Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Foods ; 13(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38928733

RESUMO

This study verified the in vitro activity of red cabbage and beetroot against the formation of advanced glycation end-products (AGEs) and their relationship with the biomolecules' content. Fermentation of cabbage increased the total phenolic (~10%) and flavonoid contents (~14%), whereas decreased total phenolics/flavonoids in beetroot. Fermented cabbage exhibited higher ability against AGEs, i.e., 17% in the bovine serum albumin-methylglyoxal (BSA-MGO) model and 25% in the BSA-glucose model, while beetroot exhibited 23% and 18%, respectively. The major compounds of cabbage products were cyanidin 3-(sinapoyl)(sinapoyl)-diglucoside-5-glucoside, sinapic acid, and epicatechin. Syringic acid and epicatechin were predominantly present in fermented beetroot. 2,17-bidecarboxy- and 2,15,17-tridecarboxy-betanin were the major betalains. Fermented vegetables can be effective inhibitors of the AGE formation/accumulation and could be recommended in the prevention of diet-related diseases.

2.
Food Chem ; 457: 140057, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908248

RESUMO

The shelf life of perishable foods is estimated through expensive and imprecise analyses that do not account for improper storage. Smart packaging, obtained by agile manufacturing of nanofibers functionalized with natural pigments from agri-food residues, presents promising potential for real-time food quality monitoring. This study employed the solution blow spinning (SBS) technique for the rapid production of smart nanofiber mats based on polycaprolactone (PCL), incorporating extracts of agricultural residues rich in anthocyanins from eggplant (EE) or purple cabbage (CE) for monitoring food quality. The addition of EE or CE to the PCL matrix increased the viscosity of the solution and the diameter of the nanofibers from 156 nm to 261-370 nm. The addition of extracts also improved the mechanical and water-related properties of the nanofibers, although it reduced the thermal stability. Attenuated total reflectance Fourier-transform infrared spectroscopy confirmed the incorporation of anthocyanins into PCL nanofibers. Nanofiber mats incorporated with EE or CE exhibited visible color changes (ΔE ≥ 3) in response to buffer solutions (pH between 3 and 10), and ammonia vapor. Smart nanofibers have demonstrated the ability to monitor fish fillet spoilage through visible color changes (ΔE ≥ 3) during storage. Consequently, smart nanofibers produced by the SBS technique, using PCL and anthocyanins from agro-industrial waste, reveal potential as smart packaging materials for food.

3.
Foods ; 13(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38540820

RESUMO

The aim of this work is to describe the effect of convective drying (CD), vacuum drying (VD), infrared drying (IRD), low-temperature vacuum drying (LTVD) and freeze drying (FD) on bio-compound retention of red cabbage and its beneficial health properties. The total phenolics content (TPC), flavonoids (TFC), anthocyanin (TAC) and glucosinolates (TGC) were determined by spectrophotometry. The profiles of phenolic acids, amino acids and fatty acids were determined by HPLC-UV-DAD, LC-DAD and GC-FID, respectively. Antioxidant potential was verified by DPPH and ORAC assays. The antiproliferative activity was measured in the human gastric cell line (AGS). Anti-inflammatory activity was evaluated by phorbol 12-myristate 13-acetate and arachidonic acid models. VD showed high values of TPC = 11.89 ± 0.28 mg GAE/g d.m.; TFC = 11.30 ± 0.9 mg QE/g d.m.; TAC = 0.265 ± 0.01 mg Cya3glu/g d.m.; and TGC = 51.15 ± 3.31 µmol SE/g d.m. Caffeic acid, ferulic acid and sinapic acid were identified. The predominant amino acid and fatty acid were glutamic acid and γ-linolenic acid, respectively. The antioxidant potential was dependent on drying methods for both DPPH and ORAC assays. Dried red cabbage extracts showed clear anti-inflammatory and antiproliferative activity. The dehydration process is an alternative for the retention of bio-compounds and health-promoting properties of red cabbage.

