Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Small ; : e2403029, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38966884

RESUMO

Hydrogen peroxide (H2O2) plays a pivotal role in advancing sustainable technologies due to its eco-friendly oxidizing capability. The electrochemical two-electron (2e-) oxygen reduction reaction and water oxidation reaction present an environmentally green method for H2O2 production. Over the past three years, significant progress is made in the field of carbon-based metal-free electrochemical catalysts (C-MFECs) for low-cost and efficient production of H2O2 (H2O2EP). This article offers a focused and comprehensive review of designing C-MFECs for H2O2EP, exploring the construction of dual-doping configurations, heteroatom-defect coupling sites, and strategic dopant positioning to enhance H2O2EP efficiency; innovative structural tuning that improves interfacial reactant concentration and promote the timely release of H2O2; modulation of electrolyte and electrode interfaces to support the 2e- pathways; and the application of C-MFECs in reactors and integrated energy systems. Finally, the current challenges and future directions in this burgeoning field are discussed.

2.
Materials (Basel) ; 17(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38894038

RESUMO

General interest in the deployment of molten salt reactors (MSRs) is growing, while the available data on uranium-containing fuel salt candidates remains scarce. Thermophysical data are one of the key parameters for reactor design and understanding reactor operability. Hence, filling in the gap of the missing data is crucial to allow for the advancement of MSRs. This study provides novel data for two eutectic compositions within the NaF-KF-UF4 ternary system which serve as potential fuel candidates for MSRs. Experimental measurements include their melting point, density, fusion enthalpy, and vapor pressure. Additionally, their boiling point was extrapolated from the vapor pressure data, which were, at the same time, used to determine the enthalpy of vaporization. The obtained thermodynamic values were compared with available data from the literature but also with results from thermochemical equilibrium calculations using the JRCMSD database, finding a good correlation, which thus contributed to database validation. Preliminary thoughts on fluoride salt reactor operability based on the obtained results are discussed in this study.

3.
Chembiochem ; 25(11): e202400086, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38618870

RESUMO

Sustainable biocatalysis syntheses have gained considerable popularity over the years. However, further optimizations - notably to reduce costs - are required if the methods are to be successfully deployed in a range of areas. As part of this drive, various enzyme immobilization strategies have been studied, alongside process intensification from batch to continuous production. The flow bioreactor portfolio mainly ranges between packed bed reactors and wall-immobilized enzyme miniaturized reactors. Because of their simplicity, packed bed reactors are the most frequently encountered at lab-scale. However, at industrial scale, the growing pressure drop induced by the increase in equipment size hampers their implementation for some applications. Wall-immobilized miniaturized reactors require less pumping power, but a new problem arises due to their reduced enzyme-loading capacity. This review starts with a presentation of the current technology portfolio and a reminder of the metrics to be applied with flow bioreactors. Then, a benchmarking of the most recent relevant works is presented. The scale-up perspectives of the various options are presented in detail, highlighting key features of industrial requirements. One of the main objectives of this review is to clarify the strategies on which future study should center to maximize the performance of wall-immobilized enzyme reactors.


Assuntos
Biocatálise , Reatores Biológicos , Enzimas Imobilizadas , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Miniaturização
4.
Biotechnol Adv ; 72: 108338, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38460741

RESUMO

Non-homogeneous enzyme-catalyzed systems are more widely used than homogeneous systems. Distinguished from the conventional biphasic approach, Pickering emulsion stabilized by ultrafine solid particles opens up an innovative platform for biocatalysis. Their vast specific surface area significantly enhances enzyme-substrate interactions, dramatically increasing catalytic efficiency. This review comprehensively explores various aspects of Pickering emulsion biocatalysis, provides insights into the multiple types and mechanisms of its catalysis, and offers strategies for material design, enzyme immobilization, emulsion formation control, and reactor design. Characterization methods are summarized for the determination of drop size, emulsion type, interface morphology, and emulsion potential. Furthermore, recent reports on the design of stimuli-responsive reaction systems are reviewed, enabling the simple control of demulsification. Moreover, the review explores applications of Pickering emulsion in single-step, cascade, and continuous flow reactions and outlines the challenges and future directions for the field. Overall, we provide a review focusing on Pickering emulsions catalysis, which can draw the attention of researchers in the field of catalytic system design, further empowering next-generation bioprocessing.


