Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 280
Filtrar
1.
Sci Rep ; 14(1): 15026, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951606

RESUMO

The objective of this study was to assess the potential for recovering precious metals from technological solutions using an ion-exchange dynamic method. Precious metals like platinum, palladium, rhodium, and gold are essential materials in various industries such as: automotive, electronics, pharmaceuticals, and jewellery. Due to their limited occurrence in primary sources, there is a growing trend in the market to extract these metals from secondary sources. The research involved conducting sorption and elution tests under different parameters to investigate their impact on the process in dynamic conditions. Additionally, an attempt was made to calculate the operational and total capacity of the resins, which has not been done previously for industrial solutions. The results showed that using Puromet MTS9200, Puromet MTS9850, and Lewatit MonoPlus MP600 resins, the sorption process could be effectively carried out in dynamic conditions with a contact time of 5 min between the technological solution and the resin bed. For optimal elution, the contact time between the eluent solution and the bed should range between 10 and 30 min. To improve rhodium sorption efficiency, it was found that neutralizing the technological solution to a pH of approximately 7 and using Lewatit MonoPlus MP600 resin could be beneficial.

2.
New Microbiol ; 47(2): 123-136, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39023521

RESUMO

The escalating global population poses formidable challenges to addressing pressing environmental concerns, hindering progress towards sustainable development goals. Unregulated human activities, particularly the excessive reliance on fossil fuels and unsustainable agricultural practices, contribute to pollution, climate change, and resource depletion. Inadequate waste management systems exacerbate environmental degradation and pose risks to public health. Leveraging biological resources and urban/industrial waste emerges as a promising solution. Various waste materials, such as food waste and agro-industrial by-products, have been efficiently repurposed into valuable bio-based products. This review explores the diverse applications of agricultural and food waste repurposing, including microbial production of biopolymers and biosurfactants, as well as the extraction of biologically active compounds for potential antimicrobial drugs.


Assuntos
Anti-Infecciosos , Anti-Infecciosos/farmacologia , Humanos , Biomassa , Gerenciamento de Resíduos/métodos , Materiais Biocompatíveis , Resíduos/análise
3.
Food Chem ; 459: 140244, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38991448

RESUMO

Protein-rich fish processing by-products, often called rest raw materials (RRM), account for approximately 60% of the total fish biomass. However, a considerable amount of these RRM is utilized for low-value products such as fish meal and silage. A promising and valuable approach for maximizing the utilization of RRM involves the extraction of bioactive fish protein hydrolysate (FPH). This review assesses and compares different hydrolyzation methods to produce FPH. Furthermore, the review highlights the purification strategy, nutritional compositions, and bioactive properties of FPH. Finally, it concludes by outlining the application of FPH in food products together with various safety and regulatory issues related to the commercialization of FPH as a protein ingredient in food. This review paves the way for future applications by highlighting efficient biotechnological methods for valorizing RRM into FPH and addressing safety concerns, enabling the widespread utilization of FPH as a valuable and sustainable source of protein.

4.
Environ Sci Technol ; 58(25): 11175-11184, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38857431

RESUMO

Arsenic (As)-bearing Fe(III) precipitate groundwater treatment sludge has traditionally been viewed by the water sector as a disposal issue rather than a resource opportunity, partly due to assumptions of the low value of As. However, As has now been classified as a Critical Raw Material (CRM) in many regions, providing new incentives to recover As and other useful components of the sludge, such as phosphate (P) and the reactive hydrous ferric oxide (HFO) sorbent. Here, we investigate alkali extraction to separate As from a variety of field and synthetic As-bearing HFO sludges, which is a critical first step to enable sludge upcycling. We found that As extraction was most effective using NaOH, with the As extraction efficiency increasing up to >99% with increasing NaOH concentrations (0.01, 0.1, and 1 M). Extraction with Na2CO3 and Ca(OH)2 was ineffective (<5%). Extraction time (hour, day, week) played a secondary role in As release but tended to be important at lower NaOH concentrations. Little difference in As extraction efficiency was observed for several key variables, including sludge aging time (50 days) and cosorbed oxyanions (e.g., Si, P). However, the presence of ∼10 mass% calcite decreased As release from field and synthetic sludges considerably (<70% As extracted). Concomitant with As release, alkali extraction promoted crystallization of poorly ordered HFO and decreased particle specific surface area, with structural modifications increasing with NaOH concentration and extraction time. Taken together, these results provide essential information to inform and optimize the design of resource recovery methods for As-bearing treatment sludge.


