Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
J Fish Biol ; 105(4): 1109-1119, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39007200

RESUMO

The Doradidae fishes constitute one of the most diverse groups of Neotropical freshwater environments. Acanthodoradinae is the oldest lineage and the sister group to all other thorny catfishes, and it includes only the genus Acanthodoras. The diversity of Acanthodoras remains underestimated, and the use of complementary approaches, including genetic studies, is an important step to better characterize this diversity and the relationships among the species within the genus. Therefore, we conducted a comprehensive analysis using conventional cytogenetic techniques and physical mapping of three multigene families (18S and 5S ribosomal DNA [rDNA], U2 small nuclear DNA [snDNA]) and four microsatellite motifs, namely (AC)n, (AT)n, (GA)n, and (GATA)n, in two sympatric species from the Negro River: Acanthodoras cataphractus and Acanthodoras cf. polygrammus. We found significant differences in constitutive heterochromatin (CH) content, distribution of the microsatellite (AT)n, and the number of 5S rDNA and U2 snDNA sites. These differences may result from chromosome rearrangements and repetitive DNA dispersal mechanisms. Furthermore, the characterization of the diploid number (2n) of these Acanthodoras species enables us to propose 2n = 58 chromosomes as the plesiomorphic 2n state in Doradidae based on ancestral state reconstruction. Acanthodoradinae is the oldest lineage of the thorny catfishes, and knowledge about its cytogenetic patterns is crucial for disentangling the karyotype evolution of the whole group. Thus, this study contributes to the understanding of the mechanisms behind chromosome diversification of Doradidae and highlights the importance of Acanthodoradinae in the evolutionary history of thorny catfishes.


Assuntos
Peixes-Gato , Cariótipo , Repetições de Microssatélites , Animais , Peixes-Gato/genética , Peixes-Gato/classificação , DNA Ribossômico/genética , Evolução Molecular , Filogenia , Heterocromatina/genética , RNA Ribossômico 5S/genética
2.
Genome ; 67(7): 223-232, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38742652

RESUMO

The genome organization of woodpeckers has several distinctive features e.g., an uncommon accumulation of repetitive sequences, enlarged Z chromosomes, and atypical diploid numbers. Despite the large diversity of species, there is a paucity of detailed cytogenomic studies for this group and we thus aimed to rectify this. Genome organization patterns and hence evolutionary change in the microchromosome formation of four species (Colaptes campestris, Veniliornis spilogaster, Melanerpes candidus, and Picumnus nebulosus) was established through fluorescence in situ hybridization using bacterial artificial chromosomes originally derived from Gallus gallus and Taeniopygia guttata. Findings suggest that P. nebulosus (2n = 110), which was described for the first time, had the most basal karyotype among species of Picidae studied here, and probably arose as a result of fissions of avian ancestral macrochromosomes. We defined a new chromosomal number for V. spilogaster (2n = 88) and demonstrated microchromosomal rearrangements involving C. campestris plus a single, unique hitherto undescribed rearrangement in V. spilogaster. This comprised an inversion after a fusion involving the ancestral microchromosome 12 (homologous to chicken microchromosome 12). We also determined that the low diploid number of M. candidus is related to microchromosome fusions. Woodpeckers thus exhibit significantly rearranged karyotypes compared to the putative ancestral karyotype.


Assuntos
Aves , Cromossomos Artificiais Bacterianos , Cromossomos , Evolução Molecular , Hibridização in Situ Fluorescente , Animais , Cromossomos Artificiais Bacterianos/genética , Aves/genética , Cromossomos/genética , Cariótipo , Cariotipagem , Filogenia , Galinhas/genética
3.
J Appl Genet ; 65(3): 601-614, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38662189

RESUMO

Chromosomal rearrangements are often associated with playing a role in the speciation process. However, the underlying mechanism that favors the genetic isolation associated with chromosomal changes remains elusive. In this sense, the genus Mazama is recognized by its high level of karyotype diversity among species with similar morphology. A cryptic species complex has been identified within the genus, with the red brocket deer (Mazama americana and Mazama rufa) being the most impressive example. The chromosome variation was clustered in cytotypes with diploid numbers ranging from 42 to 53 and was correlated with geographical location. We conducted an analysis of chromosome evolution of the red brocket deer complex using comparative chromosome painting and Bacterial Artificial Chromosome (BAC) clones among different cytotypes. The aim was to deepen our understanding of the karyotypic relationships within the red brocket, thereby elucidating the significant chromosome variation among closely related species. This underscores the significance of chromosome changes as a key evolutionary process shaping their genomes. The results revealed the presence of three distinct cytogenetic lineages characterized by significant karyotypic divergence, suggesting the existence of efficient post-zygotic barriers. Tandem fusions constitute the main mechanism driving karyotype evolution, following a few centric fusions, inversion X-autosomal fusions. The BAC mapping has improved our comprehension of the karyotypic relationships within the red brocket deer complex, prompting questions regarding the role of these changes in the speciation process. We propose the red brocket as a model group to investigate how chromosomal changes contribute to isolation and explore the implications of these changes in taxonomy and conservation.


Assuntos
Cervos , Evolução Molecular , Especiação Genética , Cariótipo , Cariotipagem , Animais , Cervos/genética , Cervos/classificação , Cromossomos Artificiais Bacterianos/genética , Coloração Cromossômica
4.
Artigo em Inglês | MEDLINE | ID: mdl-38647129

RESUMO

Mitochondrial DNA is a valuable tool for population genetics and evolutionary studies in a wide range of organisms. With advancements in sequencing techniques, it's now possible to gain deeper insights into this molecule. By understanding how many genes there are, how they're organized within the molecule, identifying the presence of spacers, and analyzing the composition of the D-Loop, we can better grasp the rearrangements that play a crucial role in the evolutionary dynamics of mitochondrial DNA. Additionally, phylogenetic analyses benefit significantly from having access to a larger pool of mtDNA genes. This wealth of genetic information allows for the establishment of evolutionary relationships with greater accuracy than ever before, providing a more robust framework than analyses based on a limited number of genes. Studies on mitogenomes belonging to the family Formicidae have proven promising, enabling the identification of gene rearrangements and enhancing our understanding of the internal relationships within the group. Despite this, the number of mitogenomes available for the subfamily Ponerinae is still limited, and here we present for the first time the complete mitogenome of Odontomachus. Our data reveal a gene duplication event in Formicidae, the first involving trnV, and new gene arrangements involving the trnM-trnI-trnQ and trnW-trnC-trnY clusters, suggesting a possible synapomorphy for the genus. Our phylogenetic analysis using the PCGs available for Formicidae supports the monophyly of the subfamily Ponerinae and sheds light on the relationship between Odontomachus and Pachycondyla.

5.
Cytogenet Genome Res ; 164(1): 33-42, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38402854

RESUMO

INTRODUCTION: Its wide karyotypic variation characterizes the genus Ctenomys, and in Brazil, the genus is distributed in the country's southern, Midwest, and northern regions. Recently, populations of Ctenomys have been found in the Midwest and northern Brazil, with two new lineages named C. sp. "xingu" and C. sp. "central." METHODS: This work combines classical cytogenetic and molecular analyses to provide new chromosomal information on the boliviensis group distributed in northern and Midwestern Brazil. This includes the validation of the karyotype of C. bicolor and C. nattereri and the description of the karyotype of C. sp. "xingu" and C. sp. "central." RESULTS: We found three different karyotypes: 2n = 40 for C. bicolor; 2n = 36 for C. nattereri, and specimens from a locality belonging to C. sp. "central"; 2n = 34 for the lineage C. sp. "xingu" and specimens from a locality belonging to C. sp. "central." Furthermore, GTG banding revealed homologous chromosomes between species/lineages and allowed the identification of the rearrangements that occurred, which proved the occurrence of fissions. CONCLUSION: Considering our results on the variation of 2n in the boliviensis group, we found two possibilities: the first, deduced by parsimony, is that 2n = 36 appeared initially, and two fissions produced gave rise to 2n = 40, and an independent fusion gave rise to 2n = 34 from 2n = 36; moreover, the second explanation is that all karyotypes arose independently.


Assuntos
Cariótipo , Roedores , Animais , Brasil , Roedores/genética , Roedores/classificação , Cariotipagem , Masculino , Bandeamento Cromossômico , Feminino , Cromossomos de Mamíferos/genética , Filogenia
6.
mSystems ; 9(1): e0105823, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38085042

RESUMO

Evaluating domestication signatures beyond model organisms is essential for a thorough understanding of the genotype-phenotype relationship in wild and human-related environments. Structural variations (SVs) can significantly impact phenotypes playing an important role in the physiological adaptation of species to different niches, including during domestication. A detailed characterization of the fitness consequences of these genomic rearrangements, however, is still limited in non-model systems, largely due to the paucity of direct comparisons between domesticated and wild isolates. Here, we used a combination of sequencing strategies to explore major genomic rearrangements in a Lachancea cidri yeast strain isolated from cider (CBS2950) and compared them to those in eight wild isolates from primary forests. Genomic analysis revealed dozens of SVs, including a large reciprocal translocation (~16 kb and 500 kb) present in the cider strain, but absent from all wild strains. Interestingly, the number of SVs was higher relative to single-nucleotide polymorphisms in the cider strain, suggesting a significant role in the strain's phenotypic variation. The set of SVs identified directly impacts dozens of genes and likely underpins the greater fermentation performance in the L. cidri CBS2950. In addition, the large reciprocal translocation affects a proline permease (PUT4) regulatory region, resulting in higher PUT4 transcript levels, which agrees with higher ethanol tolerance, improved cell growth when using proline, and higher amino acid consumption during fermentation. These results suggest that SVs are responsible for the rapid physiological adaptation of yeast to a human-related environment and demonstrate the key contribution of SVs in adaptive fermentative traits in non-model species.IMPORTANCEThe exploration of domestication signatures associated with human-related environments has predominantly focused on studies conducted on model organisms, such as Saccharomyces cerevisiae, overlooking the potential for comparisons across other non-Saccharomyces species. In our research, employing a combination of long- and short-read data, we found domestication signatures in Lachancea cidri, a non-model species recently isolated from fermentative environments in cider in France. The significance of our study lies in the identification of large array of major genomic rearrangements in a cider strain compared to wild isolates, which underly several fermentative traits. These domestication signatures result from structural variants, which are likely responsible for the phenotypic differences between strains, providing a rapid path of adaptation to human-related environments.


Assuntos
Saccharomyces cerevisiae , Saccharomycetales , Humanos , Saccharomyces cerevisiae/genética , Domesticação , Saccharomycetales/genética , Bebidas Alcoólicas , Translocação Genética
7.
J Comput Biol ; 30(12): 1277-1288, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37883640

RESUMO

The transposition distance problem is a classical problem in genome rearrangements, which seeks to determine the minimum number of transpositions needed to transform a linear chromosome into another represented by the permutations π and σ, respectively. This article focuses on the equivalent problem of sorting by transpositions (SBT), where σ is the identity permutation ι. Specifically, we investigate palisades, a family of permutations that are "hard" to sort, as they require numerous transpositions above the celebrated lower bound devised by Bafna and Pevzner. By determining the transposition distance of palisades, we were able to provide the exact transposition diameter for 3-permutations (TD3), a special subset of the symmetric group Sn, essential for the study of approximate solutions for SBT using the simplification technique. The exact value for TD3 has remained unknown since Elias and Hartman showed an upper bound for it. Another consequence of determining the transposition distance of palisades is that, using as lower bound the one by Bafna and Pevzner, it is impossible to guarantee approximation ratios lower than 1.375 when approximating SBT. This finding has significant implications for the study of SBT, as this problem has been the subject of intense research efforts for the past 25 years.


Assuntos
Algoritmos , Genoma , Rearranjo Gênico , Modelos Genéticos
8.
Chromosome Res ; 31(4): 30, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37812264

RESUMO

Structural karyotype changes result from ectopic recombination events frequently associated with repetitive DNA. Although most Phaseolus species present relatively stable karyotypes with 2n = 22 chromosomes, the karyotypes of species of the Leptostachyus group show high rates of structural rearrangements, including a nested chromosome fusion that led to the dysploid chromosome number of the group (2n = 20). We examined the roles of repetitive landscapes in the rearrangements of species of the Leptostachyus group using genome-skimming data to characterize the repeatome in a range of Phaseolus species and compared them to species of that group (P. leptostachyus and P. macvaughii). LTR retrotransposons, especially the Ty3/gypsy lineage Chromovirus, were the most abundant elements in the genomes. Differences in the abundance of Tekay, Retand, and SIRE elements between P. macvaughii and P. leptostachyus were reflected in their total amounts of Ty3/gypsy and Ty1/copia. The satellite DNA fraction was the most divergent among the species, varying both in abundance and distribution, even between P. leptostachyus and P. macvaughii. The rapid turnover of repeats in the Leptostachyus group may be associated with the several rearrangements observed.


Assuntos
Phaseolus , Phaseolus/genética , DNA de Plantas/genética , DNA Satélite/genética , Retroelementos , Filogenia , Genoma de Planta , Evolução Molecular
9.
Front Genet ; 14: 1226222, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576550

RESUMO

The remarkable fish biodiversity encompasses also great sex chromosome variability. Harttia catfish belong to Neotropical models for karyotype and sex chromosome research. Some species possess one of the three male-heterogametic sex chromosome systems, XY, X1X2Y or XY1Y2, while other members of the genus have yet uncharacterized modes of sex determination. Particularly the XY1Y2 multiple sex chromosome system shows a relatively low incidence among vertebrates, and it has not been yet thoroughly investigated. Previous research suggested two independent X-autosome fusions in Harttia which led to the emergence of XY1Y2 sex chromosome system in three of its species. In this study, we investigated evolutionary trajectories of synteny blocks involved in this XY1Y2 system by probing six Harttia species with whole chromosome painting (WCP) probes derived from the X (HCA-X) and the chromosome 9 (HCA-9) of H. carvalhoi. We found that both painting probes hybridize to two distinct chromosome pairs in Amazonian species, whereas the HCA-9 probe paints three chromosome pairs in H. guianensis, endemic to Guyanese drainages. These findings demonstrate distinct evolutionary fates of mapped synteny blocks and thereby elevated karyotype dynamics in Harttia among the three evolutionary clades.

10.
J Bioinform Comput Biol ; 21(2): 2350009, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37104034

RESUMO

Genome rearrangement events are widely used to estimate a minimum-size sequence of mutations capable of transforming a genome into another. The length of this sequence is called distance, and determining it is the main goal in genome rearrangement distance problems. Problems in the genome rearrangement field differ regarding the set of rearrangement events allowed and the genome representation. In this work, we consider the scenario where the genomes share the same set of genes, gene orientation is known or unknown, and intergenic regions (structures between a pair of genes and at the extremities of the genome) are taken into account. We use two models, the first model allows only conservative events (reversals and moves), and the second model includes non-conservative events (insertions and deletions) in the intergenic regions. We show that both models result in NP-hard problems no matter if gene orientation is known or unknown. When the information regarding the orientation of genes is available, we present for both models an approximation algorithm with a factor of 2. For the scenario where this information is unavailable, we propose a 4-approximation algorithm for both models.


Assuntos
Rearranjo Gênico , Modelos Genéticos , DNA Intergênico/genética , Genoma , Mutação , Algoritmos
11.
J Oral Pathol Med ; 52(7): 575-582, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36945188

RESUMO

Soft tissue tumours (STT) are a heterogeneous group of benign, malignant, and intermediate/borderline mesenchymal tumours. In the oral and maxillofacial region, less than 3% of all lesions correspond to benign STT and <1% are sarcomas. Overlapping microscopic features may lead to quite challenging diagnostic processes. Translocations and fusion genes are frequent, and type-specific genetic alterations are detected in these tumours. The detection of such alterations by classic cytogenetic, FISH, RT-PCR or NGS can help to define the diagnosis. This narrative review aims to review fusion genes reported for STT that affect the oral cavity and their use in diagnostic molecular pathology. Basic concepts regarding mechanisms of fusion genes formation are presented to clarify this information for surgical pathologists. The chromosomal rearrangements and fusion genes of adipocytic, fibroblastic and myofibroblastic, vascular, pericytic, smooth muscle, skeletal muscle, chondro-osseous, and uncertain origin STT are summarised. The advance in molecular pathology techniques has led not only to a better understanding of the molecular pathogenesis of STT, but also to the development of helpful diagnostic tools. Therefore, it is important for the oral and head and neck pathologists to familiarise with the signature rearrangements and fusion genes for each tumour.


Assuntos
Sarcoma , Neoplasias de Tecidos Moles , Humanos , Translocação Genética , Sarcoma/diagnóstico , Rearranjo Gênico , Neoplasias de Tecidos Moles/diagnóstico , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/patologia , Boca/patologia
12.
Chromosome Res ; 31(1): 10, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36826604

RESUMO

Intrachromosomal rearrangements involve a single chromosome and can be formed by several proposed mechanisms. We reported two patients with intrachromosomal duplications and deletions, whose rearrangements and breakpoints were characterized through karyotyping, chromosomal microarray, fluorescence in situ hybridization, whole-genome sequencing, and Sanger sequencing. Inverted duplications associated with terminal deletions, known as inv-dup-del rearrangements, were found in 13q and 15q in these patients. The presence of microhomology at the junction points led to the proposal of the Fold-back mechanism for their formation. The use of different high-resolution techniques allowed for a better characterization of the rearrangements, with Sanger sequencing of the junction points being essential to infer the mechanisms of formation as it revealed microhomologies that were missed by the previous techniques. A karyotype-phenotype correlation was also performed for the characterized rearrangements.


Assuntos
Inversão Cromossômica , Rearranjo Gênico , Humanos , Hibridização in Situ Fluorescente , Cariotipagem , Cariótipo
13.
Genes (Basel) ; 14(1)2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36672933

RESUMO

Miniature refers to species with extraordinarily small adult body size when adult and can be found within all major metazoan groups. It is considered that miniature species have experienced severe alteration of numerous morphological traits during evolution. For a variety of reasons, including severe labor concerns during collecting, chromosomal acquisition, and taxonomic issues, miniature fishes are neglected and understudied. Since some available studies indicate possible relationship between diploid chromosome number (2n) and body size in fishes, we aimed to study one of the smallest Neotropical fish Nannostomus anduzei (Teleostei, Characiformes, Lebiasinidae), using both conventional (Giemsa staining, C-banding) and molecular cytogenetic methods (FISH mapping of rDNAs, microsatellites, and telomeric sequences). Our research revealed that N. anduzei possesses one of the lowest diploid chromosome numbers (2n = 22) among teleost fishes, and its karyotype is entirely composed of large metacentric chromosomes. All chromosomes, except for pair number 11, showed an 18S rDNA signal in the pericentromeric region. 5S rDNA signals were detected in the pericentromeric regions of chromosome pair number 1 and 6, displaying synteny to 18S rDNA signals. Interstitial telomeric sites (ITS) were identified in the centromeric region of pairs 6 and 8, indicating that centric fusions played a significant role in karyotype evolution of studied species. Our study provides further evidence supporting the trend of diploid chromosome number reduction along with miniaturization of adult body size in fishes.


Assuntos
Caraciformes , Animais , Caraciformes/genética , Cariótipo , Cariotipagem , Telômero/genética , DNA Ribossômico/genética
14.
Genome ; 66(3): 62-67, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36645884

RESUMO

Cytogenetic studies have enabled the characterization of the chromosomal macrostructure and microstructure and have contributed to the understanding of the evolution of wasp karyotypes. However, studies on Eumeninae solitary wasps are scarce. In this study, we characterized the karyotype of Ancistrocerus flavomarginatus (Brèthes, 1906) and compared it with previous data from other Ancistrocerus (Wesmael, 1836) species to shed light on the chromosomal diversity of the genus. A chromosome number of 2n = 24 in females and n = 12 in males was observed. Comparing the A. flavomarginatus karyotype with that of another Ancistrocerus species showed variations in the morphology of some chromosomal pairs. The presence of two larger chromosome pairs, almost entirely heterochromatic, and the predominance of subtelocentric chromosomes with heterochromatic short arms in A. flavomarginatus support the occurrence of fissions in Ancistrocerus. A single site of ribosomal genes was observed in A. flavomarginatus, in addition to a size polymorphism of these rDNA clusters between the homologues of some analyzed females. This polymorphism may originate from duplications/deletions due to unequal crossing-over or amplification via transposable elements. The (GA)15 microsatellite is located exclusively in euchromatic regions. Our data show that different rearrangements seem to shape chromosomal evolution in Ancistrocerus species.


Assuntos
Vespas , Animais , Masculino , Feminino , Vespas/genética , Cariótipo , Cariotipagem
15.
Hematol Transfus Cell Ther ; 45(2): 245-252, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35995725

RESUMO

INTRODUCTION: This study aimed to determine whether cytokine receptor-like factor 2 (CRLF2) antigen expression evaluated using multiparametric flow cytometry (MFC) could predict the genotype of CRLF2 and Janus kinase 2 (JAK2) status for application in the diagnosis of pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL). METHODS: A total of 321 BCP-ALL bone marrow samples were collected, 291 at diagnosis and 13 at first relapse, while 17 samples were excluded due to low cellular viability. The CRLF2 antigen expression was evaluated using flow cytometry (percentage of positivity and median fluorescence intensity [MFI]). The CRLF2 transcript levels were assessed via quantitative reverse transcription polymerase chain reaction using SYBR Green. The CRLF2 rearrangements (CRLF2-r) were identified using the CRLF2 break-apart probe via fluorescence in situ hybridization. Sanger sequencing was performed to identify the JAK2 exon 16 mutations. RESULTS: We observed that 60 of the 291 cases (20.6%) presented CRLF2 antigen positivity, whereas the CRLF2 transcript overexpression was found in 19 of 113 cases (16.8%). The JAK2 mutation was found in four out of 116 cases (3.4%), all of which had CRLF2 ≥10% of positive cells and intermediate or high MFI (p < 0.0001). In addition, in the 13 cases with the CRLF2-r, a positive correlation was found with the CRLF2 antigen intermediate (61.5%) MFI (p = 0.017). Finally, the CRLF2-positive antigen was identified in the BCP-ALL subclones. CONCLUSION: The identification of the CRLF2 antigen using the MFC, based on the percentage of positivity and MFI values, is a useful tool for predicting JAK2 mutations and CRLF2-r.

16.
J Fish Biol ; 102(2): 520-524, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36321966

RESUMO

Although Astyanax bimaculatus is the most representative species of the genus in the Amazon region, there are no cytogenetic studies of A. bimaculatus species in Amazon region. Thus, we aimed to analyse the chromosome complements of specimens from this area using classic and molecular cytogenetic approaches. The results revealed the existence of a distinct cytotype and this is the first report of the occurrence of a B microchromosome in the species. Overall, these data indicate that the karyotypic evolution of this species is complex, involving the occurrence of chromosomal rearrangements.


Assuntos
Characidae , Caraciformes , Animais , Caraciformes/genética , Cariótipo , Cariotipagem , Ploidias , Brasil
17.
Clin Genet ; 103(5): 580-584, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36537231

RESUMO

Copy number variations (CNV) may represent a significant proportion of SPG4 and SPG3A diagnosis, the most frequent autosomal dominant subtypes of hereditary spastic paraplegias (HSP). We aimed to assess the frequency of CNVs in SPAST and ATL1 and to update the molecular epidemiology of HSP families in southern Brazil. A cohort study that included 95 Brazilian index cases with clinical suspicion of HSP was conducted between April 2011 and September 2022. Multiplex Ligation Dependent Probe Amplification (MLPA) was performed in 41 cases without defined diagnosis by different massive parallel sequencing techniques (MPS). Diagnosis was obtained in 57/95 (60%) index cases, 15/57 (26.3%) being SPG4. Most frequent autosomal recessive HSP subtypes were SPG7 followed by SPG11, SPG76 and cerebrotendinous xanthomatosis. No CNVs in SPAST and ATL1 were found. Copy number variations are rare among SPG4 and SPG3A families in Brazil. Considering the possibility of CNVs detection by specific algorithms with MPS data, we consider that this is likely the most cost-effective approach to investigate CNVs in these genes in low-risk populations, with MLPA being reserved as an orthogonal confirmatory test.


Assuntos
Variações do Número de Cópias de DNA , Paraplegia Espástica Hereditária , Espastina , Humanos , Brasil/epidemiologia , Estudos de Coortes , Variações do Número de Cópias de DNA/genética , Mutação , Proteínas/genética , Paraplegia Espástica Hereditária/epidemiologia , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/diagnóstico , Espastina/genética
18.
Hematol., Transfus. Cell Ther. (Impr.) ; 45(2): 245-252, Apr.-June 2023. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1448343

