Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 927: 172244, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582116

RESUMO

Size spectra analysis has been widely used to study pelagic ecosystems worldwide. It has a solid theoretical and empirical basis and can be used to provide useful information on ecosystem structure and trophic efficiency. The objective of this study was to obtain complete Normalized Biovolume Size Spectra (NBSS), including zooplankton, microplastics, and other suspended particles, along an estuary-shelf gradient. Plankton net samples (300 µm mesh) were obtained in the Rio Formoso Estuary, in Tamandaré Bay and on the continental shelf off Tamandaré, Brazil, during two years (from April/2013 to May/2015). Particles were identified by image analysis (ZooScan) and infrared spectroscopy (FTIR). Generally, NBSS slopes were close to -1 (i.e., between -1.09 and -0.85), except for NBSSz (zooplankton only) in the Estuary (-1.59) and in the Bay (-1.44), where the steepest slopes were observed, due to the importance of small-sized zooplankton in these areas. The NBSSz slope was significantly steeper in the Estuary and in the Bay than on the Shelf. The inclusion of particles into the NBSS (NBSSp) turned the slope significantly less steep in the Estuary and in the Bay. Intercepts were significantly higher in the Estuary than in the other areas, after including particles in the analysis (NBSSp), due to the extremely high total volume of biogenic particles in the estuary. The most relevant impacts of microplastics were detected within the larger size classes (> 2.60 mm Feret length, > 0.58 log10 mm3). In the Estuary, large-sized microplastics were similarly important (in terms of volume) as zooplankton. Large-sized polyethylene and polypropylene were more relevant in the Bay, large-sized nylon fibers on the Shelf (in the rainy season). The present study, a pioneering effort towards a synthetic analysis of zooplankton, microplastics, and other particles, highlights the importance of including non-living particles in size-based studies and ecosystem models.


Assuntos
Ecossistema , Monitoramento Ambiental , Estuários , Microplásticos , Poluentes Químicos da Água , Zooplâncton , Microplásticos/análise , Brasil , Poluentes Químicos da Água/análise , Animais , Tamanho da Partícula
2.
Mar Environ Res ; 178: 105661, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35661942

RESUMO

While marine protected areas (MPAs) are increasing worldwide, it is still needed to assess the effectiveness of those already consolidated. Methods and ecological assessments to understanding integrated and habitat-specific management regimes are still scarce and insufficient for policy implications and biodiversity conservation. Through Baited Remote Underwater Video (BRUV), we used fish assemblages as proxy of ecological and managerial status in two reef habitat types along three protection levels at Abrolhos Bank - the largest and most biodiverse coral reef complex of the South Atlantic. We found completely distinct responses in the fish fauna between the top (shallow) and bottom (deep) habitats of the unique "chapeirões" pinnacle reef formations. In the most protected zone (no-take), higher richness and abundance of commercial fish and more diverse trophic structure was observed. Particularly, large (sharks and groupers) and small carnivores (snappers) were more abundant and distributed more homogeneously over both reef habitats in the strictly enforced no-take zone. Abundance of these top-predators decreased from the low enforcement no-take zone to the multiple use area, where they were often absent while their typical preys (primary and secondary consumers) were thriving, notably in the top habitats. These outcomes highlight the importance to focus investigations not selectively on a single habitat type or depth zone in order to properly assess MPA effectiveness. Consequently, the monitoring and protection of fish species supported by marine spatial planning may benefit from an improved understanding of ecological functioning provided by MPA performance.


Assuntos
Recifes de Corais , Tubarões , Animais , Biodiversidade , Conservação dos Recursos Naturais , Ecossistema , Peixes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA