Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; 22(6): 104-118, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34036701

RESUMO

The present study verified and evaluated the dosimetric effects of protons scattered from a snout and an aperture in clinical practice, when a range compensator was included. The dose distribution calculated by a treatment planning system (TPS) was compared with the measured dose distribution and the dose distribution calculated by Monte Carlo simulation at several depths. The difference between the measured and calculated results was analyzed using Monte Carlo simulation with filtration of scattering in the snout and aperture. The dependence of the effects of scattered protons on snout size, beam range, and minimum thickness of the range compensator was also investigated using the Monte Carlo simulation. The simulated and measured results showed that the additional dose compared with the results calculated by the TPS at shallow depths was mainly due to protons scattered by the snout and aperture. This additional dose was filtered by the structure of the range compensator so that it was observed under the thin region of the range compensator. The maximum difference was measured at a depth of 16 mm (8.25%), with the difference decreasing with depth. Analysis of protons contributing to the additional dose showed that the contribution of protons scattered from the snout was greater than that of protons scattered from the aperture when a narrow snout was used. In the Monte Carlo simulation, this effect of scattered protons was reduced when wider snouts and longer-range proton beams were used. This effect was also reduced when thicker range compensator bases were used, even with a narrow snout. This study verified the effect of scattered protons even when a range compensator was included and emphasized the importance of snout-scattered protons when a narrow snout is used for small fields. It indicated that this additional dose can be reduced by wider snouts, longer range proton beams, and thicker range compensator bases. These results provide a better understanding of the additional dose from scattered protons in clinical practice.


Assuntos
Terapia com Prótons , Simulação por Computador , Humanos , Método de Monte Carlo , Prótons , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
2.
Phys Med ; 62: 53-62, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31153399

RESUMO

PURPOSE: To construct and commission a double scattering (DS) proton beam model in TOPAS Monte Carlo (MC) code. Dose comparisons of MC calculations to the measured and treatment planning system (TPS) calculated dose were performed. METHODS: The TOPAS nozzle model was based on the manufacturer blueprints. Nozzle set-up and beam current modulations were calculated using room-specific calibration data. This model was implemented to reproduce pristine peaks, spread-out Bragg peaks (SOBP) and lateral profiles. A stair-shaped target plan in water phantom was calculated and compared to measured data to verify range compensator (RC) modeling. RESULTS: TOPAS calculated pristine peaks agreed well with measurements, with accuracies of 0.03 cm for range R90 and 0.05 cm for distal dose fall-off (DDF). The calculated SOBP range, modulation width and DDF differences between MC calculations and measurements were within 0.05 cm, 0.5 cm and 0.03 cm respectively. MC calculated lateral penumbra agreed well with measured data, with difference less than 0.05 cm. For RC calculation, TPS underestimated the additional depth dose tail due to the nuclear halo effect. Lateral doses by TPS were 10% lower than measurement outside the target, while maximum difference of MC calculation was within 2%. At deeper depths inside the target volume, TPS overestimated doses by up to 25% while TOPAS predicted the dose to within 5% of measurements. CONCLUSION: We have successfully developed and commissioned a MC based DS nozzle model. The performance of dose accuracy by TOPAS was superior to TPS, especially for highly inhomogeneous compensator.


Assuntos
Método de Monte Carlo , Terapia com Prótons , Espalhamento de Radiação , Radiometria
3.
Artigo em Coreano | WPRIM (Pacífico Ocidental) | ID: wpr-203478

RESUMO

The main benefit of proton therapy over photon beam radiotherapy is the absence of exit dose, which offers the opportunity for highly conformal dose distributions to target volume while simultaneously irradiating less normal tissue. For proton beam therapy two patient specific beam modifying devices are used. The aperture is used to shape the transverse extension of the proton beam to the shape of the tumor target and a patient-specific compensator attached to the block aperture when required and used to modify the beam range as required by the treatment plan for the patient. A block of range shifting material, shaped on one face in such a way that the distal end of the proton field in the patient takes the shape of the distal end of the target volume. The mechanical quality assurance of range compensator is an essential procedure to confirm the 3 dimensional patient-specific dose distributions. We proposed a new quality assurance method for range compensator based on image processing using X-ray tube of proton therapy treatment room. The depth information, boundaries of each depth of plan compensatorfile and x-ray image of compensator were analyzed and presented over 80% matching results with proposed QA program.


Assuntos
Humanos , Terapia com Prótons , Prótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...