increased linearly with beam current. These findings provide basic data for evaluating neutron effective dose for radiation protection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...