4.
Food Sci Technol Int ; : 10820132241238261, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488461

RESUMO

In this study, powder colorant was obtained from red cabbage (Brassica oleracea L.). The stability of the colorants obtained by spray and freeze drying was investigated in terms of antioxidant capacity and anthocyanin content. The yield of the products increased with the encapsulation for both drying methods and encapsulation application. Drying method and encapsulation application had a significant effect on most of the physical properties of powders except for flowability and adhesiveness values. An increase in L*, a*, and C values was observed with the encapsulation process. Antioxidant activity of the samples increased with the encapsulation process by 13.44% in the spray-dried samples, while it increased by 9.75% in the freeze-dried samples. Total monomeric anthocyanin content was detected as 9039.21 mg/kg for encapsulated freeze-dried samples and 7811 mg/kg for encapsulated spray-dried ones. Nine anthocyanins were detected in the samples by using high-performance liquid chromatography. To discriminate samples according to drying methods with/without encapsulation principal component analysis (PCA) was used based on the Fourier transform infrared (FTIR) data. Four groups were observed for the PCA. The chemometric evaluation was done to predict the antioxidant capacity, anthocyanin content, and individual anthocyanins using FTIR spectra. High correlations were observed between the calculated and reference values for partial least square regression analysis.

5.
Ultrason Sonochem ; 102: 106762, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38211496

RESUMO

The present investigation studied the effect of process parameters on the extraction of phytochemicals from red cabbage by the application of ultrasonication and temperature. The solvent selected for the study was deep eutectic solvent (DES) prepared by choline chloride and citric acid. The ultrasound assisted extraction process was modeled using adaptive neuro-fuzzy inference system (ANFIS) algorithm and integrated with the genetic algorithm for optimization purposes. The independent variables that influenced the responses (total phenolic content, antioxidant activity, total anthocyanin activity, and total flavonoid content) were ultrasonication power, temperature, molar ratio of DES, and water content of DES. Each ANFIS model was formed by the training of three Gaussian-type membership functions (MF) for each input, trained by a hybrid algorithm with 500 epochs and linear type MF for output MF. The ANFIS model predicted each response close to the experimental data which is evident by the statistical parameters (R2>0.953 and RMSE <1.165). The integrated hybrid ANFIS-GA algorithm predicted the optimized condition for the process parameters of ultrasound assisted extraction of phytochemicals from red cabbage was found to be 252.114 W for ultrasonication power, 52.715 °C of temperature, 2.0677:1 of molar ratio of DES and 25.947 % of water content in DES solvent with maximum extraction content of responses, with fitness value 3.352. The relative deviation between the experimental and ANFIS predicted values for total phenolic content, antioxidant activity, total anthocyanin activity, and total flavonoid content was found to be 1.849 %, 3.495 %, 2.801 %, and 4.661 % respectively.


Assuntos
Brassica , Solventes Eutéticos Profundos , Lógica Fuzzy , Antioxidantes , Antocianinas , Algoritmos , Compostos Fitoquímicos , Água
6.
Environ Sci Pollut Res Int ; 31(5): 7465-7480, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38159189

RESUMO

The proliferation of wireless and other telecommunications equipment brought about by technological advances in the communication industry has substantially increased the radiofrequency radiation levels in the environment. The emphasis is, therefore, placed on investigating the potential impacts of radiofrequency radiation on biota. In this work, the impact of 2850 MHz electromagnetic field radiation (EMF-r) on early development, photosynthetic pigments, and the metabolic profile of two Brassica oleracea L. cultivars (red and green cabbage) was studied. On a daily basis for seven days, seedlings were exposed to homogeneous EMF-r for one, two, and four hours, and observations were carried out at 0-h, 1-h, and 24-h following the final dose. Irrespective of the duration of harvest, exposure to EMF-r resulted in a dose-dependent reduction in both root (from 6.3 cm to 4.0 cm in red; 6.1 cm to 3.8 cm in green) and shoot lengths (from 5.3 cm to â“3.1 cm in red; 5.1 cm to 3.1 cm in green), as well as a decrease in biomass (from 2.9 mg to â“1.1 mg in red; 2.5 to 0.9 mg in green) of the seedlings when compared to control samples. Likewise, the chlorophyll (from 6.09 to â“4.94 mg g-1 d.wt in red; 7.37 to 6.05 mg g-1 d.wt. in green) and carotenoid (from 1.49 to 1.19 mg g-1 d.wt. in red; 1.14 to 0.51 mg g-1 d.wt. in green) contents of both cultivars decreased significantly when compared to the control. Additionally, the contents of phenolic (28.99‒45.52 mg GAE g-1 in red; 25.49‒33.76 mg GAE g-1 in green), flavonoid (21.7‒31.8 mg QE g-1 in red; 12.1‒19.0 mg QE g-1 in green), and anthocyanin (28.8‒43.6 mg per 100 g d.wt. in red; 1.1‒2.6 mg per 100 g d.wt. in green) in both red and green cabbage increased with exposure duration. EMF-r produced oxidative stress in the exposed samples of both cabbage cultivars, as demonstrated by dose-dependent increases in the total antioxidant activity (1.33‒2.58 mM AAE in red; 1.29‒2.22 mM AAE in green), DPPH activity (12.96‒78.33% in red; 9.62‒67.73% in green), H2O2 content (20.0‒77.15 nM g-1 f.wt. in red; 14.28‒64.29 nM g-1 f.wt. in green), and MDA content (0.20‒0.61 nM g-1 f.wt. in red; 0.18‒0.51 nM g-1 f.wt. in green) compared to their control counterparts. The activity of antioxidant enzymes, i.e., superoxide dismutases (3.83‒8.10 EU mg-1 protein in red; 4.19‒7.35 EU mg-1 protein in green), catalases (1.81‒7.44 EU mg-1 protein in red; 1.04‒6.24 EU mg-1 protein in green), and guaiacol peroxidases (14.37‒47.85 EU mg-1 protein in red; 12.30‒42.79 EU mg-1 protein in green), increased significantly compared to their control counterparts. The number of polyphenols in unexposed and EMF-r exposed samples of red cabbage was significantly different. The study concludes that exposure to 2850 MHz EMF-r affects the early development of cabbage seedlings, modifies their photosynthetic pigments, alters polyphenol content, and impairs their oxidative metabolism.


Assuntos
Antioxidantes , Brassica , Antioxidantes/metabolismo , Campos Eletromagnéticos , Peróxido de Hidrogênio/metabolismo , Brassica/metabolismo , Catalase/metabolismo , Polifenóis
7.
Food Chem ; 440: 138272, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38159318

RESUMO

Red cabbage (RC) represents a source of anthocyanins acylated with hydroxycinnamic acids (HCA) that are described to enhance their stability. Nevertheless, data about their thermal degradation are still controversial. Our aim was to comprehensively analyse the degradation kinetics of individual RC anthocyanins in a model aqueous extract treated at 40 °C × 30 days to simulate severe but realistic storage conditions. Free anthocyanins and radical-scavenging capacity showed different kinetics. The results confirm the high stability of RC anthocyanins (t1/2: 16.4-18.4 days), although HPLC analyses of each molecule displayed distinct kinetics with t1/2 from 12.6 to 35.1 days. In particular, the sinapoyl acylation negatively affected the stability of the anthocyanins, while the forms monoacylated with glycosyl p-coumaric and ferulic acids exhibited higher stability. In conclusion, our results indicate that acylation is not a prerogative of stability, as this is instead more dependent on specific acylation patterns and the glycosylation of HCA.


Assuntos
Antocianinas , Brassica , Antocianinas/metabolismo , Brassica/metabolismo , Acilação , Cromatografia Líquida de Alta Pressão/métodos
8.
Foods ; 12(24)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38137324

RESUMO

In this study, a composite film was created with the dual goal of prolonging pork shelf life and showing freshness. Hydrogel materials as solid base films were selected from gelatin (G), sodium alginate (SA) and carboxymethyl cellulose (CMC) based on their antioxidant activity, water vapor permeability, mechanical properties, as well as their stability, antimicrobial activity, and freshness, which indicates effectiveness when combined with anthocyanins. Furthermore, the effects of several concentrations of red cabbage anthocyanin (R) (3%, 6%, 12%, and 24%) on freshness indicators and bacteriostasis were investigated. The antimicrobial activity of the composite films was evaluated against Escherichia coli, Bacillus subtilis, and Staphylococcus aureus. Likewise, the freshness indicates effectiveness was evaluated for NH3. Considering the mechanical properties, antibacterial ability, freshness indicator effect, and stability of the composite film, CS film combined with 12% R was selected to prepare a dual-functional intelligent film for pork freshness indicator and preservation. By thoroughly investigating the effect of composite film on pork conservation and combining with it KNN, the discriminative model of pork freshness grade was established and the recognition rate of the prediction set was up to 93.3%. These results indicated that CSR film can be used for the creation of active food packaging materials.

9.
Foods ; 12(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38002214

RESUMO

The objective of this work was to develop a sustainable process for the extraction of anthocyanins from red cabbage byproducts using, for the first time, apple vinegar in extractant composition. Our results showed that the mixture 50% (v/v) ethanol-water, acidified with apple vinegar, used in the proportion of 25 g of red cabbage by-products per 100 mL of solvent, was the best solvent for the preparation of an anthocyanin extract with good stability for food applications. The chemical characterization of this extract was performed by FTIR, UV-VIS, HPLC-DAD, and ICP-OES. The stability was evaluated by determining the dynamics of the total polyphenol content (TPC) and the total monomeric anthocyanin pigment content (TAC) during storage. On the basis of the statistical method for analysis of variance (ANOVA), the standard deviation between subsamples and the repeatability standard deviation were determined. The detection limit of the stability test of TPC was 3.68 mg GAE/100 g DW and that of TAC was 0.79 mg Cyd-3-Glu/100 g DW. The red cabbage extract has high TPC and TAC, good stability, and significant application potential. The extracted residues, depleted of anthocyanins and polyphenols with potential allelopathic risks, fulfill the requirements for a fertilizing product and could be used for soil treatment.

10.
Food Sci Biotechnol ; 32(14): 2025-2042, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37860738

RESUMO

In the present study encapsulation of ultrasound assisted red cabbage extract was carried out using four different carrier agents such as maltodextrin, gum arbic, xanthan gum, and gellan gum. Among the four hydrocolloids investigated, maltodextrin was found to have the least destructive effect on anthocyanin content (14.87 mg C3G/g dw), TPC (54.51 ± 0.09 mg GAE/g dw), TFC (19.82 Mg RE/g dw) and antioxidant activity (74.15%) upon freeze-drying. Subsequently a storage study was conducted using maltodextrin as carrier agent at 25-50 °C. The Clausius-Clapeyron equation was used to evaluate the net isosteric heat (qst) of water adsorption. The differential entropy (ΔS) and qst decreased from 82.298 to 38.628 J/mol, and 27.518 kJ/mol to 12.505 kJ/mol, respectively as the moisture content increased from 2 to 14%. The value of isokinetic energy and Gibb's free energy were found to be 364.88 and - 1.596 kJ/mol for freeze dried red cabbage.

11.
Food Sci Nutr ; 11(10): 6360-6375, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37823104

RESUMO

Novel green intelligent films based on basil seed gum (BSG)/chitosan containing red cabbage extract (RCA) (0, 2.5, 5, and 10, % (v/v)) as a colorimetric indicator for food freshness detection were fabricated by casting method. The physicochemical, barrier, mechanical, and antioxidant characteristics, as well as sensitivity to pH and ammonia gas of smart edible packaging films, were investigated. The interaction of anthocyanin extract as a natural dye with biopolymers in films characterized by FTIR spectroscopy and SEM images revealed their suitable compatibility. The film with maximum anthocyanin content (10% (v/v)) appeared robust color changes against various pH and ammonia gas levels. The color of indicator films when exposed to alkaline, neutral and acidic buffers are indicated with green, blue, and red colors, respectively. The DPPH radical scavenging activity of smart BSG/chitosan films improved from 23% to 90.32% with increasing RCA content from 2.5 to 10% (v/v). Generally, the incorporation of RCA in film structure enhanced their solubility, WVP, ΔE, turbidity, and flexibility, and reduced tensile strength. The observations successfully confirmed the efficacy of pH-sensitive indicator smart film based on BSG/chitosan for evaluation of fish spoilage during storage.

12.
Foods ; 12(20)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37893742

RESUMO

Electrospun nanofibers have been applied as a new technology for gas indicators in food intelligent packaging. A poly(ε-caprolactone) (PCL)/red cabbage anthocyanin (RCA)-based nanofiber volatile amines gas indicator was developed by applying a bi-solvent of acetic acid (AA) and formic acid (FA) in electrospinning. The visibility of color change was improved from pink to blue, compared to blue to yellow-green, when using a single solvent of AA. The solutes of PCL (12.5, 15, 17.5, and 20%) and RCA (10, 20, 30, and 40%) and the solvents of AA/FA (9:1, 7:3, 5:5, 3:7, and 1:9) were applied in electrospinning under the condition of 12.5 cm, 1.0 mL/h, and 20 kV. The optimal microstructure with the thinnest fiber diameter and constant arrangement without forming NF beads appeared under the 7:3 FA/AA, 15% PCL, and 20% RCA condition. The indicator changed from pink to blue with the values of total color change (ΔE) of 10, 14, and 18 when exposed to the saturated gas of ammonia solutions of 8, 80, and 800 mM, respectively. The indicator was stable and unchanged in color for 28 days when exposed to light at room temperature. In the application to mackerel packaging, the built-in indicator changed from pink to purple regardless of storage temperature when the spoilage point was reached.

13.
Food Res Int ; 172: 113138, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689902

RESUMO

This study aimed to explore the feasibility of utilizing microparticle mixture (MCPs) comprised of whey protein isolate (WPI), gum Arabic (GA), and freeze-dried red cabbage juice (FDRCJ) as a smart material to realize a rapid color change of 3D printed apple/potato starch gel in response to microwave heating stimulation. The particle size, morphology and thermal stability of WPI/FDRCJ/GA microparticles were examined. Then, the rheology, texture properties and printability of Apple/potato starch gel affected by different concentrations of WPI/FDRCJ/GA microparticles (0, 15, 30, 45, 60% (w/w)) were studied. Results showed that the WPI/FDRCJ/GA microparticles were more thermally stable than pure materials, indicating that the heat-sensitive anthocyanin and other compounds present in FDRCJ were effectively protected by the wall materials (WPI/GA). Moreover, the addition of various microparticle concentrations decreased the samples' mechanical properties but had no significant influence on their loss modulus, viscosity, or printing accuracy. As the microwave heating time increased, the lightness (L*) and yellowness (b*) of microparticle-added samples decreased while the redness (a*) significantly increased (p < 0.05), resulting in a gradual color change from yellow/brown to red. These findings could be useful to produce novel colorful and appealing 4D healthy food products that stimulate consumer appetite.


Assuntos
Acacia , Malus , Solanum tuberosum , Goma Arábica , Micro-Ondas , Impressão Tridimensional , Amido
14.
Antioxidants (Basel) ; 12(9)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37760059

RESUMO

Encapsulation is a valuable strategy to protect and deliver anthocyanins (ACNs), phenolic compounds with outstanding antioxidant capacity but limited stability. In this study, coacervation was used to encapsulate an ACN-rich red cabbage extract (RCE). Two agri-food by-product polymers, whey protein isolate (WPI) and apple high-methoxyl pectin (HMP), were blended at pH 4.0 in a specific ratio to induce the formation of nanoparticles (NPs). The process optimisation yielded a monodispersed population (PDI < 0.200) of negatively charged (-17 mV) NPs with an average diameter of 380 nm. RCE concentration influenced size, charge, and antioxidant capacity in a dose-dependent manner. NPs were also sensitive to pH increases from 4 to 7, showing a progressive breakdown. The encapsulation efficiency was 30%, with the retention of ACNs within the polymeric matrix being influenced by their chemical structure: diacylated and/or C3-triglucoside forms were more efficiently encapsulated than monoacylated C3-diglucosides. In conclusion, we report a promising, simple, and sustainable method to produce monodispersed NPs for ACN encapsulation and delivery. Evidence of differential binding of ACNs to NPs, dependent on specific acylation/glycosylation patterns, indicates that care must be taken in the choice of the appropriate NP formulation for the encapsulation of phenolic compounds.

15.
Antioxidants (Basel) ; 12(9)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37760092

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder, and no efficient therapy able to cure or slow down PD is available. In this study, dehydrated red cabbage was evaluated as a novel source of bio-compounds with neuroprotective capacity. Convective drying was carried out at different temperatures. Total phenolics (TPC), flavonoids (TFC), anthocyanins (TAC), and glucosinolates (TGC) were determined using spectrophotometry, amino acid profile by LC-DAD and fatty acid profile by GC-FID. Phenolic characterization was determined by liquid chromatography-high-resolution mass spectrometry. Cytotoxicity and neuroprotection assays were evaluated in SH-SY5Y human cells, observing the effect on preformed fibrils of α-synuclein. Drying kinetic confirmed a shorter processing time with temperature increase. A high concentration of bio-compounds was observed, especially at 90 °C, with TPC = 1544.04 ± 11.4 mg GAE/100 g, TFC = 690.87 ± 4.0 mg QE/100 g and TGC = 5244.9 ± 260.2 µmol SngE/100 g. TAC degraded with temperature. Glutamic acid and arginine were predominant. Fatty acid profiles were relatively stable and were found to be mostly C18:3n3. The neochlorogenic acid was predominant. The extracts had no cytotoxicity and showed a neuroprotective effect at 24 h testing, which can extend in some cases to 48 h. The present findings underpin the use of red cabbage as a functional food ingredient.

16.
Int J Biol Macromol ; 251: 126203, 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37579908

RESUMO

The objective of this study was to develop pH-sensitive film indicators for intelligent food packaging by incorporating red cabbage anthocyanins (RCA) and zinc oxide nanoparticles (ZnO NPs) into an alginate (Alg) film, aiming to mitigate the risk of foodborne illnesses. The films were fabricated using a solvent-casting method and crosslinked with a calcium chloride (CaCl2) solution. Thorough evaluations of the films' physical, mechanical, and structural properties demonstrated significant improvements in elastic modulus and UV/vis light barrier characteristics, reduced water vapor permeability (WVP), and moisture content attributed to integrating RCA and ZnO NPs. The resulting film displayed discernible color changes when exposed to various pH buffer solutions and ammonia vapor, indicating heightened sensitivity to pH fluctuations due to the presence of ZnO NPs. Visual assessment using prawns as test specimens revealed a color shift from violet (indicating satisfactory condition) to blue-greenish (indicating spoilage), corroborated by colorimetric analysis. Moreover, the Alg/ZnO/RCA film exhibited antioxidant and antibacterial properties, demonstrated biodegradation activity, and showed no toxic effects on RSC96 cells, further underscoring its potential as an effective freshness indicator for food products.

17.
Antioxidants (Basel) ; 12(8)2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37627496

RESUMO

We conducted a comprehensive evaluation of the antioxidant, anti-obesity, anti-diabetic, and anti-glycation activities associated with the consumption of broccoli, red cabbage, alfalfa, and buckwheat seeds. Additionally, we explored the relationship between these biological activities and the profiles of amino acids, polyphenols, and organic acids identified in the seeds. Our findings demonstrated that red cabbage, broccoli, and buckwheat extracts exhibited significantly higher antioxidant potential compared to the alfalfa extract. Moreover, buckwheat displayed the most significant capacity for inhibiting alpha-glucosidase. Remarkably, broccoli and red cabbage demonstrated substantial anti-glycation and lipase inhibitory potentials. We identified the presence of amino acids, polyphenols, and organic acids in the extracts through untargeted metabolomics analysis. Correlation analysis revealed that pyroglutamic acid positively correlated with all the investigated functional properties. Most polyphenols made positive contributions to the functional properties, with the exception of ferulic acid, which displayed a negative correlation with all tested biological activities. Furthermore, gluconic acid and arabinonic acid among the organic acids identified displayed a positive correlation with all the functional properties. These results strongly support the anti-diabetic, anti-obesity, and anti-glycation potential of red cabbage, broccoli, and buckwheat seeds.

18.
Food Res Int ; 169: 112929, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37254355

RESUMO

Understanding the influence of processing methods on the phytochemicals of fruits and vegetables is of importance in retaining the health-benefiting properties of those products. The aim of this study was to investigate the effects of five processing methods including freeze drying (FD), hot air drying (HD), water boiling (WB), steaming (ST), and pickling (PI) on the physical character, total polyphenols, anthocyanin profile and antioxidant activity of red cabbage. Different color and texture were observed after different processing methods. Total anthocyanin content was reduced by 73%, 72%, 41%, 16%, and 30% in FD, HD, WB, ST and PI processed red cabbage, respectively. PI samples showed the highest values of total polyphenols and DPPH scavenge activity among all the processed red cabbage. Both FD and HD samples had relatively low values of total polyphenols and DPPH scavenge activity. However, FD sample had the highest FRAP values. UPLC-QqQ-MS/MS analysis showed that fresh red cabbage contained 22 anthocyanins among which cyanidin-3-diglucoside-5-glucoside was the prominent. Compared with drying process, WB, ST and PI decreased the loss of most of the anthocyanin component in red cabbage. Correlation analysis indicated that antioxidant capacity as determined by DPPH of red cabbage was positively and significantly correlated with the total anthocyanins. This study suggested that drying induced significant loss of phytochemicals in red cabbage, and WB, ST, as well as PI were advisable ways for daily consumption of red cabbage considering the bioactive components. Especially, ST was the best way to retain anthocyanins in red cabbage.


Assuntos
Antioxidantes , Brassica , Antioxidantes/análise , Antocianinas/análise , Polifenóis/análise , Espectrometria de Massas em Tandem/métodos , Brassica/química , Compostos Fitoquímicos/análise , Vapor , Água
19.
Toxicol Res (Camb) ; 12(1): 39-48, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36866218

RESUMO

Spent crankcase oil (SCO) contains a cocktail of metals and polycyclic aromatic hydrocarbons (PAHs), transferred to the associated water-soluble fractions (WSF); and low-dose heavy metals exposures could increase the triglycerides (TG), total cholesterol (TC), low-density lipoproteins (LDL), and very-low-density lipoproteins (VLDL) concentrations. Hence, this study estimated the changes in the lipid profile and atherogenic indices (AI) of male Wistar albino rats exposed to the WSF of SCO and treated with aqueous extracts (AE) of red cabbage (RC) for 60 and 90 days. Sixty-four male Wistar rats divided into 8 groups (8 animals each) were orally administered 1 mL of deionized water, 500 mg/kg AE of RC, 1 mL of 25%, 50%, and 100% WSF of SCO daily for 60 and 90 days, whereas alternate groups were given the stated percentages of the WSF and the AE. Serum TG, TC, LDL, and VLDL concentrations were then analyzed using appropriate kits and the AI estimated thereafter. Although the 60 days study presented a nonsignificant (P < 0.05) difference in the TG, VLDL, and high density lipoprotein (HDL)-C levels in all the exposed and treated groups, a significantly (P < 0.05) elevated TC and non-HDL was recorded for the 100% exposed group alone. Also, the LDL concentration of all exposed groups was higher than all treated groups. The findings at the 90th day was different, such that the 100% and 25% exposed only groups had elevated lipid profile (except HDL-C) concentrations and AI compared with other groups. RC extracts can act as good hypolipidemic agents in WSF of SCO hyperlipidemia potentiating events.

20.
Food Chem ; 404(Pt A): 134528, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36444010

RESUMO

To address consumer-level food waste, and pollution from commercial plastics, we developed intelligent films using sodium alginate (SA), pectin (PC), cellulose nanocrystals (CNCs), and anthocyanins extracted from red cabbage (RCA). We also investigated two methods of reinforcing these films - cross-linking (CL), and the addition of CNCs. Both together and separately, these methods improved SA/PC films' mechanical properties and thermal stability. The optimal SA/PC/CNCs/RCA/CL films exhibited pH-dependent color-response properties and high water resistance. These were then tested as colorimetric freshness indicators for shrimp samples, both through seepage and the monitoring of volatile compounds. The colors of the indicators changed from lilac to dark green to greenish-yellow after storage at 25 °C for 72 h, whereas at 4 °C, they changed much more slowly over the same time period. This demonstrated the excellent potential of such films to reduce food waste by providing real-time warnings of pH variation resulting from spoilage.


Assuntos
Nanopartículas , Eliminação de Resíduos , Pectinas , Celulose , Alginatos , Antocianinas , Alimentos Marinhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...