RESUMO

Asbtract Introduction This study aimed to determine whether cytokine receptor-like factor 2 (CRLF2) antigen expression evaluated using multiparametric flow cytometry (MFC) could predict the genotype of CRLF2 and Janus kinase 2 (JAK2) status for application in the diagnosis of pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Methods A total of 321 BCP-ALL bone marrow samples were collected, 291 at diagnosis and 13 at first relapse, while 17 samples were excluded due to low cellular viability. The CRLF2 antigen expression was evaluated using flow cytometry (percentage of positivity and median fluorescence intensity [MFI]). The CRLF2 transcript levels were assessed via quantitative reverse transcription polymerase chain reaction using SYBR Green. The CRLF2 rearrangements (CRLF2-r) were identified using the CRLF2 break-apart probe via fluorescence in situ hybridization. Sanger sequencing was performed to identify the JAK2 exon 16 mutations. Results We observed that 60 of the 291 cases (20.6%) presented CRLF2 antigen positivity, whereas the CRLF2 transcript overexpression was found in 19 of 113 cases (16.8%). The JAK2 mutation was found in four out of 116 cases (3.4%), all of which had CRLF2 ≥10% of positive cells and intermediate or high MFI (p < 0.0001). In addition, in the 13 cases with the CRLF2-r, a positive correlation was found with the CRLF2 antigen intermediate (61.5%) MFI (p= 0.017). Finally, the CRLF2-positive antigen was identified in the BCP-ALL subclones. Conclusion The identification of the CRLF2 antigen using the MFC, based on the percentage of positivity and MFI values, is a useful tool for predicting JAK2 mutations and CRLF2-r.


Assuntos
Humanos , Recém-Nascido , Lactente , Pré-Escolar , Criança , Adolescente , Adulto , Leucemia-Linfoma Linfoblástico de Células Precursoras , Imunofenotipagem , Análise Citogenética , Citometria de Fluxo
19.
Animals (Basel) ; 12(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36496893

RESUMO

Chromosomal rearrangements can directly influence population differentiation and speciation. The Liolaemus monticola complex in Chile is a unique model consisting of several chromosome races arranged in a latitudinal sequence of increasing karyotype complexity from south to north. Here, we compared chromosomal and mitochondrial cytochrome b data from 15 localities across the northern geographic distribution of L. monticola. We expanded the distribution of the previously described Multiple Fissions race (re-described as MF2), in the Coastal range between the Aconcagua River and the Petorca River, and described a new Multiple Fissions 1 (MF1) race in the Andean range. Both races present centric fissions in pairs 1 and 2, as well as a pericentric inversion in one fission product of pair 2 that changes the NOR position. Additionally, we detected a new chromosomal race north of the Petorca River, the Northern Modified 2 (NM2) race, which is polymorphic for novel centric fissions in pairs 3 and 4. Our results increase the number of chromosomal races in L. monticola to seven, suggesting a complex evolutionary history of chromosomal rearrangements, population isolation by barriers, and hybridization. These results show the relevant role of chromosome mutations in evolution, especially for highly speciose groups such as Liolaemus lizards.

20.
Insects ; 13(12)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36555069

RESUMO

Odonata have holokinetic chromosomes. About 95% of species have an XX/X0 sex chromosome system, with heterogametic males. There are species with neo-XX/neo-XY sex chromosomes resulting from an X chromosome/autosome fusion. The genus Rhionaeschna includes 42 species found in the Americas. We analyzed the distribution of the nucleolar organizer region (NOR) using FISH with rDNA probes in Rhionaeschna bonariensis (n = 12 + neo-XY), R. planaltica (n = 7 + neo-XY), and Aeshna cyanea (n = 13 + X0). In R. bonariensis and A. cyanea, the NOR is located on a large pair of autosomes, which have a secondary constriction in the latter species. In R. planaltica, the NOR is located on the ancestral part of the neo-X chromosome. Meiotic analysis and FISH results in R. planaltica led to the conclusion that the neo-XY system arose by insertion of the ancestral X chromosome into an autosome. Genomic in situ hybridization, performed for the first time in Odonata, highlighted the entire neo-Y chromosome in meiosis of R. bonariensis, suggesting that it consists mainly of repetitive DNA. This feature and the terminal chiasma localization suggest an ancient origin of the neo-XY system. Our study provides new information on the origin and evolution of neo-sex chromosomes in Odonata, including new types of chromosomal rearrangements, NOR transposition, and heterochromatin accumulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA