Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Model ; 25(5): 109, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30941523

RESUMO

Organic functionalization of nanomaterials offers exceptional flexibility in materials design, and applications in molecular sensors and molecular electronics are expected. However, more studies should be conducted to understand the interaction between nanomaterials and organic molecules. In this work, we studied the functionalization of silicene and silicane with benzaldehyde, performing nudged elastic band calculations within density functional theory. We calculated the structural changes of the adsorption process, electronic properties of the main states, and the energetics. In silicene, the adsorption of benzaldehyde on the top site was found to be the most stable, with an adsorption energy of -0.55 eV. For silicane, the functionalization proceeds through a self-propagating reaction on a highly reactive dangling bond generated by a hydrogen atom vacancy. Benzaldehyde adsorbed on this site depicts an adsorption energy of -1.39 eV, which is larger than in bare silicene. Upon attaching, the double C=O bond breaks down turning the molecule into a highly reactive radical, which in this case, abstracts a neighboring H atom of the sheet. This process is highly achievable since the energy barrier to abstract the H atoms is 0.81 eV, whereas the one needed to desorb the molecule is 1.39 eV. After H abstraction, a new dangling bond is generated at the substrate, making a chain reaction possible to potentially form benzaldehyde monolayers. Organic functionalization is an excellent tool to engineer properties of 2D systems, and having a deeper understanding of the adsorption processes is the first step toward the development of new generation devices. Graphical abstract Benzaldehyde adsorbed on silicene and silicane.

2.
J Mol Model ; 22(8): 175, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27383611

RESUMO

Density functional theory with the addition of a semi-empirical dispersion potential was applied to the conventional Kohn-Sham energy to study the adsorption of alkene and alkyne molecules on hydrogen-terminated two-dimensional group IV systems (graphane, silicane, and germanane) by means of a radical-initiated reaction. In particular, we investigated the interactions of acetylene, ethylene, and styrene with those surfaces. Although we had studied these systems previously, we included van der Waals interactions in all of the cases examined in the present work. These forces, which are noncovalent interactions, can heavily influence different processes in molecular chemistry, such as the adsorption of organic molecules on semiconductor surfaces. This unified approach allowed us to perform a comparative study of the relative reactivities of the various organic molecule/surface systems. The results showed that the degree of covalency of the surface, the lattice size, and the partial charge distribution (caused by differences in electronegativity) are all key elements that determine the reactivity between the molecules and the surfaces tested in this work. The covalent nature of graphane gives rise to energetically favorable intermediate states, while the opposite polarities of the charge distributions of silicane and germanane with the organic molecules favor subsequent steps of the radical-initiated reaction. Finally, the lattice size is a factor that has important consequences due to steric effects present in the systems and the possibility of chain reaction continuation. The results obtained in this work show that careful selection of the substrate is very important. Calculated energy barriers, heats of adsorption, and optimized atomic structures show that the silicane system offers the best reactivity in organic functionalization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA