Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 426
Filtrar
1.
Clin Breast Cancer ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39019727

RESUMO

BACKGROUND: To develop a radiogenomics nomogram for predicting axillary lymph node (ALN) metastasis in breast cancer and reveal underlying associations between radiomics features and biological pathways. MATERIALS AND METHODS: This study included 1062 breast cancer patients, 90 patients with both DCE-MRI and gene expression data. The optimal immune-related genes and radiomics features associated with ALN metastasis were firstly calculated, and corresponding feature signatures were constructed to further validate their performances in predicting ALN metastasis. The radiogenomics nomogram for predicting the risk of ALN metastasis was established by integrating radiomics signature, immune-related genes (IRG) signature, and critical clinicopathological factors. Gene modules associated with key radiomics features were identified by weighted gene co-expression network analysis (WGCNA) and submitted to functional enrichment analysis. Gene set variation analysis (GSVA) and correlation analysis were performed to investigate the associations between radiomics features and biological pathways. RESULTS: The radiogenomics nomogram showed promising predictive power for predicting ALN metastasis, with AUCs of 0.973 and 0.928 in the training and testing groups, respectively. WGCNA and functional enrichment analysis revealed that gene modules associated with key radiomics features were mainly enriched in breast cancer metastasis-related pathways, such as focal adhesion, ECM-receptor interaction, and cell adhesion molecules. GSVA also identified pathway activities associated with radiomics features such as glycogen synthesis, integration of energy metabolism. CONCLUSION: The radiogenomics nomogram can serve as an effective tool to predict the risk of ALN metastasis. This study provides further evidence that radiomics phenotypes may be driven by biological pathways related to breast cancer metastasis.

2.
Interact J Med Res ; 13: e51347, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980713

RESUMO

BACKGROUND: Radiogenomics is an emerging technology that integrates genomics and medical image-based radiomics, which is considered a promising approach toward achieving precision medicine. OBJECTIVE: The aim of this study was to quantitatively analyze the research status, dynamic trends, and evolutionary trajectory in the radiogenomics field using bibliometric methods. METHODS: The relevant literature published up to 2023 was retrieved from the Web of Science Core Collection. Excel was used to analyze the annual publication trend. VOSviewer was used for constructing the keywords co-occurrence network and the collaboration networks among countries and institutions. CiteSpace was used for citation keywords burst analysis and visualizing the references timeline. RESULTS: A total of 3237 papers were included and exported in plain-text format. The annual number of publications showed an increasing annual trend. China and the United States have published the most papers in this field, with the highest number of citations in the United States and the highest average number per item in the Netherlands. Keywords burst analysis revealed that several keywords, including "big data," "magnetic resonance spectroscopy," "renal cell carcinoma," "stage," and "temozolomide," experienced a citation burst in recent years. The timeline views demonstrated that the references can be categorized into 8 clusters: lower-grade glioma, lung cancer histology, lung adenocarcinoma, breast cancer, radiation-induced lung injury, epidermal growth factor receptor mutation, late radiotherapy toxicity, and artificial intelligence. CONCLUSIONS: The field of radiogenomics is attracting increasing attention from researchers worldwide, with the United States and the Netherlands being the most influential countries. Exploration of artificial intelligence methods based on big data to predict the response of tumors to various treatment methods represents a hot spot research topic in this field at present.

3.
J Clin Med ; 13(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38999524

RESUMO

Recent advancements in understanding clear cell renal cell carcinoma (ccRCC) have underscored the critical role of the BAP1 gene in its pathogenesis and prognosis. While the von Hippel-Lindau (VHL) mutation has been extensively studied, emerging evidence suggests that mutations in BAP1 and other genes significantly impact patient outcomes. Radiogenomics with and without texture analysis based on CT imaging holds promise in predicting BAP1 mutation status and overall survival outcomes. However, prospective studies with larger cohorts and standardized imaging protocols are needed to validate these findings and translate them into clinical practice effectively, paving the way for personalized treatment strategies in ccRCC. This review aims to summarize the current knowledge on the role of BAP1 mutation in ccRCC pathogenesis and prognosis, as well as the potential of radiogenomics in predicting mutation status and clinical outcomes.

4.
Curr Oncol Rep ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39009914

RESUMO

PURPOSE OF REVIEW: Isocitrate dehydrogenase wild-type glioblastoma is the most aggressive primary brain tumour in adults. Its infiltrative nature and heterogeneity confer a dismal prognosis, despite multimodal treatment. Precision medicine is increasingly advocated to improve survival rates in glioblastoma management; however, conventional neuroimaging techniques are insufficient in providing the detail required for accurate diagnosis of this complex condition. RECENT FINDINGS: Advanced magnetic resonance imaging allows more comprehensive understanding of the tumour microenvironment. Combining diffusion and perfusion magnetic resonance imaging to create a multiparametric scan enhances diagnostic power and can overcome the unreliability of tumour characterisation by standard imaging. Recent progress in deep learning algorithms establishes their remarkable ability in image-recognition tasks. Integrating these with multiparametric scans could transform the diagnosis and monitoring of patients by ensuring that the entire tumour is captured. As a corollary, radiomics has emerged as a powerful approach to offer insights into diagnosis, prognosis, treatment, and tumour response through extraction of information from radiological scans, and transformation of these tumour characteristics into quantitative data. Radiogenomics, which links imaging features with genomic profiles, has exhibited its ability in characterising glioblastoma, and determining therapeutic response, with the potential to revolutionise management of glioblastoma. The integration of deep learning algorithms into radiogenomic models has established an automated, highly reproducible means to predict glioblastoma molecular signatures, further aiding prognosis and targeted therapy. However, challenges including lack of large cohorts, absence of standardised guidelines and the 'black-box' nature of deep learning algorithms, must first be overcome before this workflow can be applied in clinical practice.

5.
Cell Rep Methods ; 4(7): 100817, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38981473

RESUMO

Deep-learning tools that extract prognostic factors derived from multi-omics data have recently contributed to individualized predictions of survival outcomes. However, the limited size of integrated omics-imaging-clinical datasets poses challenges. Here, we propose two biologically interpretable and robust deep-learning architectures for survival prediction of non-small cell lung cancer (NSCLC) patients, learning simultaneously from computed tomography (CT) scan images, gene expression data, and clinical information. The proposed models integrate patient-specific clinical, transcriptomic, and imaging data and incorporate Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome pathway information, adding biological knowledge within the learning process to extract prognostic gene biomarkers and molecular pathways. While both models accurately stratify patients in high- and low-risk groups when trained on a dataset of only 130 patients, introducing a cross-attention mechanism in a sparse autoencoder significantly improves the performance, highlighting tumor regions and NSCLC-related genes as potential biomarkers and thus offering a significant methodological advancement when learning from small imaging-omics-clinical samples.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Aprendizado Profundo , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/patologia , Tomografia Computadorizada por Raios X/métodos , Biomarcadores Tumorais/genética , Prognóstico , Masculino , Feminino , Regulação Neoplásica da Expressão Gênica , Transcriptoma
6.
Artigo em Inglês | MEDLINE | ID: mdl-39025746

RESUMO

INTRODUCTION: Radiomics offers the potential to predict oncological outcomes from pre-operative imaging in order to identify 'high risk' patients at increased risk of recurrence. The application of radiomics in predicting disease recurrence provides tailoring of therapeutic strategies. We aim to comprehensively assess the existing literature regarding the current role of radiomics as a predictor of disease recurrence in gastric cancer. METHODS: A systematic search was conducted in Medline, EMBASE, and Web of Science databases. Inclusion criteria encompassed retrospective and prospective studies investigating the use of radiomics to predict post-operative recurrence in ovarian cancer. Study quality was assessed using the QUADAS-2 and Radiomics Quality Score tools. RESULTS: Nine studies met the inclusion criteria, involving a total of 6,662 participants. Radiomic-based nomograms demonstrated consistent performance in predicting disease recurrence, as evidenced by satisfactory area under the receiver operating characteristic curve values (AUC range 0.72 - 1). The pooled AUCs calculated using the inverse-variance method for both the training and validation datasets were 0.819 and 0.789 respectively CONCLUSION: Our review provides good evidence supporting the role of radiomics as a predictor of post-operative disease recurrence in gastric cancer. Included studies noted good performance in predicting their primary outcome. Radiomics may enhance personalised medicine by tailoring treatment decision based on predicted prognosis.

7.
Genes (Basel) ; 15(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38927654

RESUMO

Glioblastoma multiforme (GBM)is the most common and aggressive primary brain tumor. Although temozolomide (TMZ)-based radiochemotherapy improves overall GBM patients' survival, it also increases the frequency of false positive post-treatment magnetic resonance imaging (MRI) assessments for tumor progression. Pseudo-progression (PsP) is a treatment-related reaction with an increased contrast-enhancing lesion size at the tumor site or resection margins miming tumor recurrence on MRI. The accurate and reliable prognostication of GBM progression is urgently needed in the clinical management of GBM patients. Clinical data analysis indicates that the patients with PsP had superior overall and progression-free survival rates. In this study, we aimed to develop a prognostic model to evaluate the tumor progression potential of GBM patients following standard therapies. We applied a dictionary learning scheme to obtain imaging features of GBM patients with PsP or true tumor progression (TTP) from the Wake dataset. Based on these radiographic features, we conducted a radiogenomics analysis to identify the significantly associated genes. These significantly associated genes were used as features to construct a 2YS (2-year survival rate) logistic regression model. GBM patients were classified into low- and high-survival risk groups based on the individual 2YS scores derived from this model. We tested our model using an independent The Cancer Genome Atlas Program (TCGA) dataset and found that 2YS scores were significantly associated with the patient's overall survival. We used two cohorts of the TCGA data to train and test our model. Our results show that the 2YS scores-based classification results from the training and testing TCGA datasets were significantly associated with the overall survival of patients. We also analyzed the survival prediction ability of other clinical factors (gender, age, KPS (Karnofsky performance status), normal cell ratio) and found that these factors were unrelated or weakly correlated with patients' survival. Overall, our studies have demonstrated the effectiveness and robustness of the 2YS model in predicting the clinical outcomes of GBM patients after standard therapies.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Imageamento por Ressonância Magnética , Humanos , Glioblastoma/genética , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Glioblastoma/mortalidade , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/mortalidade , Masculino , Feminino , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Prognóstico , Adulto , Idoso , Progressão da Doença , Temozolomida/uso terapêutico , Genômica/métodos , Taxa de Sobrevida , Relevância Clínica
8.
Magn Reson Imaging ; 112: 63-81, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38914147

RESUMO

This review examines the advancements in magnetic resonance imaging (MRI) techniques and their pivotal role in diagnosing and managing gliomas, the most prevalent primary brain tumors. The paper underscores the importance of integrating modern MRI modalities, such as diffusion-weighted imaging and perfusion MRI, which are essential for assessing glioma malignancy and predicting tumor behavior. Special attention is given to the 2021 WHO Classification of Tumors of the Central Nervous System, emphasizing the integration of molecular diagnostics in glioma classification, significantly impacting treatment decisions. The review also explores radiogenomics, which correlates imaging features with molecular markers to tailor personalized treatment strategies. Despite technological progress, MRI protocol standardization and result interpretation challenges persist, affecting diagnostic consistency across different settings. Furthermore, the review addresses MRI's capacity to distinguish between tumor recurrence and pseudoprogression, which is vital for patient management. The necessity for greater standardization and collaborative research to harness MRI's full potential in glioma diagnosis and personalized therapy is highlighted, advocating for an enhanced understanding of glioma biology and more effective treatment approaches.

9.
Front Neurol ; 15: 1398876, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915798

RESUMO

Background: Arteriovenous malformations (AVMs) are rare vascular anomalies involving a disorganization of arteries and veins with no intervening capillaries. In the past 10 years, radiomics and machine learning (ML) models became increasingly popular for analyzing diagnostic medical images. The goal of this review was to provide a comprehensive summary of current radiomic models being employed for the diagnostic, therapeutic, prognostic, and predictive outcomes in AVM management. Methods: A systematic literature review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines, in which the PubMed and Embase databases were searched using the following terms: (cerebral OR brain OR intracranial OR central nervous system OR spine OR spinal) AND (AVM OR arteriovenous malformation OR arteriovenous malformations) AND (radiomics OR radiogenomics OR machine learning OR artificial intelligence OR deep learning OR computer-aided detection OR computer-aided prediction OR computer-aided treatment decision). A radiomics quality score (RQS) was calculated for all included studies. Results: Thirteen studies were included, which were all retrospective in nature. Three studies (23%) dealt with AVM diagnosis and grading, 1 study (8%) gauged treatment response, 8 (62%) predicted outcomes, and the last one (8%) addressed prognosis. No radiomics model had undergone external validation. The mean RQS was 15.92 (range: 10-18). Conclusion: We demonstrated that radiomics is currently being studied in different facets of AVM management. While not ready for clinical use, radiomics is a rapidly emerging field expected to play a significant future role in medical imaging. More prospective studies are warranted to determine the role of radiomics in the diagnosis, prediction of comorbidities, and treatment selection in AVM management.

10.
J Urol ; : 101097JU0000000000004069, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865683
11.
J Pers Med ; 14(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38793065

RESUMO

Radiotherapy is focused on the tumor but also reaches healthy tissues, causing toxicities that are possibly related to genomic factors. In this context, radiogenomics can help reduce the toxicity, increase the effectiveness of radiotherapy, and personalize treatment. It is important to consider the genomic profiles of populations not yet studied in radiogenomics, such as the indigenous Amazonian population. Thus, our objective was to analyze important genes for radiogenomics, such as ATM, TGFB1, RAD51, AREG, XRCC4, CDK1, MEG3, PRKCE, TANC1, and KDR, in indigenous people and draw a radiogenomic profile of this population. The NextSeq 500® platform was used for sequencing reactions; for differences in the allelic frequency between populations, Fisher's Exact Test was used. We identified 39 variants, 2 of which were high impact: 1 in KDR (rs41452948) and another in XRCC4 (rs1805377). We found four modifying variants not yet described in the literature in PRKCE. We did not find any variants in TANC1-an important gene for personalized medicine in radiotherapy-that were associated with toxicities in previous cohorts, configuring a protective factor for indigenous people. We identified four SNVs (rs664143, rs1801516, rs1870377, rs1800470) that were associated with toxicity in previous studies. Knowing the radiogenomic profile of indigenous people can help personalize their radiotherapy.

12.
Abdom Radiol (NY) ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782785

RESUMO

PURPOSE: Gain-of-function mutations in CTNNB1, gene encoding for ß-catenin, are observed in 25-30% of hepatocellular carcinomas (HCCs). Recent studies have shown ß-catenin activation to have distinct roles in HCC susceptibility to mTOR inhibitors and resistance to immunotherapy. Our goal was to develop and test a computational imaging-based model to non-invasively assess ß-catenin activation in HCC, since liver biopsies are often not done due to risk of complications. METHODS: This IRB-approved retrospective study included 134 subjects with pathologically proven HCC and available ß-catenin activation status, who also had either CT or MR imaging of the liver performed within 1 year of histological assessment. For qualitative descriptors, experienced radiologists assessed the presence of imaging features listed in LI-RADS v2018. For quantitative analysis, a single biopsy proven tumor underwent a 3D segmentation and radiomics features were extracted. We developed prediction models to assess the ß-catenin activation in HCC using both qualitative and quantitative descriptors. RESULTS: There were 41 cases (31%) with ß-catenin mutation and 93 cases (69%) without. The model's AUC was 0.70 (95% CI 0.60, 0.79) using radiomics features and 0.64 (0.52, 0.74; p = 0.468) using qualitative descriptors. However, when combined, the AUC increased to 0.88 (0.80, 0.92; p = 0.009). Among the LI-RADS descriptors, the presence of a nodule-in-nodule showed a significant association with ß-catenin mutations (p = 0.015). Additionally, 88 radiomics features exhibited a significant association (p < 0.05) with ß-catenin mutations. CONCLUSION: Combination of LI-RADS descriptors and CT/MRI-derived radiomics determine ß-catenin activation status in HCC with high confidence, making precision medicine a possibility.

13.
Int J Mol Sci ; 25(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38791417

RESUMO

To create a radiogenomics map and evaluate the correlation between molecular and imaging phenotypes in localized prostate cancer (PCa), using radical prostatectomy histopathology as a reference standard. Radiomic features were extracted from T2-weighted (T2WI) and Apparent Diffusion Coefficient (ADC) images of clinically localized PCa patients (n = 15) across different Gleason score-based risk categories. DNA extraction was performed on formalin-fixed, paraffin-embedded (FFPE) samples. Gene expression analysis of androgen receptor expression, apoptosis, and hypoxia was conducted using the Chromosome Analysis Suite (ChAS) application and OSCHIP files. The relationship between gene expression alterations and textural features was assessed using Pearson's correlation analysis. Receiver operating characteristic (ROC) analysis was utilized to evaluate the predictive accuracy of the model. A significant correlation was observed between radiomic texture features and copy number variation (CNV) of genes associated with apoptosis, hypoxia, and androgen receptor (p-value ≤ 0.05). The identified radiomic features, including Sum Entropy ADC, Inverse Difference ADC, Sum Variance T2WI, Entropy T2WI, Difference Variance T2WI, and Angular Secondary Moment T2WI, exhibited potential for predicting cancer grade and biological processes such as apoptosis and hypoxia. Incorporating radiomics and genomics into a prediction model significantly improved the prediction of prostate cancer grade (clinically significant prostate cancer), yielding an AUC of 0.95. Radiomic texture features significantly correlate with genotypes for apoptosis, hypoxia, and androgen receptor expression in localised prostate cancer. Integration of these into the prediction model improved prediction accuracy of clinically significant prostate cancer.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/diagnóstico por imagem , Pessoa de Meia-Idade , Idoso , Receptores Androgênicos/genética , Gradação de Tumores , Imageamento por Ressonância Magnética/métodos , Biópsia , Fenótipo , Curva ROC , Variações do Número de Cópias de DNA/genética
14.
Abdom Radiol (NY) ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38744703

RESUMO

Ovarian cancer is associated with high cancer-related mortality rate attributed to late-stage diagnosis, limited treatment options, and frequent disease recurrence. As a result, careful patient selection is important especially in setting of radical surgery. Radiomics is an emerging field in medical imaging, which may help provide vital prognostic evaluation and help patient selection for radical treatment strategies. This systematic review aims to assess the role of radiomics as a predictor of disease recurrence in ovarian cancer. A systematic search was conducted in Medline, EMBASE, and Web of Science databases. Studies meeting inclusion criteria investigating the use of radiomics to predict post-operative recurrence in ovarian cancer were included in our qualitative analysis. Study quality was assessed using the QUADAS-2 and Radiomics Quality Score tools. Six retrospective studies met the inclusion criteria, involving a total of 952 participants. Radiomic-based signatures demonstrated consistent performance in predicting disease recurrence, as evidenced by satisfactory area under the receiver operating characteristic curve values (AUC range 0.77-0.89). Radiomic-based signatures appear to good prognosticators of disease recurrence in ovarian cancer as estimated by AUC. The reviewed studies consistently reported the potential of radiomic features to enhance risk stratification and personalise treatment decisions in this complex cohort of patients. Further research is warranted to address limitations related to feature reliability, workflow heterogeneity, and the need for prospective validation studies.

15.
Comput Biol Med ; 177: 108636, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38810473

RESUMO

BACKGROUND: Accurate classification of gliomas is critical to the selection of immunotherapy, and MRI contains a large number of radiomic features that may suggest some prognostic relevant signals. We aim to predict new subtypes of gliomas using radiomic features and characterize their survival, immune, genomic profiles and drug response. METHODS: We initially obtained 341 images of 36 patients from the CPTAC dataset for the development of deep learning models. Further 1812 images of 111 patients from TCGA_GBM and 152 images of 53 patients from TCGA_LGG were collected for testing and validation. A deep learning method based on Mask R-CNN was developed to identify new subtypes of glioma patients and compared the survival status, immune infiltration patterns, genomic signatures, specific drugs, and predictive models of different subtypes. RESULTS: 200 glioma patients (mean age, 33 years ± 19 [standard deviation]) were enrolled. The accuracy of the deep learning model for identifying tumor regions achieved 88.3 % (98/111) in the test set and 83 % (44/53) in the validation set. The sample was divided into two subtypes based on radiomic features showed different prognostic outcomes (hazard ratio, 2.70). According to the results of the immune infiltration analysis, the subtype with a poorer prognosis was defined as the immunosilencing radiomic (ISR) subtype (n = 43), and the other subtype was the immunoactivated radiomic (IAR) subtype (n = 53). Subtype-specific genomic signatures distinguished celllines into ISR celllines (n = 9) and control celllines (n = 13), and identified eight ISR-specific drugs, four of which were validated by the OCTAD database. Three machine learning-based classifiers showed that radiomic and genomic co-features better predicted the radiomic subtypes of gliomas. CONCLUSIONS: These findings provide insights into how radiogenomic could identify specific subtypes that predict prognosis, immune and drug sensitivity in a non-invasive manner.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Glioma , Humanos , Glioma/genética , Glioma/diagnóstico por imagem , Glioma/imunologia , Feminino , Masculino , Adulto , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/imunologia , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética , Prognóstico , Radiômica
16.
Artigo em Inglês | MEDLINE | ID: mdl-38818084

RESUMO

The aim of this pilot study is to evaluate and compare the quality of the genomics and proteomics data obtained from paired Formalin Fixed Paraffin Embedded (FFPE) and frozen (FF) tissue percutaneous core biopsies of Liver Imaging Reporting and Data System 5 (LIRADS 5) hepatocellular carcinoma (HCC) of varying histological grades. The preliminary data identified differentially expressed proteins and genes in poor, moderate and well differentiated HCC biopsies, with a greater efficacy in fresh frozen samples. The data offered valuable insights into the characteristics and suitability of samples for future studies.

17.
Quant Imaging Med Surg ; 14(4): 3131-3145, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38617169

RESUMO

Background: The MYCN copy number category is closely related to the prognosis of neuroblastoma (NB). Therefore, this study aimed to assess the predictive ability of 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) radiomic features for MYCN copy number in NB. Methods: A retrospective analysis was performed on 104 pediatric patients with NB that had been confirmed by pathology. To develop the Bio-omics model (B-model), which incorporated clinical and biological aspects, PET/CT radiographic features, PET quantitative parameters, and significant features with multivariable stepwise logistic regression were preserved. Important radiomics features were identified through least absolute shrinkage and selection operator (LASSO) and univariable analysis. On the basis of radiomics features obtained from PET and CT scans, the radiomics model (R-model) was developed. The significant bio-omics and radiomics features were combined to establish a Multi-omics model (M-model). The above 3 models were established to differentiate MYCN wild from MYCN gain and MYCN amplification (MNA). The calibration curve and receiver operating characteristic (ROC) curve analyses were performed to verify the prediction performance. Post hoc analysis was conducted to compare whether the constructed M-model can distinguish MYCN gain from MNA. Results: The M-model showed excellent predictive performance in differentiating MYCN wild from MYCN gain and MNA, which was better than that of the B-model and R-model [area under the curve (AUC) 0.83, 95% confidence interval (CI): 0.74-0.92 vs. 0.81, 95% CI: 0.72-0.90 and 0.79, 95% CI: 0.69-0.89]. The calibration curve showed that the M-model had the highest reliability. Post hoc analysis revealed the great potential of the M-model in differentiating MYCN gain from MNA (AUC 0.95, 95% CI: 0.89-1). Conclusions: The M-model model based on bio-omics and radiomics features is an effective tool to distinguish MYCN copy number category in pediatric patients with NB.

18.
Comput Biol Med ; 174: 108389, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593640

RESUMO

PURPOSE: To evaluate the potential of synthetic radiomic data generation in addressing data scarcity in radiomics/radiogenomics models. METHODS: This study was conducted on a retrospectively collected cohort of 386 colorectal cancer patients (n = 2570 lesions) for whom matched contrast-enhanced CT images and gene TP53 mutational status were available. The full cohort data was divided into a training cohort (n = 2055 lesions) and an independent and fixed test set (n = 515 lesions). Differently sized training sets were subsampled from the training cohort to measure the impact of sample size on model performance and assess the added value of synthetic radiomic augmentation at different sizes. Five different tabular synthetic data generation models were used to generate synthetic radiomic data based on "real-world" radiomics data extracted from this cohort. The quality and reproducibility of the generated synthetic radiomic data were assessed. Synthetic radiomics were then combined with "real-world" radiomic training data to evaluate their impact on the predictive model's performance. RESULTS: A prediction model was generated using only "real-world" radiomic data, revealing the impact of data scarcity in this particular data set through a lack of predictive performance at low training sample numbers (n = 200, 400, 1000 lesions with average AUC = 0.52, 0.53, and 0.56 respectively, compared to 0.64 when using 2055 training lesions). Synthetic tabular data generation models created reproducible synthetic radiomic data with properties highly similar to "real-world" data (for n = 1000 lesions, average Chi-square = 0.932, average basic statistical correlation = 0.844). The integration of synthetic radiomic data consistently enhanced the performance of predictive models trained with small sample size sets (AUC enhanced by 9.6%, 11.3%, and 16.7% for models trained on n_samples = 200, 400, and 1000 lesions, respectively). In contrast, synthetic data generated from randomised/noisy radiomic data failed to enhance predictive performance underlining the requirement of true signal data to do so. CONCLUSION: Synthetic radiomic data, when combined with real radiomics, could enhance the performance of predictive models. Tabular synthetic data generation might help to overcome limitations in medical AI stemming from data scarcity.


Assuntos
Neoplasias Colorretais , Tomografia Computadorizada por Raios X , Humanos , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/genética , Feminino , Masculino , Tomografia Computadorizada por Raios X/métodos , Estudos Retrospectivos , Pessoa de Meia-Idade , Idoso , Genômica , Proteína Supressora de Tumor p53/genética , Radiômica
19.
Curr Issues Mol Biol ; 46(4): 3236-3250, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38666933

RESUMO

Radiogenomics, a burgeoning field in biomedical research, explores the correlation between imaging features and genomic data, aiming to link macroscopic manifestations with molecular characteristics. In this review, we examine existing radiogenomics literature in clear cell renal cell carcinoma (ccRCC), the predominant renal cancer, and von Hippel-Lindau (VHL) gene mutation, the most frequent genetic mutation in ccRCC. A thorough examination of the literature was conducted through searches on the PubMed, Medline, Cochrane Library, Google Scholar, and Web of Science databases. Inclusion criteria encompassed articles published in English between 2014 and 2022, resulting in 10 articles meeting the criteria out of 39 initially retrieved articles. Most of these studies applied computed tomography (CT) images obtained from open source and institutional databases. This literature review investigates the role of radiogenomics, with and without texture analysis, in predicting VHL gene mutation in ccRCC patients. Radiogenomics leverages imaging modalities such as CT and magnetic resonance imaging (MRI), to analyze macroscopic features and establish connections with molecular elements, providing insights into tumor heterogeneity and biological behavior. The investigations explored diverse mutations, with a specific focus on VHL mutation, and applied CT imaging features for radiogenomic analysis. Moreover, radiomics and machine learning techniques were employed to predict VHL gene mutations based on CT features, demonstrating promising results. Additional studies delved into the relationship between VHL mutation and body composition, revealing significant associations with adipose tissue distribution. The review concludes by highlighting the potential role of radiogenomics in guiding targeted and selective therapies.

20.
Neurooncol Adv ; 6(1): vdae055, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680991

RESUMO

Background: Immunotherapy is an effective "precision medicine" treatment for several cancers. Imaging signatures of the underlying genome (radiogenomics) in glioblastoma patients may serve as preoperative biomarkers of the tumor-host immune apparatus. Validated biomarkers would have the potential to stratify patients during immunotherapy clinical trials, and if trials are beneficial, facilitate personalized neo-adjuvant treatment. The increased use of whole genome sequencing data, and the advances in bioinformatics and machine learning make such developments plausible. We performed a systematic review to determine the extent of development and validation of immune-related radiogenomic biomarkers for glioblastoma. Methods: A systematic review was performed following PRISMA guidelines using the PubMed, Medline, and Embase databases. Qualitative analysis was performed by incorporating the QUADAS 2 tool and CLAIM checklist. PROSPERO registered: CRD42022340968. Extracted data were insufficiently homogenous to perform a meta-analysis. Results: Nine studies, all retrospective, were included. Biomarkers extracted from magnetic resonance imaging volumes of interest included apparent diffusion coefficient values, relative cerebral blood volume values, and image-derived features. These biomarkers correlated with genomic markers from tumor cells or immune cells or with patient survival. The majority of studies had a high risk of bias and applicability concerns regarding the index test performed. Conclusions: Radiogenomic immune biomarkers have the potential to provide early treatment options to patients with glioblastoma. Targeted immunotherapy, stratified by these biomarkers, has the potential to allow individualized neo-adjuvant precision treatment options in clinical trials. However, there are no prospective studies validating these biomarkers, and interpretation is limited due to study bias with little evidence of generalizability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...