Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Alzheimers Dement ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967283

RESUMO

INTRODUCTION: Microtubule (MT) stability is crucial for proper neuronal function. Understanding MT dysregulation is critical for connecting amyloid beta (Aß) and tau-based degenerative events and early changes in presymptomatic Alzheimer's disease (AD). Herein we present positron emission tomography (PET) imaging properties of our MT-PET radiotracer, [11C]MPC-6827, in multiple established AD mouse models. METHODS: Longitudinal PET, biodistribution, autoradiography, immunohistochemistry, and behavioral studies were conducted at multiple time points in APPswe/PSEN1dE9 (APP/PS1), P301S-PS19 (P301S), 5xFAD, and age-matched control mice. RESULTS: Longitudinal [11C]MPC-6827 brain imaging showed significant increases in APP/PS1, P301S, and 5xFAD mice compared to controls. Longitudinal MT-PET correlated positively with biodistribution, autoradiography, and immunohistochemistry results and negatively with behavior data. DISCUSSION: Our study demonstrated significant longitudinal [11C]MPC-6827 PET increases in multiple AD mouse models for the first time. Strong correlations between PET and biomarker data underscored the interplay of MT destabilization, amyloid, and tau pathology in AD. These results suggest [11C]MPC-6827 PET as a promising tool for monitoring MT dysregulation early in AD progression. HIGHLIGHTS: Longitudinal positron emission tomography (PET) imaging studies using [11C]MPC-6827 in multiple established Alzheimer's disease (AD) mouse models revealed an early onset of microtubule dysregulation, with significant changes in brain radiotracer uptake evident from 2 to 4 months of age. Intra-group analysis showed a progressive increase in microtubule dysregulation with increasing AD burden, supported by significant correlations between PET imaging data and biodistribution, autoradiography, and molecular pathological markers. [11C]MPC-6827 PET imaging demonstrated its efficacy in detecting early microtubule alterations preceding observable behavioral changes in AD mouse models, suggesting its potential for early AD imaging. The inclusion of the 5xFAD mouse model further elucidated the impact of amyloid beta (Aß) toxicity on inducing tau hyperphosphorylation-mediated microtubule dysregulation, highlighting the versatility of [11C]MPC-6827 in delineating various aspects of AD pathology. Our study provides immediate clarity on high uptake of the microtubule-based radiotracer in AD brains in a longitudinal setting, which directly informs clinical utility in Aß/tau-based studies.

2.
Bioorg Chem ; 146: 107279, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513325

RESUMO

Targeting receptor-interacting protein kinase 1 (RIPK1) has emerged as a promising therapeutic strategy for various neurodegenerative disorders. The development of a positron emission tomography (PET) probe for brain RIPK1 imaging could offer a valuable tool to assess therapeutic effectiveness and uncover the neuropathology associated with RIPK1. In this study, we present the development and characterization of two new PET radioligands, [11C]PB218 and [11C]PB220, which have the potential to facilitate brain RIPK1 imaging. [11C]PB218 and [11C]PB220 were successfully synthesized with a high radiochemical yield (34 % - 42 %) and molar activity (293 - 314 GBq/µmol). PET imaging characterization of two radioligands was conducted in rodents, demonstrating that both newly developed tracers have good brain penetration (maximum SUV = 0.9 - 1.0) and appropriate brain clearance kinetic profiles. Notably, [11C]PB218 has a more favorable binding specificity than [11C]PB220. A PET/MR study of [11C]PB218 in a non-human primate exhibited good brain penetration, desirable kinetic properties, and a safe profile, thus supporting the translational applicability of our new probe. These investigations enable further translational exploration of [11C]PB218 for drug discovery and PET probe development targeting RIPK1.


Assuntos
Encéfalo , Tomografia por Emissão de Pósitrons , Animais , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Compostos Radiofarmacêuticos/química , Radioquímica , Piridinas/metabolismo
3.
Eur J Med Chem ; 270: 116349, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38555856

RESUMO

Serotonergic (5-hydroxytryptamine; 5-HT) receptors play critical roles in neurological and psychological disorders such as schizophrenia, anxiety, depression, and Alzheimer's diseases. Therefore, it is particularly important to develop novel radioligands or modify the existing ones to identify the serotonergic receptors involved in psychiatric disorders. Among the 16 subtypes of serotonergic systems, only technetium-99m based radiopharmaceuticals have been evaluated for serotonin-1A (5-HT1A), serotonin-2A (5-HT2A), 5-HT1A/7 heterodimers and serotonin receptor neurotransmitter (SERT). This review focuses on recent efforts in the design, synthesis and evaluation of 99mTc-radioligands used for single photon emission computerized tomography (SPECT) imaging of serotonergic (5-HT) receptors. Additionally, the discussion will cover aspects such as chemical structure, in vitro/vivo stability, affinity toward serotonin receptors, blood-brain barrier permeation (BBB), and biodistribution study.


Assuntos
Encéfalo , Serotonina , Humanos , Encéfalo/metabolismo , Distribuição Tecidual , Barreira Hematoencefálica/metabolismo , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Compostos Radiofarmacêuticos/química , Tecnécio/química , Receptores de Serotonina/metabolismo
4.
Cancer Biother Radiopharm ; 39(5): 323-329, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38324047

RESUMO

Patients with relapsed or refractory metastatic cancer unresponsive to standard therapies have motivated nuclear physicians to develop innovative radioligands, precisely targeted to tumor molecular receptors, for effective treatment of specific advanced malignancies. Individual practitioners in departments of nuclear medicine across the world have performed first-in-human studies on compassionate patient usage N-of-One protocols. These physician-sponsored studies then evolved into early-phase clinical trials and obtained real-world data to demonstrate real-world evidence of effectiveness in prolonging survival and enhancing quality of life of many so-called "End-Stage" cancer patients. Virtually all the therapeutic radiopharmaceuticals in current clinical oncology have been discovered and developed into effective specific treatments of targetable cancers by individual doctors in the course of their hospital practice. Pharma industry was not involved until many years later when performance of mandated Phase 3 randomized controlled trials became necessary to achieve regulatory agency approval. This article traces the history of several novel theranostic agents developed from compassionate N-of-One studies by hospital physicians over the past 36 years. It acknowledges the collegiality and collaboration of individual nuclear medicine specialists, worldwide, in pioneering effective humane therapy of particular advanced cancers unresponsive to conventional treatments.


Assuntos
Neoplasias , Compostos Radiofarmacêuticos , Humanos , Ensaios de Uso Compassivo , Neoplasias/terapia , Medicina Nuclear/métodos , Medicina de Precisão/métodos , Compostos Radiofarmacêuticos/uso terapêutico
5.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38399470

RESUMO

Targeted radionuclide therapy (TRT) is an emerging field and has the potential to become a major pillar in effective cancer treatment. Several pharmaceuticals are already in routine use for treating cancer, and there is still a high potential for new compounds for this application. But, a major issue for many radiolabeled low-to-moderate-molecular-weight molecules is their clearance via the kidneys and their subsequent reuptake. High renal accumulation of radioactive compounds may lead to nephrotoxicity, and therefore, the kidneys are often the dose-limiting organs in TRT with these radioligands. Over the years, different strategies have been developed aiming for reduced kidney retention and enhanced therapeutic efficacy of radioligands. In this review, we will give an overview of the efforts and achievements of the used strategies, with focus on the therapeutic potential of low-to-moderate-molecular-weight molecules. Among the strategies discussed here is coadministration of compounds that compete for binding to the endocytic receptors in the proximal tubuli. In addition, the influence of altering the molecular design of radiolabeled ligands on pharmacokinetics is discussed, which includes changes in their physicochemical properties and implementation of cleavable linkers or albumin-binding moieties. Furthermore, we discuss the influence of chelator and radionuclide choice on reabsorption of radioligands by the kidneys.

6.
Nucl Med Biol ; 128-129: 108876, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38241936

RESUMO

BACKGROUND: The beneficial role of glucose-dependent insulinotropic polypeptide receptor (GIPR) in weight control and maintaining glucose levels has led to the development of several multi-agonistic peptide drug candidates, targeting GIPR and glucagon like peptide 1 receptor (GLP1R) and/or the glucagon receptor (GCGR). The in vivo quantification of target occupancy by these drugs would accelerate the development of new drug candidates. The aim of this study was to evaluate a novel peptide (GIP1234), based on previously reported ligand DOTA-GIP-C803, modified with a fatty acid moiety to prolong its blood circulation. It would allow higher target tissue exposure and consequently improved peptide uptake as well as in vivo PET imaging and quantification of GIPR occupancy by novel drugs of interest. METHOD: A 40 amino acid residue peptide (GIP1234) was synthesized based on DOTA-GIP-C803, in turn based on the sequences of endogenous GIP and Exendin-4 with specific amino acid modifications to obtain GIPR selectivity. A palmitoyl fatty acid chain was furthermore added at Lys14 via a glutamic acid linker to prolong its blood circulation time by the interaction with albumin. GIP1234 was conjugated with a DOTA chelator at the C-terminal cysteine residue to achieve 68Ga radiolabeling. The resulting PET probe, [68Ga]Ga-DOTA-GIP1234 was evaluated for receptor binding specificity and selectivity using HEK293 cells transfected with human GIPR, GLP1R, or GCGR. Blocking experiments with tirzepatide (2 µM) were conducted using huGIPR HEK293 cells to investigate binding specificity. Ex vivo and in vivo organ distribution of [68Ga]Ga-DOTA-GIP1234 was studied in rats and a pig in comparison to [68Ga]Ga-DOTA-C803-GIP. Binding of [68Ga]Ga-DOTA-GIP1234 to albumin was assessed in situ using polyacrylamide gel electrophoresis (PAGE). The stability was tested in formulation buffer and rat blood plasma. RESULTS: [68Ga]Ga-DOTA-GIP1234 was synthesized with non-decay corrected radiochemical yield of 88 ± 3.7 % and radiochemical purity of 97.8 ± 0.8 %. The molar activity for the radiotracer was 8.1 ± 1.1 MBq/nmol. [68Ga]Ga-DOTA-GIP1234 was stable and maintained affinity to huGIPR HEK293 cells (dissociation constant (Kd) = 40 ± 12.5 nM). The binding of [68Ga]Ga-DOTA-GIP1234 to huGCGR and huGLP1R cells was insignificant. Pre-incubation of huGIPR HEK293 cell sections with tirzepatide resulted in the decrease of [68Ga]Ga-DOTA-GIP1234 binding by close to 90 %. [68Ga]Ga-DOTA-GIP1234 displayed slow blood clearance in pigs with SUV = 3.5 after 60 min. Blood retention of the tracer in rat was 2-fold higher than that of [68Ga]Ga-DOTA-C803-GIP. [68Ga]Ga-DOTA-GIP1234 also demonstrated strong liver uptake in both pig and rat combined with decreased renal excretion. The concentration dependent binding of [68Ga]Ga-DOTA-GIP1234 to albumin was confirmed in situ by PAGE. CONCLUSION: [68Ga]Ga-DOTA-GIP1234 demonstrated nanomolar affinity and selectivity for huGIPR in vitro. Addition of a fatty acid moiety prolonged blood circulation time and tissue exposure in both rat and pig in vivo. However, the liver uptake was also increased which may make PET imaging of abdominal tissues such as pancreas challenging. The investigation of the influence of fatty acid moiety on the biological performance of the peptide ligand paved the way for further rational design of GIPR ligand analogues with improved characteristics.


Assuntos
Radioisótopos de Gálio , Peptídeos , Receptores dos Hormônios Gastrointestinais , Ratos , Humanos , Animais , Suínos , Células HEK293 , Ligantes , Radioisótopos de Gálio/química , Meia-Vida , Peptídeos/química , Albuminas , Aminoácidos
7.
J Enzyme Inhib Med Chem ; 38(1): 2225797, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38061987

RESUMO

Cholinesterase (ChE) enzymes have been identified as diagnostic markers for Alzheimer disease (AD). Substrate-based probes have been synthesised to detect ChEs but they have not detected changes in ChE distribution associated with AD pathology. Probes are typically screened using spectrophotometric methods with pure enzyme for specificity and kinetics. However, the biochemical properties of ChEs associated with AD pathology are altered. The present work was undertaken to determine whether the Karnovsky-Roots (KR) histochemical method could be used to evaluate probes at the site of pathology. Thirty thioesters and esters were synthesised and evaluated using enzyme kinetic and KR methods. Spectrophotometric methods demonstrated all thioesters were ChE substrates, yet only a few provided staining in the brain with the KR method. Esters were ChE substrates with interactions with brain ChEs. These results suggest that the KR method may provide an efficient means to screen compounds as probes for imaging AD-associated ChEs.


Assuntos
Doença de Alzheimer , Colinesterases , Humanos , Colinesterases/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Inibidores da Colinesterase/química , Encéfalo , Acetilcolinesterase/metabolismo
8.
Cancer Radiother ; 27(8): 754-758, 2023 Dec.
Artigo em Francês | MEDLINE | ID: mdl-37953187

RESUMO

External beam radiation therapy and internal vectorized radiation therapy are two types of radiotherapy that can be used to treat cancer. They differ in the way they are administered, and the type of radiation used. Although they can be effective in treating cancer, they each have their own advantages and disadvantages, and their combination could be synergistic. Preclinical studies on combined internal and external beam radiation therapy have mainly used radiolabelled antibodies, whose bone marrow toxicity remains the limiting factor in increasing the administered activities. The use of small radioligands in clinical trials has shown to be better tolerated and more effective, which explains their rapid development. The results of preclinical studies on combined internal and external beam radiation therapy appear heterogeneous, making it impossible to determine an ideal therapeutic sequencing scheme, and complicating the transposition to clinical studies. The few clinical studies on combined internal and external beam radiation therapy available to date have demonstrated feasibility and tolerability. More work remains to be done in the fields of dosimetry and radiobiology, as well as in the sequencing of these two irradiation modalities to optimize their combination.


Assuntos
Braquiterapia , Neoplasias , Humanos , Dosagem Radioterapêutica , Neoplasias/radioterapia , Radiometria
9.
Urologie ; 62(11): 1153-1159, 2023 Nov.
Artigo em Alemão | MEDLINE | ID: mdl-37702749

RESUMO

Prostate-specific membrane antigen (PSMA) hybrid imaging is a promising new technique gaining importance in the field of prostate cancer (PCa) diagnosis and treatment planning. By combining PSMA radioligands and computed tomography (CT) or magnetic resonance imaging (MRI), PSMA hybrid imaging opens up new diagnostic opportunities. PSMA-PET/CT (PET: positron-emission tomography) is already well established in high-risk PCa for primary staging and tumor localization when biochemical recurrence occurs. Further potential indications for PSMA-PET/CT include tumor detection in the initial work-up before a rebiopsy with improved accuracy, the identification of target structures for precise local treatment in recurrent PCa (salvage radiotherapy or radio-guided surgery) as well as a prediction of response to PSMA radioligand therapy. This narrative review is based on a recent literature search and aims to highlight the opportunities of PSMA imaging in different disease stages of PCa.


Assuntos
Próstata , Neoplasias da Próstata , Masculino , Humanos , Próstata/patologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Neoplasias da Próstata/patologia , Antígeno Prostático Específico , Tomografia por Emissão de Pósitrons
10.
J Labelled Comp Radiopharm ; 66(13): 435-439, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37735764

RESUMO

Nucleophilic copper-mediated radioiodination (CMRI) of organoboronic precursors with radioiodides is a promising method of radioiodination. The previously reported CMRI has demonstrated its great potential and scope of labeling for the radiosynthesis of radioiodine-labeled compounds. However, the reported protocols (using a small amount/volume of radioactivity) are practically not reproducible in large-scale CMRI, in which the radioactivity was usually provided in a bulk alkaline solution. A large amount of water and a strong base are incompatible with CMRI. To overcome these issues in large-scale CMRI, we have developed a simple protocol for large-scale CMRI. The bulk water was removed under a flow of inert gas at 110°C, and the strong base (i.e., NaOH) was neutralized with an acid, pyridinium p-toluenesulfonate or p-toluenesulfonic acid. In the model reactions of [123 I]KX-1, a PARP-1 radioligand for Auger radiotherapy, radiochemical conversions were significantly improved after neutralization of the base, and the addition of additional acids was tolerated and favorable for the reactions. Using this protocol, [123 I]KX-1 was radiosynthesized from 20 mCi (0.74 GBq) of [123 I]iodide in high radiochemical yields, high radiochemical purity, and high molar activity. This protocol should be applicable to the radiosynthesis of other compounds with radioiodine via CMRI.


Assuntos
Cobre , Radioisótopos do Iodo , Compostos Radiofarmacêuticos , Água
11.
ACS Chem Neurosci ; 14(17): 3206-3211, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37587571

RESUMO

Positron emission tomography (PET) using radioligands for the enzyme monoamine oxidase B (MAO-B) is increasingly applied as a marker for astrogliosis in neurodegenerative disorders. In the present study, a novel reversible fluorine-18 labeled MAO-B compound, [18F]GEH200449, was evaluated as a PET radioligand in non-human primates. PET studies of [18F]GEH200449 at baseline showed brain exposure (maximum concentration: 3.4-5.2 SUV; n = 5) within the range of that for suitable central nervous system radioligands and a regional distribution consistent with the known localization of MAO-B. Based on the quantitative assessment of [18F]GEH200449 data using the metabolite-corrected arterial plasma concentration as input function, the Logan graphical analysis was selected as the preferred method of quantification. The binding of [18F]GEH200449, as calculated based on regional estimates of the total distribution volume, was markedly inhibited (occupancy >80%) by the administration of the selective MAO-B ligands L-deprenyl (0.5 and 1.0 mg/kg) or rasagiline (0.75 mg/kg) prior to radioligand injection. Radioligand binding was displaceable by the administration of L-deprenyl (0.5 mg/kg) at 25 min after radioligand injection, thus supporting reversible binding to MAO-B. These observations support that [18F]GEH200449 is a reversible MAO-B radioligand suitable for applied studies in humans.


Assuntos
Monoaminoxidase , Selegilina , Animais , Tomografia por Emissão de Pósitrons , Encéfalo , Primatas
12.
Korean J Radiol ; 24(9): 871-889, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37634642

RESUMO

C-X-C motif chemokine receptor 4 (CXCR4) plays a key role in various physiological functions, such as immune processes and disease development, and can influence angiogenesis, proliferation, and distant metastasis in tumors. Recently, several radioligands, including peptides, small molecules, and nanoclusters, have been developed to target CXCR4 for diagnostic purposes, thereby providing new diagnostic strategies based on CXCR4. Herein, we focus on the recent research progress of CXCR4-targeting radioligands for tumor diagnosis. We discuss their application in the diagnosis of hematological tumors, such as lymphomas, multiple myelomas, chronic lymphocytic leukemias, and myeloproliferative tumors, as well as nonhematological tumors, including tumors of the esophagus, breast, and central nervous system. Additionally, we explored the theranostic applications of CXCR4-targeting radioligands in tumors. Targeting CXCR4 using nuclear medicine shows promise as a method for tumor diagnosis, and further research is warranted to enhance its clinical applicability.


Assuntos
Diagnóstico por Imagem , Neoplasias , Humanos , Receptores CXCR4 , Neoplasias/diagnóstico por imagem
13.
Pharmaceuticals (Basel) ; 16(5)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37242457

RESUMO

The clinical success of radiolabeled somatostatin analogs in the diagnosis and therapy-"theranostics"-of tumors expressing the somatostatin subtype 2 receptor (SST2R) has paved the way for the development of a broader panel of peptide radioligands targeting different human tumors. This approach relies on the overexpression of other receptor-targets in different cancer types. In recent years, a shift in paradigm from internalizing agonists to antagonists has occurred. Thus, SST2R-antagonist radioligands were first shown to accumulate more efficiently in tumor lesions and clear faster from the background in animal models and patients. The switch to receptor antagonists was soon adopted in the field of radiolabeled bombesin (BBN). Unlike the stable cyclic octapeptides used in the case of somatostatin, BBN-like peptides are linear, fast to biodegradable and elicit adverse effects in the body. Thus, the advent of BBN-like antagonists provided an elegant way to obtain effective and safe radiotheranostics. Likewise, the pursuit of gastrin and exendin antagonist-based radioligands is advancing with exciting new outcomes on the horizon. In the present review, we discuss these developments with a focus on clinical results, commenting on challenges and opportunities for personalized treatment of cancer patients by means of state-of-the-art antagonist-based radiopharmaceuticals.

14.
Expert Rev Anticancer Ther ; 23(6): 625-631, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37101345

RESUMO

INTRODUCTION: Prostate cancer treatment has rapidly evolved in the past few years. Androgen deprivation therapy has been the backbone of treatment for locally advanced and metastatic prostate cancer, but incremental benefits in survival have been shown by adding androgen-receptor pathway inhibitors (ARPI) across various spectrums of disease state. In addition, docetaxel chemotherapy remains the first-line chemotherapy regimen available with survival benefits shown with triplet therapy in those who are chemotherapy eligible. However, disease progression remains inevitable and novel agents such as radioligand therapy with lutetium have shown improvement in survival. AREAS COVERED: This review discusses the pivotal trials that led to the U.S. FDA approval of agents utilized in metastatic prostate cancer and explores the use of novel agents including prostate-specific membrane antigen-targeting agents, radioligands, cell-based therapy, chimeric antigen receptor T-cell, BiTE, and antibody drug conjugates. EXPERT OPINION: Treatment landscape for metastatic castrate-resistant prostate cancer (mCRPC) has evolved beyond additional agents with ARPI and/or docetaxel, including other treatments with sipuleucel-T, radium, cabazitaxel, PARP inhibitors, and lutetium, which have specific indications and roles in sequencing. Novel therapies remain critically needed after progression from lutetium.


Assuntos
Antagonistas de Androgênios , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Docetaxel , Antagonistas de Androgênios/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/patologia , Androgênios/uso terapêutico , Lutécio/uso terapêutico
15.
Brain Res ; 1805: 148268, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36754138

RESUMO

Molecular mechanisms of the interaction between opioidergic and dopaminergic processing during pain-related experiences in the human brain are still incompletely understood. This is partially due to the invasive nature of the available techniques to visualize and measure metabolic activity. Positron Emission Tomography (PET) radioligand studies using radioactive substances are still the only available modality to date that allows for the investigation of the molecular mechanisms in the human brain. The most commonly studied PET radiotracers are [11C]-carfentanil (CFN) and [11C]- or [18F]-diprenorphine (DPN), which bind to opioid receptors, and [11C]-raclopride (RAC) and [18F]-fallypride (FAL) tracers, which bind to dopamine receptors. The current meta-analysis examines pain-related studies that used aforementioned opioid and dopamine radioligands in an effort to consolidate the available data into the most likely activated regions. Our primary goal was to identify regions of shared opioid/dopamine neurotransmission during pain-related experiences using within-subject approach. Seed-based d Mapping (SDM) analysis of previously published voxel coordinate data showed that opioidergic activations were strongest in the bilateral caudate, thalamus, right putamen, cingulate gyrus, midbrain, inferior frontal gyrus, and left superior temporal gyrus. The dopaminergic studies showed that the bilateral caudate, thalamus, right putamen, cingulate gyrus, and left putamen had the highest activations. We were able to see a clear overlap between opioid and dopamine activations in a majority of the regions during pain-related experiences, though there were some unique areas of dopaminergic activation such as the left putamen. Regions unique to opioidergic activation included the midbrain, inferior frontal gyrus, and left superior temporal gyrus. Here we provide initial evidence for the functional overlap between opioidergic and dopaminergic processing during aversive states in humans.


Assuntos
Analgésicos Opioides , Dopamina , Humanos , Dopamina/metabolismo , Dor/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/metabolismo
16.
Biomed Pharmacother ; 156: 113937, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36411624

RESUMO

Over production of reactive oxygen species (ROS) caused by altered redox regulation of signaling pathways is common in many types of cancers. While PET imaging is recognized as the standard tool for cancer imaging, there are no clinically-approved PET radiotracers for ROS-imaging in cancer diagnosis and treatment. An ascorbate-based radio ligand promises to meet this urgent need. Our laboratory recently synthesized [18F] KS1, a fluoroethoxy furanose ring-containing ascorbate derivative, to track ROS in prostate tumor-bearing mice. Here we report cell uptake assays of [18F]KS1 with different ROS-regulating agents, PET imaging in head and neck squamous cell carcinoma (HNSCC) mice, and doxorubicin-induced rats; PET imaging in healthy and irradiated hepatic tumor-bearing rhesus to demonstrate its translational potential. Our preliminary evaluations demonstrated that KS1 do not generate ROS in tumor cells at tracer-level concentrations and tumor-killing properties at pharmacologic doses. [18F]KS1 uptake was low in HNSCC pretreated with ROS blockers, and high with ROS inducers. Tumors in high ROS-expressing SCC-61 took up significantly more [18F]KS1 than rSCC-61 (low-ROS expressing HNSCC); high uptake in doxorubicin-treated rats compared to saline-treated controls. Rodent biodistribution and PET imaging of [18F]KS1 in healthy rhesus monkeys demonstrated its favorable safety, pharmacokinetic properties with excellent washout profile, within 3.0 h of radiotracer administration. High uptake of [18F]KS1 in liver tumor tissues of the irradiated hepatic tumor-bearing monkey showed target selectivity. Our strong data in vitro, in vivo, and ex vivo here supports the high translational utility of [18F]KS1 to image ROS.


Assuntos
Neoplasias de Cabeça e Pescoço , Neoplasias Hepáticas , Masculino , Animais , Ratos , Camundongos , Ligantes , Espécies Reativas de Oxigênio/metabolismo , Distribuição Tecidual , Carcinoma de Células Escamosas de Cabeça e Pescoço , Roedores/metabolismo , Ácido Ascórbico , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Doxorrubicina , Primatas/metabolismo
17.
Methods Mol Biol ; 2550: 151-162, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36180688

RESUMO

Melatonin (N-acetyl-5-methoxytryptamine) is a neurohormone that possesses a wide range of biological effects. Most of the main recognized effects of this hormone in mammals are due to its interaction with two G protein-coupled receptors, MT1 and MT2. Ligand-binding studies have been based on the use of its radioligand analog, 2[125I]-iodomelatonin, a super agonist discovered in the early 1990s. This compound has been used in most of the binding studies reported in the literature. Nevertheless, more recently other possibilities arose. This chapter is a brief summary of those alternative radioligands and of their benefits one can find in using them.


Assuntos
Radioisótopos do Iodo , Melatonina , 5-Metoxitriptamina , Animais , Ligantes , Mamíferos/metabolismo , Melatonina/farmacologia , Receptores de Melatonina
18.
Front Oncol ; 12: 937713, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936689

RESUMO

The development of a neuroendocrine phenotype as a mechanism of resistance to hormonal treatment is observed in up to 20% of advanced prostate cancer patients. High grade neuroendocrine prostate cancer (NEPC) is associated to poor prognosis and the therapeutic armamentarium is restricted to platinum-based chemotherapy. Prostate-specific membrane antigen (PSMA)-based positron emission tomography (PET)/computed tomography (CT) imaging has recently emerged as a potential new standard for the staging of prostate cancer and PSMA-based radioligand therapy (RLT) as a therapeutic option in advanced metastatic castration resistant prostate cancer (mCRPC). PSMA-based theranostic is not currently applied in the staging and treatment of NEPC since PSMA expression on neuroendocrine differentiated cells was shown to be lost. In this case series, we present 3 consecutive mCRPC patients with histologically proven high grade neuroendocrine differentiation who underwent PSMA-PET/CT and surprisingly showed high tracer uptake. This observation stimulates further research on the use of PSMA-based theranostic in the management of NEPC.

19.
Molecules ; 27(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35744851

RESUMO

Molecular imaging probes enable the early and accurate detection of disease-specific biomarkers and facilitate personalized treatment of many chronic diseases, including cancer. Among current clinically used functional imaging modalities, positron emission tomography (PET) plays a significant role in cancer detection and in monitoring the response to therapeutic interventions. Several preclinical and clinical studies have demonstrated the crucial involvement of cyclooxygenase-2 (COX-2) isozyme in cancer development and progression, making COX-2 a promising cancer biomarker. A variety of COX-2-targeting PET radioligands has been developed based on anti-inflammatory drugs and selective COX-2 inhibitors. However, many of those suffer from non-specific binding and insufficient metabolic stability. This article highlights examples of COX-2-targeting PET radioligands labelled with the short-lived positron emitter 18F, including radiosynthesis and PET imaging studies published in the last decade (2012-2021).


Assuntos
Radioisótopos de Flúor , Neoplasias , Ciclo-Oxigenase 2/metabolismo , Radioisótopos de Flúor/química , Humanos , Neoplasias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/química
20.
Mol Pharm ; 19(7): 2105-2114, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35544699

RESUMO

[177Lu]Lu-Ibu-DAB-PSMA, a radioligand modified with ibuprofen as the albumin binder, showed higher accumulation in PSMA-positive tumors of mice than the clinically used [177Lu]Lu-PSMA-617 but lower retention in non-targeted tissues than previously developed albumin-binding PSMA radioligands. The aim of this study was to investigate whether the stereochemistry of the incorporated ibuprofen affects the radioligand's in vitro and in vivo properties and to select the more favorable radioligand for further development. For this purpose, SibuDAB and RibuDAB containing (S)- and (R)-ibuprofen, respectively, were synthesized and labeled with lutetium-177. In vitro, the two isomers had similar properties; however, [177Lu]Lu-SibuDAB showed increased binding to mouse and human plasma proteins (91 ± 1 and 88 ± 2%, respectively) compared to [177Lu]Lu-RibuDAB (75 ± 2 and 79 ± 2%, respectively). In vivo, [177Lu]Lu-SibuDAB was metabolically more stable than [177Lu]Lu-RibuDAB with ∼90 vs ∼67% intact radioligand detected in the blood at 4 h post injection (p.i.). In line with the lower albumin-binding affinity, the blood clearance of [177Lu]Lu-RibuDAB in mice was considerably faster [27% of injected activity (% IA), 1 h p.i.] than for [177Lu]Lu-SibuDAB (50% IA, 1 h p.i.). Time-dependent biodistribution studies performed in tumor-bearing athymic nude mice showed high PSMA-specific tumor uptake for both isomers. A twofold increased area under the curve (AUC0→8d) of the blood retention was determined for [177Lu]Lu-SibuDAB as compared to [177Lu]Lu-RibuDAB, whereas the kidney AUC0→8d value of [177Lu]Lu-SibuDAB was only half as high as for [177Lu]Lu-RibuDAB. As a result, a more favorable tumor-to-kidney AUC0→8d ratio was obtained for [177Lu]Lu-SibuDAB, which was also visualized on SPECT/CT images. Based on its improved kidney clearance and higher metabolic stability, [177Lu]Lu-SibuDAB was selected as the more favorable radioligand. Therapy studies performed with [177Lu]Lu-SibuDAB (5 MBq/mouse) demonstrated the anticipated therapeutic superiority over the current gold-standard [177Lu]Lu-PSMA-617 (5 MBq/mouse). The significantly increased survival time of mice treated with [177Lu]Lu-SibuDAB as compared to those injected with [177Lu]Lu-PSMA-617 justifies further development of this novel radioligand toward clinical application.


Assuntos
Glutamato Carboxipeptidase II , Neoplasias da Próstata , Albuminas/química , Animais , Antígenos de Superfície/metabolismo , Linhagem Celular Tumoral , Glutamato Carboxipeptidase II/metabolismo , Humanos , Ibuprofeno , Lutécio/química , Masculino , Camundongos , Camundongos Nus , Neoplasias da Próstata/metabolismo , Compostos Radiofarmacêuticos/química , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...