Assuntos
Álcalis , Arsênio , Água Subterrânea , Esgotos , Esgotos/química , Água Subterrânea/química , Álcalis/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Compostos Férricos/química
5.
Materials (Basel) ; 17(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38930293

RESUMO

The grinding process plays a crucial role in industry, allowing for the reduction of particle sizes of raw materials and substances to the required fineness-either as a finished product or for further technological processes. The high demand for micro- and nanopowders or suspensions is associated with the high energy consumption of the milling process. Therefore, optimizing the milling process, including correctly selecting grinding media, is essential to reduce energy consumption. This article presents experimental studies of the grinding process of a model material (quartz sand) in a laboratory vibratory mill. Five sets of grinding media with different diameters were used in the research, and grinding was conducted for various durations. The studies showed that the vibratory grinding process is efficient for each set of grinding media and grinding durations. The research has shown that conducting studies on the proper selection of mills is beneficial, especially regarding very fine grinding of various materials. The study confirmed that properly selecting grinding media sets can significantly accelerate the grinding process. For the selected technological variant, it was demonstrated that using 15 mm grinding media, compared to 12 mm, resulted in a 22.5% reduction in grinding time to achieve a specified particle size class of 0-10 µm.

6.
Polymers (Basel) ; 16(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38891478

RESUMO

Particleboard, engineered wood products as part of a large family of wood composite materials, developed in use mainly in the 1950s and 1960s to utilize inferior wood and wood waste when good-quality wood was in short supply; the annual production capacity worldwide is over 100 million m3. It is also necessary to have a lot of wood raw material for its production, although raw material resources are limited on our planet. In addition to the main wood species, it is therefore possible to think about the wider use of alternative, lesser-known European species of alder, larch, and birch in particleboard production. These three wood species represent an eco-friendly and sustainable wood alternative to the conventional wood raw materials used. This review confirms the diversity of the use of these three species in different fields and proves their suitability in relation to particleboard production. Fundamental research is ongoing in certain universities to determine the proportional shares of use of these tree species in particleboard (in a certain weight proportion in their core layers) for the purpose of formulating the correct technology shares and rules for their application in the wood-based panel industry.

7.
J Environ Manage ; 365: 121609, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38943744

RESUMO

Sustainable management of critical raw materials is of paramount importance to ensure a steady supply and reduce environmental impact. The application of newly synthesized and environmentally friendly ALG@CS material as a bio-adsorbent for the effective rare earth elements removal from aqueous solution has been presented. The synthesized material underwent FTIR, XPS, EDX, and SEM analysis to determine its suitability for metal uptake. To evaluate the adsorption capacity of ALG@CS for rare earth elements several factors were taken into consideration. These factors included alginate:chitosan ratios, bead size, pH level, composite mass, interaction time, metal ion concentration, and temperature, being all varied during the batch mode evaluation process. Under the optimal conditions, the maximum adsorption capacities were found to be 145.90 mg La(III)/g, 168.44 mg Ce(III)/g, 132.51 mg Pr(III)/g, 128.40 mg Nd(III)/g, 154.36 mg Sm(III)/g, and 165.10 mg Ho(III)/g. The equilibrium data fits well with non-linear three-parameter Sips and Redlich-Peterson isotherm models. The PSO model finds the highest process suitability. The synthesized ALG@CS bio-adsorbent showed excellent regenerative capacity in ten cycles, making it a suitable adsorbent for rare earth elements uptake. The unique bio-adsorbents combination allows for efficient critical raw materials adsorption providing a promising solution for their recovery and recycling.


Assuntos
Alginatos , Quitosana , Metais Terras Raras , Quitosana/química , Adsorção , Alginatos/química , Metais Terras Raras/química , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier , Purificação da Água/métodos
8.
Foods ; 13(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38890939

RESUMO

In this study, a critical review was carried out using the Web of ScienceTM Core Collection database to analyse the scientific literature published to date to identify lines of research and future perspectives on the presence of chemical pollutants in beer brewing. Beer is one of the world's most popular drinks and the most consumed alcoholic beverage. However, a widespread challenge with potential implications for human and animal health is the presence of physical, chemical, and/or microbiological contaminants in beer. Biogenic amines, heavy metals, mycotoxins, nitrosamines, pesticides, acrylamide, phthalates, bisphenols, microplastics, and, to a lesser extent, hydrocarbons (aliphatic chlorinated and polycyclic aromatic), carbonyls, furan-derivatives, polychlorinated biphenyls, and trihalomethanes are the main chemical pollutants found during the beer brewing process. Pollution sources include raw materials, technological process steps, the brewery environment, and packaging materials. Different chemical pollutants have been found during the beer brewing process, from barley to beer. Brewing steps such as steeping, kilning, mashing, boiling, fermentation, and clarification are critical in reducing the levels of many of these pollutants. As a result, their residual levels are usually below the maximum levels allowed by international regulations. Therefore, this work was aimed at assessing how chemical pollutants appear and evolve in the brewing process, according to research developed in the last few decades.

9.
Foods ; 13(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38890995

RESUMO

The aim of this study was to evaluate the effect of extruded preparations on the bioactive and nutritional properties, vitamin B content, volatile compound profile, and quality of whole wheat bread. Extruded preparations based on stale bread (secondary raw materials) and apple pomace (byproducts) were used as bread additives. It was found that the preparations did not enrich the bread in protein but in health-promoting compounds, especially gallic acid, protocatechuic acid, caffeic acid, p-coumaric acid, rutin, quercetin, and B vitamins. Extruded preparations had a positive effect on the quality of the bread produced, such as yield and cohesiveness, and gave it a pleasant aroma. It was shown that among all the examined bread samples with added extruded preparations of stale bread, the cornmeal and apple pomace bread samples with 15% extruded preparation (containing 55% cornmeal, 30% stale bread, and 15% apple pomace) had sufficient nutritional value, the highest amounts of gallic acid, protocatechuic acid, p-coumaric acid, caffeic acid, rutin, and quercetin; medium amounts of ellagic acid; high antioxidant activity determined in vitro using four methods (by DPPH, ABTS, power (FRAP), and Fe(II) chelating assays); adequate quality; and significant amounts of vitamins, especially B1, B2, and B3. This type of extruded preparation should utilize apple pomace, which is a byproduct, and stale bread, which is a secondary waste. Such a combination is an excellent low-cost, easy, and prospective solution for the baking industry that could be applied to obtain bread with elevated nutritional value and enhanced health potential, as proven in this publication.

10.
Phytomedicine ; 129: 155625, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38692077

RESUMO

BACKGROUND: Shengmai Formula (SMF), a classic formula in treating Qi-Yin deficiency, is composed of Ginseng Radix et Rhizoma Rubra (GRR), Ophiopogon Radix (OR), and Schisandra chinensis Fructus (SC), and has been developed into various dosage forms including Shengmai Yin Oral Liquid (SMY), Shengmai Capsules (SMC), and Shengmai Injection (SMI). The pharmacological effects of compound Chinese medicine are attributed to the integration of multiple components. Yet the quality criteria of SMF are limited to monitoring schisandrol A or ginsenosides Rg1 and Re, but none for OR. Since the complexity of raw materials and preparations, establishing a economical and unified method for SMF is challenging. It is urgent to simultaneously quantify multiple components with different structures using a universal method for quality control of SMF. Charged aerosol detector (CAD) overcame the above shortcomings owing to its characteristics of high responsiveness, nondiscrimination, and low cost. PURPOSE: We aimed to establish a versatile analysis strategy using HPLC-CAD for simultaneously quantifying the structurally diverse markers in quality control of SMF from raw materials to preparations. METHOD: By optimizing the column, mobile phase, column temperature, flow rate, and CAD parameters, a HPLC-CAD method that integrated multi-component characterization, authenticity identification, transfer information of raw materials and quantitative determination of Shengmai preparations was established. RESULTS: In total 50 components from SMF were characterized (28 in GRR, 13 in SC, and 9 in OR). The differences in raw materials between species of SC and Schisandrae sphenantherae Fructus (SS), processing methods of Ginseng Radix (GR) and GRR, and locations of OR from Sichuan (ORS) and Zhejiang (ORZ) were compared. Fourteen components in 19 batches of SMY, SMC and SMI from different manufacturers were quantified, including 11 ginsenosides and 3 lignans. The multivariate statistical analysis results further suggested that Rb1, Rg1 and Ro were the main differences among Shengmai preparations. CONCLUSION: The established versatile analysis strategy based on HPLC-CAD was proven sensitive, simple, convenient, overcoming the discriminatory effect of UV detector, revealing the composition and transfer information of SMF and applicable for authentication of the ingredient herbs and improving the quality of Shengmai preparations.


Assuntos
Combinação de Medicamentos , Medicamentos de Ervas Chinesas , Controle de Qualidade , Schisandra , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/normas , Schisandra/química , Ginsenosídeos/análise , Ginsenosídeos/química , Lignanas/análise , Ciclo-Octanos/análise , Ciclo-Octanos/química , Panax/química
11.
Materials (Basel) ; 17(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38793252

RESUMO

The work presents a detailed analysis of the possibilities of the thermal processing of clay raw material granulates in a fluidized bed reactor powered by coal fuel. Potential customers of calcined granulates include the following: plants producing refractory materials for the steel industry, producers of refractory concrete, sanitaryware plants, tile plants, large-size tile plants, industry abrasives, chemicals, paints, paper, food and medical industries and others. The advantage of the presented fluid bed calcination technology is the possibility of the continuous operation of the reactor and the short time of the material in the bed, compared to the previously used methods of calcination in a shaft and rotary kiln, which lasts less than twenty minutes in the temperature range of 650-850 °C. During the experimental studies of calcination in the fluidized bed layer, the influence of the type of coal, its particle size and the mass share of coal in the feed mixture on the calcination process and the final product obtained was analysed. As a result of the conducted research, it was proven that solid fuels such as anthracite and steam coal type 31.2 (flaming) can be successfully used in the fluidized bed calcination process of clay materials. The key parameter determining the fluidized bed calcination process is the fuel particle distribution.

12.
Sci Rep ; 14(1): 10240, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702364

RESUMO

This work presents the experimental assessment of a 20 mL batch reactor's efficacy in converting plastic and oil residues into biofuels. The reactor, designed for ease of use, is heated using a metallic system. The experiments explore plastic solubilization at various temperatures and residence times, employing a mixture of distilled water and ethylene glycol as the solvent. Initial findings reveal that plastic solubilization requires a temperature of 350 °C with an ethylene glycol mole fraction of 0.35, whereas 250 °C suffices with a mole fraction of 0.58. Additionally, the study includes a process simulation of a plant utilizing a double fluidized bed gasifier and an economic evaluation of the interesterification/pyrolysis plant. Simulation results support project feasibility, estimating a total investment cost of approximately $12.99 million and annual operating expenses of around $17.98 million, with a projected payback period of about 5 years.

13.
MethodsX ; 12: 102729, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38707216

RESUMO

This HPLC method is suitable for chitin quantitation (reported as glucosamine) in food raw materials like insects (mealworm larvae, crickets), shrimps, mushrooms and fungi in a research (non-routine) laboratory using a C18 column with HPLC system <600 bar with UV detection capability (at 265 nm). To remove interferences, the sample is defatted (Soxhlet) and deproteinized (by alkali) prior to acid hydrolysis in 6 M HCl. A five-point linear calibration (5-100 µg/mL) is used. The use of fluorescence detection (λex = 260 nm, λem = 350 nm) is also possible with this method [1].•18 min HPLC run time•LOD = 0.05 µg/mL and LOQ = 5 µg/mL.

14.
Food Res Int ; 183: 114203, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38760135

RESUMO

Beer is the third most consumed beverage in the world, trailing only water and tea but ranking first among alcoholic beverages. In recent years, producers and researchers have shown a growing interest in brewing diversification and innovation, due to of the widespread consumption of beer. In order to create beers and beer-like products with unique and consumer-pleasing characteristics, the use of unconventional raw materials has become a subject of intensive research. The purpose of this paper is to identify, evaluate and summarize the findings of all relevant unconventional raw materials used in relevant scientific studies, as well as the effect on the metabolomics of beer and beer-like beverages.For the enhancement of beer characteristics, the production process may involve the use of an extremely diverse variety of unconventional raw materials that are not included on thelist of usual ingredients for the beer industry. However, the general trend is to use locally available ingredients as well as functional ingredients. Twoof the most studied functional characteristics involve phenolic compounds and antioxidant activity, which is why the fruit is by far the most commonly used adjunct category, as fruits are particularly important sources of polyphenols and antioxidants. Other uncommon adjuncts used in brewing includeplants, starch sources, spices or even propolis. Moreover, unconventional raw materials are used to enhance the sensory profile by create new characteristics such as new tastes and flavors, accentuation of the cooling sensation or even increasing acceptability among potential consumers, who do not appreciate traditional beers due to their specific characteristics.


Assuntos
Antioxidantes , Cerveja , Metabolômica , Paladar , Cerveja/análise , Humanos , Antioxidantes/análise , Frutas/química , Polifenóis/análise , Fermentação , Manipulação de Alimentos/métodos
15.
J Environ Manage ; 358: 120758, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593735

RESUMO

European legislation stated that electric vehicles' sale must increase to 35% of circulating vehicles by 2030, and concern is associated to the batteries' supply chain. This review aims at analysing the impacts (about material flows and CO2 eq emissions) of Lithium-Ion Batteries' (LIBs) recycling at full-scale in Europe in 2030 on the European LIBs' supply-chain. Literature review provided the recycling technologies' (e.g., pyro- and hydrometallurgy) efficiencies, and an inventory of existing LIBs' production and recycling plants in Europe. European production plants exhibit production capacity adequate for the expected 2030 needs. The key critical issues associated to recycling regard pre-treatments and the high costs and environmental impacts of metallurgical processes. Then, according to different LIBs' composition and market shares in 2020, and assuming a 10-year battery lifetime, the Material Flow Analysis (MFA) of the metals embodied in End of Life (EoL) LIBs forecasted in Europe in 2030 was modelled, and the related CO2 eq emissions calculated. In 2030 the European LIBs' recycling structure is expected to receive 664 t of Al, 530 t of Co, 1308 t of Cu, 219 t of Fe, 175 t of Li, 287 t of Mn and 486 t of Ni. Of these, 99% Al, 86% Co, 96% Cu, 88% Mn and 98% Ni will be potentially recovered by pyrometallurgy, and 71% Al, 92% Co, 92% Fe, 96% Li, 88 % Mn and 90% Ni by hydrometallurgy. However, even if the recycling efficiencies of the technologies applied at full-scale are high, the treatment capacity of European recycling plants could supply as recycled metals only 2%-wt of the materials required for European LIBs' production in 2030 (specifically 278 t of Al, 468 t of Co, 531 t of Cu, 114 t of Fe, 95 t of Li, 250 t of Mn and 428 t of Ni). Nevertheless, including recycled metals in the production of new LIBs could cut up 28% of CO2 eq emissions, compared to the use of virgin raw materials, and support the European batteries' value chain.


Assuntos
Fontes de Energia Elétrica , Lítio , Reciclagem , Europa (Continente)
17.
Data Brief ; 54: 110348, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38586129

RESUMO

This geospatial dataset provides a compilation of findings from an evidence-based review of site-specific resource assessments of mining and metallurgical residues. Information pertaining to location, target material, geological knowledge, extractability, resource classification and stakeholder perspectives was collected from publicly available reports, articles, academic theses, and databases. The dataset includes 44 relevant data attributes from 64 mining and metallurgical sites in 27 countries. Resource classification is available for 38 sites. The dataset can be used by evaluators of recovery projects, authorities that provide permits, as well as by decision makers in support of developing regulatory policies. The dataset facilitates future addition of sites by the research community and can be further used as a starting point to bridge the estimates on recoverable quantities to the United Nations Framework Classification (UNFC). The UNFC is a universally applicable scheme for the sustainable management of all energy, primary and secondary mineral resources. Its use is stimulated by the European Commission and is intended to be adopted by geological surveys to harmonize the data on the availability of primary and secondary raw materials in Europe in future.

18.
Materials (Basel) ; 17(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38591411

RESUMO

Valorization of high-volume mine tailings could be achieved by the development of new geopolymers with a low CO2 footprint. Materials rich in aluminum and silicon with appropriate solubility in an alkaline medium can be used to obtain a geopolymer. This paper presents a study of copper mine tailings from Bulgaria as precursors for geopolymers. Particle size distribution, chemical and mineralogical composition, as well as alkaline reactivity, acidity and electroconductivity of aqueous slurry are studied. The heavy metal content and their mobility are studied by leaching tests. Sequential extraction was applied to determine the geochemical phase distribution of heavy metals. The studied samples were characterized by high alkalinity, which could favor the geopolymerization process. The water-soluble sulphates were less than 4%. The Si/Al ratio in mine tailing was found to be 3. The alkaline reactivity depended more so on the time of extraction than on the concentration of NaOH solution. The main part of the heavy metals was found in the residual fraction; hence, in high alkaline medium during the geopolymerization process, they will stay fixed. Thus, the obtained geopolymers could be expected to exert low environmental impact. The presented results revealed that studied copper mine tailing is a suitable precursor for geopolymerization.

19.
MethodsX ; 12: 102669, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38585182

RESUMO

Chitin is a water insoluble nitrogen-containing polysaccharide made from N-acetyl-D-glucosamine containing ß-(1→4)-linkages. In food, chitin is considered as a source of fiber with prebiotic properties to gut microflora. Chitin content varies widely in nature from 1% (yeasts) up to 64% (butterfly cuticles) and is mostly found in filamentous or mushroom forming fungi, insects and crustaceans. This spectrophotometric method is suitable for chitin quantitation (reported as glucosamine) in food raw materials like insects (mealworm larvae, crickets), shrimps, mushrooms and fungi in a research (non-routine) laboratory. To remove interferences, the sample is defatted (Soxhlet) prior to acid hydrolysis in 6 M HCl. The color complex is developed after the addition of Katano's reagent (a mix of 0.05 mol/L sodium metasilicate, 0.6 mol/L sodium molybdate, 30% dimethyl sulfoxide and 1.42 mol/L acetic acid) at 70 °C for 30 min and measured at 750 nm against blank. A five-point linear calibration (5-100 µg/mL) is used. Limit of detection is 3 µg GLCN/mL. The correlation (R2) with an HPLC method for chitin analysis is at least 0.93.•a reliable alternative to an HPLC method•does not require expensive equipment•deproteination by alkali is not necessary for most matrices - saves about 30% of time.

20.
Bioresour Technol ; 402: 130750, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38685515

RESUMO

The recovery of rare earth elements (REE) from electronic waste is crucial for ensuring future demand security, as there is a high supply risk for this group of elements, and mitigating the environmental impacts of conventional mining. This research focuses on extracting REE from waste printed circuit boards through bioleaching, addressing the limited attention given to this source. A strain of Penicillium expansum demonstrated efficient bioleaching under optimal conditions of 7.5 initial pH, 0.1 mM phosphate concentration, and excluding a buffering agent. The study achieved significant improvements in La and Tb extraction and enhancements in Pr, Nd, and Gd recovery, approaching 70 % within 24 h. Fungal mechanisms involved in REE extraction included fungal pH control, organic acid biosynthesis, phosphate bioavailability, and potential fungal proton pump involvement. This approach offers a promising solution for sustainable REE recovery from e-waste, contributing to resource security and circular economy.


Assuntos
Resíduo Eletrônico , Metais Terras Raras , Penicillium , Penicillium/metabolismo , Metais Terras Raras/metabolismo , Biodegradação Ambiental , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...