Assuntos
Enzimas Imobilizadas , Biocatálise , Emulsões/química , Catálise , Enzimas Imobilizadas/química
5.
Sci Total Environ ; 912: 169186, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38086487

RESUMO

Impetus to minimise the energy and carbon footprints of evolving wastewater resource recovery facilities has promoted the development of microbial electrochemical systems (MES) as an emerging energy-neutral and sustainable platform technology. Using separators in dual-chamber MES to isolate anodic and cathodic environments creates endless opportunities for its myriad applications. Nevertheless, the high internal resistance and the complex interdependencies among various system factors have challenged its scale-up. This critical review employed a systems approach to examine the complex interdependencies and practical issues surrounding the implementation and scalability of dual-chamber MES, where the anodic and cathodic reactions are mutually appraised to improve the overall system efficiency. The robustness and stability of anodic biofilms in large-volume MES is dependent on its inoculum source, antecedent history and enrichment strategies. The composition and anode-respiring activity of these biofilms are modulated by the anolyte composition, while their performance demands a delicate balance between the electrode size, macrostructure and the availability of substrates, buffers and nutrients when using real wastewater as anolyte. Additionally, the catholyte governed the reduction environment and associated energy consumption of MES with scalable electrocatalysts needed to enhance the sluggish reaction kinetics for energy-efficient resource recovery. A comprehensive assessment of the dual-chamber reactor configuration revealed that the tubular, spiral-wound, or plug-in modular MES configurations are suitable for pilot-scale, where it could be designed more effectively using efficient electrode macrostructure, suitable membranes and bespoke strategies for continuous operation to maximise their performance. It is anticipated that the critical and analytical understanding gained through this review will support the continuous development and scaling-up of dual-chamber MES for prospective energy-neutral treatment of wastewater and simultaneous circular management of highly relevant environmental resources.


Assuntos
Fontes de Energia Bioelétrica , Águas Residuárias , Estudos Prospectivos , Eletrodos , Biofilmes
6.
Micromachines (Basel) ; 14(8)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37630070

RESUMO

Limit of detection (LOD), speed, and cost for some of the most important diagnostic tools, i.e., lateral flow assays (LFA), enzyme-linked immunosorbent assays (ELISA), and polymerase chain reaction (PCR), all benefited from both the financial and regulatory support brought about by the pandemic. From those three, PCR has gained the most in overall performance. However, implementing PCR in point of care (POC) settings remains challenging because of its stringent requirements for a low LOD, multiplexing, accuracy, selectivity, robustness, and cost. Moreover, from a clinical point of view, it has become very desirable to attain an overall sample-to-answer time (t) of 10 min or less. Based on those POC requirements, we introduce three parameters to guide the design towards the next generation of PCR reactors: the overall sample-to-answer time (t); lambda (λ), a measure that sets the minimum number of copies required per reactor volume; and gamma (γ), the system's thermal efficiency. These three parameters control the necessary sample volume, the number of reactors that are feasible (for multiplexing), the type of fluidics, the PCR reactor shape, the thermal conductivity, the diffusivity of the materials used, and the type of heating and cooling systems employed. Then, as an illustration, we carry out a numerical simulation of temperature changes in a PCR device, discuss the leading commercial and RT-qPCR contenders under development, and suggest approaches to achieve the PCR reactor for RT-qPCR of the future.

7.
Water Res ; 235: 119860, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36934537

RESUMO

An Fe-based catalyst was prepared by oxidising waste Fe shavings directly in a solution. In engineering applications, Fe shavings were compressed and modified to form Fe-based monolithic catalyst packing. Both of which exhibited excellent catalytic activity in catalytic ozonation industrial wastewater after biochemical treatment. Fe-based monolithic catalyst packing has irregular channels, large porosity, small pore diameter, and the effective specific surface area (SSA) up to 3500 m2/m3, these characteristics are conducive to mass transfer, and promote the effective utilisation of •OH in the catalyst "action zone". A tower reactor (<3000 m3/d) and reinforced concrete construction reactor (>5000 m3/d) were designed according to the wastewater flow. Regression analysis showed that hydraulic residence time (HRT) and O3/CODin are important parameters in engineering design and operation. In addition, strategies for the application of Fe-based monolithic catalyst packing to wastewater with high salinity and high inorganic carbon concentration have been proposed. Fe-based monolithic catalyst packing catalytic ozonation is a relatively cost-effective and eco-friendly process with extremely broad application prospects in the advanced treatment of industrial wastewater.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Ferro/análise , Poluentes Químicos da Água/análise , Catálise
8.
Bioresour Technol ; 374: 128778, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36841397

RESUMO

Food waste generation and its consequent environmental impacts are increasing due to rapid urbanization, the global population, and associated food demand. Microbial fuel cells (MFCs) are a sustainable technology through which this food waste can be treated and used to produce bioelectricity. This study used two MFC configurations, a two-stage anaerobic up-flow leachate reactor MFC and a single-stage MFC, comparing the potential to treat solid fruit waste and fruit waste leachate. The two-stage MFC showed a higher potential to remove substrate at a shorter time compared to single-stage MFC. In 30 days, the two-stage anaerobic up-flow leachate reactor had a power density of 221 mW/m2. It was able to remove more total solids (by 95 %), volatile solids (by 70 %), total chemical oxygen demand (by 83 %), soluble chemical oxygen demand (by 87 %), and carbohydrates (by 33 %) compared to the single-stage MFC. However, the single-stage MFC showed higher coulombic efficiency (by 86.7 %) compared to the two-stage MFC. The efficiency of single-stage MFC improved by adding buffer and maintaining a neutral pH level of the substrate. The results of this study emphasize the importance of reactor design and demonstrate that MFC can be a viable technology to generate bioenergy from food waste.


Assuntos
Fontes de Energia Bioelétrica , Eliminação de Resíduos , Frutas , Anaerobiose , Resíduos Sólidos , Eletricidade , Eletrodos
9.
Beilstein J Org Chem ; 19: 33-35, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36686042
10.
Chemosphere ; 314: 137681, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36584826

RESUMO

As regulations are being established to limit the levels of per- and polyfluoroalkyl substances (PFAS) in drinking water and wastewater, effective treatment technologies are needed to remove or destroy PFAS in contaminated liquid matrices. Many military installations and airports have fire training ponds (FTPs) where PFAS-containing firefighting foams are discharged during training drills. FTP water disposal is expensive and challenging due to the high PFAS levels. Hydrothermal alkaline treatment (HALT) has previously been shown to destroy a wide range of PFAS compounds with a high degree of destruction and defluorination. In this study, we investigate the performance of a continuous flow HALT reactor for destroying PFAS in contaminated FTP water samples. Processing with 5 M-NaOH and 1.6 min of continuous processing results in >99% total PFAS destruction, and 10 min processing time yields >99% destruction of every measured PFAS species. Operating with 0.1 M-NaOH or 1 M-NaOH shows little effect on the destruction of measured perfluorosulfonic acids, while all measured perfluorocarboxylic acids and fluorotelomer sulfonates are reduced to levels below the method detection limits. Continuous HALT processing with sufficient NaOH loading appears to destroy parent PFAS compounds significantly faster than batch HALT processing, a positive indicator for scaling up HALT technology for practical applications in environmental site remediation activities.


Assuntos
Água Potável , Recuperação e Remediação Ambiental , Fluorocarbonos , Poluentes Químicos da Água , Água , Hidróxido de Sódio , Fluorocarbonos/análise , Poluentes Químicos da Água/análise
11.
Environ Sci Technol ; 56(23): 16582-16601, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36367480

RESUMO

Photocatalysis is regarded as one of the most promising technologies for indoor volatile organic compounds (VOCs) elimination due to its low cost, safe operation, energy efficiency, and high mineralization efficiency under ambient conditions. However, the practical applications of this technology are limited, despite considerable research efforts in recent decades. Until now, most of the works were carried out in the laboratory and focused on exploring new catalytic materials. Only a few works involved the immobilization of catalysts and the design of reactors for practical applications. Therefore, this review systematically summarizes the research and development on photocatalytic oxidation (PCO) of VOCs, with emphasis on recent catalyst's immobilization and reactor designs in detail. First, different types of photocatalytic materials and the mechanisms for PCO of VOCs are briefly discussed. Then, both the catalyst's immobilization techniques and reactor designs are reviewed in detail. Finally, the existing challenges and future perspectives for PCO of VOCs are proposed. This work aims to provide updated information and research inspirations for the commercialization of this technology in the future.


Assuntos
Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Poluição do Ar em Ambientes Fechados/análise , Fotoquímica/métodos , Catálise , Oxirredução
12.
Angew Chem Int Ed Engl ; 61(47): e202209564, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36111496

RESUMO

The versatility of olefin metathesis is evident from its successful applications ranging from natural product synthesis to the valorization of renewable feedstocks. On the other side, flow chemistry has recently gained particular interest among the synthetic community, offering valuable alternatives to classic batch chemistry and paving the way to the development of new transformations. The application of continuous-flow methods to olefin metathesis represents one of the most promising evolutions in the field at the interface of industrially relevant synthesis and reactor engineering, significantly improving some of the typical problems such as undesired self-reactions and ethylene-mediated catalyst deactivation. This Minireview aims to provide a brief survey covering the major aspects of those techniques which we hope may be of interest for the chemical community as well as those interested in catalysis, continuous processing, enabling technologies and reactor design.


Assuntos
Produtos Biológicos , Rutênio , Alcenos , Catálise
13.
Nanomaterials (Basel) ; 12(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36080067

RESUMO

This work aims to select a photoreactor flow configuration and operational conditions that maximize the Photocatalytic Space-time Yield in a photoelectrocatalytic reactor to degrade Reactive Red 239 textile dye. A numerical study by Computational Fluid Dynamics (CFD) was carried out to model the phenomena of momentum and species transport and surface reaction kinetics. The photoreactor flow configuration was selected between axial (AF) and tangential (TF) inlet and outlet flow, and it was found that the TF configuration generated a higher Space-time Yield (STY) than the AF geometry in both laminar and turbulent regimes due to the formation of a helical movement of the fluid, which generates velocity in the circumferential and axial directions. In contrast, the AF geometry generates a purely axial flow. In addition, to maximize the Photocatalytic Space-time Yield (PSTY), it is necessary to use solar radiation as an external radiation source when the flow is turbulent. In conclusion, the PSTY can be maximized up to a value of 45 g/day-kW at an inlet velocity of 0.2 m/s (inlet Reynolds of 2830), solar radiation for external illumination, and internal illumination by UV-LEDs of 14 W/m2, using a photoreactor based on tangent inlet and outlet flow.

14.
Nanomaterials (Basel) ; 12(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35889609

RESUMO

Photoelectrocatalysis has been highlighted as a tertiary wastewater treatment in the textile industry due to its high dye mineralisation capacity. However, design improvements are necessary to overcome photo-reactors limitations. The present work proposes a preliminary configuration of a photoelectrocatalytic reactor to degrade Reactive Red 239 (RR239) textile dye, using computational fluid dynamics (CFD) to analyse the mass transfer rate, radiation intensity loss (RIL), and its effect on kinetics degradation, over a photoelectrode based on a TiO2 nanotube. A study to increase the space-time yield (STY) was carried out through mass transfer rate and kinetic analysis, varying the optical thickness (δ) between the radiation entrance and the photocatalytic surface, photoelectrode geometry, inlet flow rate, and the surface radiation intensity. The RIL was determined using a 1D Beer-Lambert-based model, and an extinction coefficient experimentally determined by UV-Vis spectroscopy. The results show that in RR239 solutions below concentrations of 6 mg/L, a woven mesh photoelectrode and an optimal optical thickness δ of 1 cm is enough to keep the RIL below 15% and maximise the mass transfer and the STY in around 110 g/m3-day.

15.
Bioresour Technol ; 360: 127633, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35863602

RESUMO

Two-stage anaerobic digestion (TSAD) systems have been studied on a laboratory scale for about 50 years. However, they have not yet reached industrial scale despite their potential for future energy systems. This review provides an analysis of the TSAD technology, including the influence of process parameters on biomass conversion rates. The most common substrate (35.2% of the 38 selected studies) used in the analysed data was in the category of rapidly hydrolysable industrial waste with an average dry matter content of 7.24%. The highest methane content of 85% was reached when digesting food waste in a combination of two mesophilic continuously stirred tank reactors with an acidic (pH 5.5) first stage and alkaline (pH 7) second stage. Therefore, the review shows the limitations of the TSAD technology, future research directions, and the effect of integration of TSAD systems into the current strategy to reduce greenhouse gas emissions.


Assuntos
Reatores Biológicos , Eliminação de Resíduos , Anaerobiose , Biocombustíveis , Alimentos , Metano
16.
Chemosphere ; 302: 134709, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35489460

RESUMO

Pesticides are known to be threats to the environment and human health. Excessive use of pesticides in agricultural practice can contaminate water bodies, leading to cancer, asthma, neurological disorders, reproductive defects, and hormonal disruption. Electrochemical methods such as electrocoagulation and electrooxidation can be used for pesticide removal due to their numerous advantages such as high efficiency, less sludge production, and low operational cost. During electrocoagulation, dissolution of anode metals results in metal hydroxide complexes, which precipitate with the contaminant present in the reactor. Simultaneously, electro-flotation occurs at the cathode and results in the evolution of hydrogen gas bubbles, leading to flotation of floc to the top surface of the reactor. This review focuses on the removal mechanisms, kinetics, modeling, effects of influencing factors, and sludge characterization of pesticide removal using electrocoagulation and electrooxidation. Major influencing factors include cell configuration, electrode material, current density, pH, supporting electrolyte concentration. In general, aluminum and iron are the most common electrodes used for pesticide removal using electrocoagulation, while boron-doped diamond was used to a far greater extent as the electrode in electrooxidation studies. Greater than 99% removal efficiency was observed in both processes. Overall, this review summarizes the use of electrochemical methods for pesticide removal and offers valuable information to researchers in this area of study.


Assuntos
Praguicidas , Poluentes Químicos da Água , Purificação da Água , Alumínio/química , Eletrocoagulação/métodos , Eletrodos , Humanos , Esgotos , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Água , Poluentes Químicos da Água/química , Purificação da Água/métodos
17.
Bioresour Technol ; 350: 126897, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35219787

RESUMO

A novel system (Oregon State University High Solids Reactor; OSU-HSR) was designed and constructed for enzymatic hydrolysis at ultrahigh solids content (40%) by promoting better mixing using low energy consumption in a horizontal reactor with a new impeller design and a controllable feeding unit. System performance was evaluated using separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) methodologies. Using the dilute acid pretreated wheat straw as the substrate in the OSU-HSR system, the highest glucose (219.7 g/L) and ethanol (127.1 g/L) concentrations were achieved with the use of the SHF method while the highest ethanol concentration using SSF method was 134.5 g/L. The SSF method increased the return on investment to 12.21% with an estimated global warming potential of 54.5 g CO2 eq/MJ Ethanol. The OSU-HSR successfully provided effective mixing and different fed-batch schemes, and can be used for efficient biochemical conversion of lignocellulosic biomass into bio-chemicals and biofuels.


Assuntos
Biocombustíveis , Lignina , Biomassa , Fermentação , Humanos , Hidrólise , Lignina/metabolismo
18.
Chimia (Aarau) ; 76(7-8): 635-640, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-38071629

RESUMO

Despite the Haber-Bosch process being more than 100 years old, only incremental improvements have been achieved until recently. Now, by combining the catalyst expertise of CLARIANT and the engineering knowledge of CASALE, a breakthrough has been realized. AmoMax®-Casale is a new ammonia synthesis catalyst jointly developed by Casale and Clariant particularly for use in Casale ammonia converters. AmoMax®-Casale is a customized evolution of the well-known, wustite-based catalyst, AmoMax® 10. While retaining the same superior resistance to ageing, poisoning and mechanical strength, AmoMax®-Casale is significantly more active. This feature allows to reduce the loop recycle rate and the loop pressure and/or to increase the ammonia production. The higher activity of AmoMax®-Casale contributes to improve the overall operating efficiency either by saving energy, or by increasing significantly the plant capacity. This article will describe in detail the successful development of AmoMax®-Casale, explain advantages and commercial benefits based on concrete plant simulations and share the start-up experience of the first commercial reference.

19.
Environ Res ; 204(Pt B): 112128, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34600882

RESUMO

Despite being an old process from the end of the 19th century, electrosorption has attracted renewed attention in recent years because of its unique properties and advantages compared to other separation technologies and due to the concomitant development of new porous electrode materials. Electrosorption offer the advantage to separate the pollutants from wastewater with the possibility of selectively adsorbing and desorbing the targeted compounds. A comprehensive review of electrosorption is provided with particular attention given to the electrosorption of organic compounds, unlike existing capacitive deionization review papers that only focus on inorganic salts. The background and principle of electrosorption are first presented, while the influence of the main parameters (e.g., electrode materials, electrode potential, physico-chemistry of the electrolyte solutions, type of compounds, co-sorption effect, reactor design, etc.) is then detailed and the modeling and engineering aspects are discussed. Finally, the main output and future prospects about recovery studies and combination between electro-sorption/desorption and degradation processes are given. This review particularly highlights that carbon-based materials have been mostly employed (85% of studies) as porous electrode in organics electrosorption, while existing studies lack of electrode stability and durability tests in real conditions. These electrodes have been implemented in a fixed-bed reactor design most of the time (43% of studies) due to enhanced mass transport. Moreover, the electrode potential is a major criterion: it should be applied in the non-faradaic domain otherwise unwanted reactions can easily occur, especially the corrosion of carbon from 0.21 V/standard hydrogen electrode or the water oxidation/reduction. Furthermore, there is lack of studies performed with actual effluents and without addition of supporting electrolyte, which is crucial for testing the real efficiency of the process. The associated predictive model will be required by considering the matrix effect along with transport phenomena and physico-chemical characteristics of targeted organic compounds.


Assuntos
Purificação da Água , Carbono , Eletrodos , Compostos Orgânicos , Água
20.
J Environ Manage ; 296: 113259, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34256295

RESUMO

Water shortage and quality deterioration are plaguing people all over the world. Providing sustainable and affordable treatment solutions to these problems is a need of the hour. Electrocoagulation (EC) technology is a burgeoning alternative for effective water treatment, which offers the virtues such as compact equipment, easy operation, and low sludge production. Compared to other water purification technologies, EC shows excellent removal efficacy for a wide range of contaminants in water and has great potential for addressing limitations of conventional water purification technologies. This review summarizes the latest development of principle, characteristics, and reactor design of EC. The design of key parameters including reactor shape, power supply type, current density, as well as electrode configuration is further elaborated. In particular, typical water treatment systems powered by renewable energy (solar photovoltaic and wind turbine systems) are proposed. Further, this review provides an overview on expanded application of EC in the removal of some newly concerned pollutants in recent years, including arsenite, perfluorinated compounds, pharmaceuticals, oil, bacteria, and viruses. The removal efficiency and mechanisms of these pollutants are also discussed. Finally, future research trend and focus are further recommended. This review can bridge the large knowledge gap for the EC application that is beneficial for environmental researchers and engineers.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Purificação da Água , Eletrocoagulação , Eletrodos , Humanos , Tecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...