Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Plant Divers ; 46(2): 158-168, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38807913

RESUMO

Sexual systems play important roles in angiosperm evolution and exhibit substantial variations among different floras. Thus, studying their evolution in a whole flora is crucial for understanding the formation and maintenance of plant biodiversity and predicting its responses to environmental change. In this study, we determined the patterns of plant sexual systems and their associations with geographic elements and various life-history traits in dry-hot valley region of southwestern China, an extremely vulnerable ecosystem. Of the 3166 angiosperm species recorded in this area, 74.5% were hermaphroditic, 13.5% were monoecious and 12% were dioecious, showing a high incidence of diclinous species. Diclinous species were strongly associated with tropical elements, whereas hermaphroditic species were strongly associated with temperate and cosmopolitan elements. We also found that hermaphroditism was strongly associated with showy floral displays, specialist entomophily, dry fruits and herbaceous plants. Dioecy was strongly associated with inconspicuous, pale-colored flowers, generalist entomophily, fleshy fruits, and woody plants, whereas monoecy was strongly associated with inconspicuous, pale-colored flowers, anemophily, dry fruits, and herbaceous plants. In addition, hermaphroditic species with generalist entomophily tended to flower in the dry season, whereas diclinous species with specialist entomophily tended to flower in the rainy season. However, independent of sexual systems, plants that produce dry fruits tended to flower in the rainy season and set fruits in the dry season, but the opposite pattern was found for fleshy fruit-producing plants. Our results suggest that in the dry-hot valleys, plant sexual systems are associated with geographic elements as well as various life-history traits that are sensitive to environmental change.

2.
Environ Monit Assess ; 196(2): 219, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291263

RESUMO

The study conducted an investigation into the reproductive biology of M. pancalus and assessed the influence of water quality parameters and environmental factors on the spawning pattern within the Gajner Beel ecosystem in Bangladesh. A total of 1218 individuals of M. pancalus (46.39% males and 53.61% females) were collected monthly from the Gajner Beel during January to December 2018 using various fishing gears. The total length (TL) of each individual was measured using digital slide calipers, and the whole body weight (BW) was measured using an electronic balance. Fulton's conditions factor (KF) showed significant differences between males and females. The calculated Lm were 11.11 cm, 11.30 cm, and 11.10 cm based on maximum length, gonadosomatic index (GSI), and the logistic model. The spawning season extended from May through August, with June and July being peak months. The average total fecundity was 1495.52 ± 840.24, with a range of 370 to 4069. During peak spawning season, the average temperature and rainfall were 27°C and 370 mm, respectively. Rainfall, dissolved oxygen, total alkalinity, and pH all had a significant (p < 0.01) positive effect whereas temperature and TDS all had a significant (p > 0.01) negative effect on GSI. Annual air temperature in the study area increased by 0.053 °C/year, with a regression coefficient value (r2 = 0.1695), while annual mean rainfall decreased by 5.97mm/year (r2 = 0.076). This research will contribute to the development of conservation and management approaches of Mastacembelidae fish in relation to current climate variability in sub-tropical waters.


Assuntos
Ecossistema , Áreas Alagadas , Animais , Feminino , Masculino , Qualidade da Água , Monitoramento Ambiental , Reprodução , Estações do Ano , Peixes
3.
Plant Biol (Stuttg) ; 25(7): 1196-1204, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37823877

RESUMO

Anthropogenic fires are an increasing threat to tropical savannas and their plant populations. In the Brazilian Cerrado, human-made fires at the end of the dry season are replacing natural fires at the beginning of the dry season. Critically, these late burns occur under more intense climate variables. Here, we aimed to understand the potential role of fire seasonality on individuals of Anacardium humile, a widespread Cerrado species of cultural and economic importance. We conducted two prescribed burnings, one at the beginning of the dry season (early burning) and one at the end of the dry season (late burning) when climate variables were remarkably different. We assessed the reproductive responses of A. humile individuals over 4 years and compared individuals from the fire treatments with those from an unburned area (control). The reproductive phenology of A. humile varied over time and was influenced by climate variables. The seasons of different burning had similar impacts on the reproductive phenology of A. humile, and this impact lasted for at least 4 years. While A. humile populations do not depend on fire for reproduction, they produced more flowers and fruits for up to 2 years with the fire treatments. We provide empirical evidence of the role of climate variables on the phenology of A. humile and demonstrate the importance of considering the role of time after fire events. The similar responses of A. humile to fire seasonality show that Cerrado fire management can be more complex than previously thought.


Assuntos
Anacardium , Ecossistema , Humanos , Pradaria , Plantas , Reprodução
4.
Sci Total Environ ; 903: 166387, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37633370

RESUMO

Our current understanding of the processes and mechanisms by which seasonal asymmetric warming affects seed reproduction in semiarid regions, which are essential in preserving the stability of both vegetation ecosystem structure and function, remains poorly understood. Here, we conducted a field warming experiment, including pre-growing season warming (W1), in-growing season warming (W2), and combined pre- and in-growing season warming (W3) treatments, to investigate the seed reproductive strategy of Caragana microphylla, an important sand-stabilizing shrub, from the perspective of reproductive phenology, reproductive effort, and reproductive success. Results show that the warming treatments advanced the initial stages of reproductive phenology, prolonged its duration, and decreased its synchrony (magnitude = W3 > W2 > W1). Additionally, flowering phenology was more sensitive to warming than podding phenology. The W1 treatment inclined seed reproduction towards the conservative strategy with low reproductive effort and success. The W3 treatment tended to increase seed reproductive effort and success. While the W2 treatment did not affect reproductive success, it did increase reproductive effort. Changes in reproductive phenology explained 20 % of the variation in reproductive effort and 38 % of the variation in reproductive success. However, these changes also directly hindered reproductive success (direct effect = -0.57) while indirectly promoting reproductive success (indirect effect = 0.27) by increasing reproductive efforts. Our results reveal that the seasonal asymmetry of warming altered the seed reproduction strategy of sand-stabilizing shrubs, with warmer winters and springs before the growing season decreasing seed fecundity.

5.
Sci Total Environ ; 894: 164980, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37348712

RESUMO

Both warming and grazing already affect the reproductive phenology of alpine plants. However, their effects have mostly been studied in isolation, and their interaction is still unclear. In this study, an asymmetric warming (average + 1.2 °C during daytime and + 1.7 °C during nighttime and + 1.5 °C during summer and + 2.0 °C during winter) with moderate grazing experiment was conducted for four years to determine their individual and interactive effects on the onsets and durations of reproductive phenophases for fifteen alpine plant species on the Qinghai-Tibetan Plateau. Individual warming and grazing simultaneously advanced the average start dates and ending dates of budding, flowering and fruiting by 5.3-6.2 days, and further resulted in smaller effects on their durations for most plant species. The interactions between warming and grazing on them varied with plant species and year, which advanced by average 12.1 days for all plant species. The effects of grazing on the temperature sensitivity of the start dates of reproductive phenophases (average by -8.5 days °C-1) were greater than that of warming alone (average by -3.4 days °C-1) and warming with grazing (average by -5.5 days °C-1) for most of the alpine plant species. There were significant effects of the previous phenological events on subsequent reproductive phenophases. Therefore, our results suggested that both warming and grazing advanced reproductive phenophases through altered soil temperature and soil moisture and carry-over effects of previous phenological events on subsequent phenological events. Warming reduced the temperature sensitivity of the start dates of reproductive phenophases to grazing, suggesting that it depressed strength of selection pressure of grazing on the onsets of reproductive phenology in alpine plants.


Assuntos
Mudança Climática , Plantas , Temperatura , Estações do Ano , Solo
6.
Ecology ; 104(5): e4012, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36851834

RESUMO

The potential effects of climate change on plant reproductive phenology include asynchronies with pollinators and reductions in plant fitness, leading to extinction and loss of ecosystem function. In particular, plant phenology is sensitive to extreme weather events, which are occurring with increasing severity and frequency in recent decades and are linked to anthropogenic climate change and shifts in atmospheric circulation. For 15 plant species in a Venezuelan cloud forest, we documented dramatic changes in monthly flower and fruit community composition over a 35-year time series, from 1983 to 2017, and these changes were linked directly to higher temperatures, lower precipitation, and decreased soil water availability. The patterns documented here do not mirror trends in temperate zones but corroborate results from the Asian tropics. More intense droughts are predicted to occur in the region, which will cause dramatic changes in flower and fruit availability.


Assuntos
Secas , Ecossistema , Venezuela , Florestas , Plantas , Mudança Climática , Estações do Ano
7.
Am Nat ; 201(1): 106-124, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36524939

RESUMO

AbstractAnimal reproductive phenology varies from strongly seasonal to nonseasonal, sometimes among closely related or sympatric species. While the extent of reproductive seasonality is often attributed to environmental seasonality, this fails to explain many cases of nonseasonal breeding in seasonal environments. We investigated the evolutionary determinants of nonseasonal breeding in a wild primate, the chacma baboon (Papio ursinus), living in a seasonal environment with high climatic unpredictability. We tested three hypotheses proposing that nonseasonal breeding has evolved in response to (1) climatic unpredictability, (2) reproductive competition between females favoring birth asynchrony, and (3) individual, rank-dependent variations in optimal reproductive timing. We found strong support for an effect of reproductive asynchrony modulated by rank: (i) birth synchrony is costly to subordinate females, lengthening their interbirth intervals; (ii) females alter their reproductive timings (fertility periods and conceptions) in relation to previous conceptions in the group; and (iii) the reported effect of birth synchrony on interbirth intervals weakens the intensity of reproductive seasonality at the population level. This study emphasizes the importance of sociality in mediating the evolution of reproductive phenology in group-living organisms, a result of broad significance for understanding key demographic parameters driving population responses to increasing climatic fluctuations.


Assuntos
Papio ursinus , Reprodução , Animais , Feminino , Papio ursinus/fisiologia , Reprodução/fisiologia , Comportamento Social , Simpatria , Estações do Ano
8.
Glob Chang Biol ; 28(23): 7049-7062, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36106689

RESUMO

The frequency and severity of marine heatwaves causing mass mortality events in tropical and temperate coral species increases every year, with serious consequences on the stability and resilience of coral populations. Although recovery and persistence of coral populations after stress events is closely related to adult fitness, as well as larval survival and settlement, much remains unknown about the effects of thermal stress on early life-history stages of temperate coral species. In the present study, the reproductive phenology and the effect of increased water temperature (+4°C and +6°C above ambient, 20°C) on larval survival and settlement was evaluated for two of the most representative Mediterranean octocoral species (Eunicella singularis and Corallium rubrum). Our study shows that reproductive behavior is more variable than previously reported and breeding period occurs over a longer period in both species. Thermal stress did not affect the survival of symbiotic E. singularis larvae but drastically reduced the survival of the non-symbiotic C. rubrum larvae. Results on larval biomass and caloric consumption suggest that higher mortality rates of C. rubrum exposed to increased temperature were not related to depletion of endogenous energy in larvae. The results also show that settlement rates of E. singularis did not change in response to elevated temperature after 20 days of exposure, but larvae may settle fast and close to their native population at 26°C (+6°C). Although previous experimental studies found that adult colonies of both octocoral species are mostly resistant to thermal stress, our results on early life-history stages suggest that the persistence and inter-connectivity of local populations may be severely compromised under continued trends in ocean warming.


Assuntos
Antozoários , Animais , Antozoários/fisiologia , Simbiose , Estágios do Ciclo de Vida , Larva , Recifes de Corais , Temperatura
9.
Ecol Evol ; 12(8): e9147, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35923936

RESUMO

The ecology and evolution of reproductive timing and synchrony have been a topic of great interest in evolutionary ecology for decades. Originally motivated by questions related to behavioral and reproductive adaptation to environmental conditions, the topic has acquired new relevance in the face of climate change. However, there has been relatively little research on reproductive phenology in mammalian carnivores. The Eurasian lynx (Lynx lynx) occurs across the Eurasian continent, covering three of the four main climate regions of the world. Thus, their distribution includes a large variation in climatic conditions, making it an ideal species to explore reproductive phenology. Here, we used data on multiple reproductive events from 169 lynx females across Europe. Mean birth date was May 28 (April 23 to July 1), but was ~10 days later in northern Europe than in central and southern Europe. Birth dates were relatively synchronized across Europe, but more so in the north than in the south. Timing of birth was delayed by colder May temperatures. Severe and cold weather may affect neonatal survival via hypothermia and avoiding inclement weather early in the season may select against early births, especially at northern latitudes. Overall, only about half of the kittens born survived until onset of winter but whether kittens were born relatively late or early did not affect kitten survival. Lynx are strict seasonal breeders but still show a degree of flexibility to adapt the timing of birth to surrounding environmental conditions. We argue that lynx give birth later when exposed to colder spring temperatures and have more synchronized births when the window of favorable conditions for raising kittens is shorter. This suggests that lynx are well adapted to different environmental conditions, from dry and warm climates to alpine, boreal, and arctic climates. This variation in reproductive timing will be favorable in times of climate change, as organisms with high plasticity are more likely to adjust to new environmental conditions.

10.
Mol Ecol ; 31(19): 5074-5088, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35951172

RESUMO

Secondary contact of recently diverged species may have several outcomes, ranging from rampant hybridization to reinforced reproductive isolation. In plants, selfing tolerance and disjunct reproductive phenology may lead to reproductive isolation at contact zones. However, they may also evolve under both allopatric or parapatric frameworks and originate from adaptive and/or neutral forces. Inferring the historical demography of diverging taxa is thus a crucial step to identify factors that may have led to putative reproductive isolation. We explored various competing demographypotheses to account for the rapid divergence of a fir species complex (Abies flinckii-A. religiosa) distributed in "sky-islands" across central Mexico (i.e., along the Trans-Mexican Volcanic Belt; TMVB). Despite co-occurring in two independent sympatric regions (west and centre), these taxa rarely interbreed because of disjunct reproductive phenologies. We genotyped 1147 single nucleotide polymorphisms, generated by GBS (genotyping by sequencing), across 23 populations, and compared multiple scenarios based on the geological history of the TMVB. The best-fitting model revealed one of the most rapid and complete speciation cases for a conifer species-pair, dating back to ~1.2 million years ago. Coupled with the lack of support for stepwise colonization, our coalescent inferences point to an early cessation of interspecific gene flow under parapatric speciation; ancestral gene flow during divergence was asymmetrical (mostly from western firs into A. religiosa) and exclusive to the most ancient (i.e., central) contact zone. Factors promoting rapid reproductive isolation should be explored in other slowly evolving species complexes as they may account for the large tropical and subtropical diversity.


Assuntos
Abies , Traqueófitas , Abies/genética , Demografia , Fluxo Gênico , Especiação Genética , Hibridização Genética , México , Filogenia , Traqueófitas/genética
11.
Viruses ; 14(4)2022 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-35458511

RESUMO

BACKGROUND: Studies have linked bats to outbreaks of viral diseases in human populations such as SARS-CoV-1 and MERS-CoV and the ongoing SARS-CoV-2 pandemic. METHODS: We carried out a longitudinal survey from August 2020 to July 2021 at two sites in Zimbabwe with bat-human interactions: Magweto cave and Chirundu farm. A total of 1732 and 1866 individual bat fecal samples were collected, respectively. Coronaviruses and bat species were amplified using PCR systems. RESULTS: Analysis of the coronavirus sequences revealed a high genetic diversity, and we identified different sub-viral groups in the Alphacoronavirus and Betacoronavirus genus. The established sub-viral groups fell within the described Alphacoronavirus sub-genera: Decacovirus, Duvinacovirus, Rhinacovirus, Setracovirus and Minunacovirus and for Betacoronavirus sub-genera: Sarbecoviruses, Merbecovirus and Hibecovirus. Our results showed an overall proportion for CoV positive PCR tests of 23.7% at Chirundu site and 16.5% and 38.9% at Magweto site for insectivorous bats and Macronycteris gigas, respectively. CONCLUSIONS: The higher risk of bat coronavirus exposure for humans was found in December to March in relation to higher viral shedding peaks of coronaviruses in the parturition, lactation and weaning months of the bat populations at both sites. We also highlight the need to further document viral infectious risk in human/domestic animal populations surrounding bat habitats in Zimbabwe.


Assuntos
Alphacoronavirus , COVID-19 , Quirópteros , Animais , COVID-19/epidemiologia , Evolução Molecular , Feminino , Genoma Viral , Filogenia , SARS-CoV-2/genética , Zimbábue/epidemiologia
12.
J Plant Res ; 135(2): 235-245, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35150366

RESUMO

In mixed-ploidy populations, newly formed polyploids initially occur at low frequencies when compared to diploids. However, polyploidy may lead to morphological and phenological changes, which promote reproductive isolation and favor polyploid establishment and reproductive success. Additionally, previous studies have shown that polyploidy can confer some adaptive advantages to organisms in stressful environments. Here, we investigate variation in reproductive phenology, floral traits and reproductive success between diploid and autotetraploid trees of Libidibia ferrea (Mart. Ex Tul.) L.P. Queiroz (Leguminosae) in a mixed tropical urban population, a stressful environment. We assessed ploidy levels, flowering and fruiting phenology, flowering synchrony, floral and reproductive biology, pollination and fruit and seed set. We tested the hypothesis that autotetraploid individuals have a higher frequency of pollinators and higher fruit and seed set per inflorescence (as a proxy of reproductive success) than diploids in an urban green space. Libidibia ferrea is a good model to test our hypothesis because it is self-incompatible (i.e. relies on pollinators to set fruits). In the urban ecosystem studied, we found that diploids flowered for 6-7 months/year and autotetraploids for 3-5 months/year. Flowering synchrony was low between and within cytotypes and even though autotetraploids and diploids exhibited some overlap in flowering period, diploids flowered alone for 2-3 months. Autotetraploids had significantly more flowers per inflorescences, larger flowers and larger pollen grains (as expected for polyploids), but also a higher frequency of visits by legitimate pollinators including two exclusive ones, and higher fruit and seed set per inflorescence when compared to diploids, despite having a shorter flowering period. Our findings reveal some advantages for polyploids over their related diploids in a tropical urban green space. Also, our results highlight the need for more studies that seek to understand abiotic mechanisms affecting reproductive output of polyploids in urban ecosystems.


Assuntos
Diploide , Fabaceae , Polinização , Ecossistema , Fabaceae/genética , Flores/anatomia & histologia , Flores/genética , Frutas/genética , Humanos , Reprodução , Árvores/genética , População Urbana
13.
Mar Environ Res ; 163: 105215, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33360640

RESUMO

Coral reefs are threatened worldwide by global climate change, manifested in anthropogenic ocean warming and acidification. Despite the importance of coral sexual reproduction for the continuity of coral reefs, our understanding of the extent of the impact of climate change on coral sexual reproduction, particularly on coral reproductive phenology and early life stages, is limited. Here, we experimentally examined the effects of predicted end-of-the-century seawater conditions on the sexual reproduction and photosynthetic capacity of a Red-Sea zooxanthellate octocoral, Rhytisma fulvum. Sexually mature colonies were exposed to ambient temperature and pH conditions and to Representative Concentration Pathway (RCP) conditions (4.5 and 8.5), five weeks prior to their expected surface-brooding event. The reproductive phenology of the colonies under the simulated seawater conditions was compared to that on the natural reef. In addition, subsequent planulae development and their metamorphosis into primary polyps under the same RCP conditions as their parent colonies were monitored in a running seawater system. The results reveal that both RCP conditions led to a change in the timing of onset of the surface-brooding event and its synchronicity. In contrast, the surface-brooding event under ambient conditions co-occurred with that of the in-situ reef colonies and maintained its synchrony. Similarly, planula survival and polyp metamorphosis rate were significantly reduced under both RCP conditions compared to propagules reared under ambient conditions. In addition, the photosynthetic capacity of the parent colonies under both RCPs showed a reduction relative to that under the ambient conditions in the experiment, suggesting a reduction in carbon fixation during the late stages of gametogenesis. While our findings indicate that octocoral reproductive phenology is affected by environmental changes, further work is required in order to elucidate the long-term implications for the R. fulvum population in the northern Red Sea.


Assuntos
Antozoários , Animais , Mudança Climática , Recifes de Corais , Oceano Índico , Reprodução , Água do Mar , Temperatura
14.
Zoology (Jena) ; 142: 125816, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32739536

RESUMO

Reproductive traits vary widely within and among snake species, and are influenced by a range of factors. However, additional studies are needed on several species, especially on tropical snake faunas, to fully understand the patterns of reproductive variation in snakes. Here, we characterized the reproductive biology of B. jararacussu from southeastern and southern Brazil. We combined macroscopic and microscopic examinations of the reproductive system of museum specimens with observations of free-ranging snakes to characterize size at sexual maturity, sexual size dimorphism (SSD), reproductive output, and male and female reproductive cycles. We compared our data with published literature and discuss the factors that may play a role in shaping the reproductive patterns in the species and the genus. Bothrops jararacussu shares several characteristics with its congeners such as autumn mating season, obligatory sperm storage in the female reproductive tract, seasonal timing of parturition (summer-autumn), female-biased SSD, maturity at larger body sizes in females, and a positive relationship between body size and litter size. These characteristics seem phylogenetically conserved in Bothrops. On the other hand, B. jararacussu exhibits some unique characteristics such as a high degree of SSD (one of the highest values recorded in snakes), a large female body size, and a large litter and offspring size, which are among the largest recorded in the genus. Moreover, larger females reproduce more frequently than smaller conspecifics. These characteristics may be collectively interpreted as the result of a strong selection for increased fecundity. Other peculiarities of the species include an asynchrony between spermiogenesis (summer-autumn) and the peak of SSK hypertrophy (autumn to spring) and a prolonged production of SSK granules. Because SSK hypertrophy and mating are androgen-dependent in snakes, the prolonged SSK hypertrophy suggests that male B. jararacussu may prolong their potential to mate (compared with its congeners), which may increase their reproductive success. Our results and previous literature collectively suggest that, in Bothrops, the evolution of SSD is driven by fecundity selection, variation in reproductive output is influenced by variation in female body size, and the timing of spermiogenesis is influenced by other factors in addition to temperature. We also suggest that male Bothrops have undergone multiple evolutionary shifts in the timing of spermiogenesis.


Assuntos
Tamanho Corporal , Bothrops/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Feminino , Masculino , Folículo Ovariano/fisiologia , Estações do Ano , Fatores Sexuais , Testículo/anatomia & histologia , Testículo/fisiologia
15.
Mol Ecol ; 29(8): 1436-1451, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31850596

RESUMO

Adaptation to local climatic conditions is commonly found within species, but whether it involves the same intraspecific genomic variants is unknown. We studied this question in North American Arabidopsis lyrata, whose current distribution is shaped by post-glacial range expansion from two refugia, resulting in two distinct genetic clusters covering comparable climatic gradients. Using pooled whole-genome sequence data of 41 outcrossing populations, we identified loci associated with three niche-determining climatic variables in the two clusters and compared these outliers. Little evidence was found for parallelism in climate adaptation for single nucleotide polymorphisms (SNPs) and for genes with an accumulation of outlier SNPs. Significantly increased selection coefficients supported them as candidates of climate adaptation. However, the fraction of gene ontology (GO) terms shared between clusters was higher compared to outlier SNPs and outlier genes, suggesting that selection acts on similar pathways but not necessarily the same genes. Enriched GO terms involved responses to abiotic and biotic stress, circadian rhythm and development, with flower development and reproduction being among the most frequently detected. In line with GO enrichment, regulators of flowering time were detected as outlier genes. Our results suggest that while adaptation to environmental gradients on the genomic level are lineage-specific in A. lyrata, similar biological processes seem to be involved. Differential loss of standing genetic variation, probably driven by genetic drift, can in part account for the lack of parallel evolution on the genomic level.


Assuntos
Arabidopsis , Clima , Adaptação Fisiológica/genética , Arabidopsis/genética , Genética Populacional , América do Norte , Polimorfismo de Nucleotídeo Único/genética , Reprodução
16.
New Phytol ; 225(2): 740-753, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31486531

RESUMO

Phenology, the study of seasonal timing of events in nature, plays a key role in the matching between organisms and their environment. Yet, it has been poorly integrated in trait-based descriptions of the plant phenotype. Here, we focus on three phases of reproductive phenology - time of flowering, time of seed dispersal and duration of seed maturation - to test how these traits relate to other recognized dimensions of plant functioning. Traits describing reproductive phenology, together with reproductive plant height, seed mass, area of a leaf, and traits involved in leaf economics, were compiled for 139 species growing under Mediterranean climate conditions. Across all species, flowering time was positively related to reproductive height, while the duration of seed maturation was related to leaf economics. Relationships differed among growth forms, however: flowering time and reproductive height were related both in annuals and in herbaceous perennials, whereas the duration of seed maturation was related to seed mass only in annuals; no correlations were found for woody species. Phenology relates to other dimensions of plant functioning in a complex manner, suggesting that it should be considered as an independent dimension in the context of plant strategies.


Assuntos
Fenômenos Fisiológicos Vegetais , Flores/fisiologia , Região do Mediterrâneo , Fenótipo , Análise de Componente Principal , Característica Quantitativa Herdável , Reprodução , Sementes/crescimento & desenvolvimento , Especificidade da Espécie , Água
17.
Zoology, v. 142, 125816, out. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3122

RESUMO

Reproductive traits vary widely within and among snake species, and are influenced by a range of factors. However, additional studies are needed on several species, especially on tropical snake faunas, to fully understand the patterns of reproductive variation in snakes. Here, we characterized the reproductive biology of B. jararacussu from southeastern and southern Brazil. We combined macroscopic and microscopic examinations of the reproductive system of museum specimens with observations of free-ranging snakes to characterize size at sexual maturity, sexual size dimorphism (SSD), reproductive output, and male and female reproductive cycles. We compared our data with published literature and discuss the factors that may play a role in shaping the reproductive patterns in the species and the genus. Bothrops jararacussu shares several characteristics with its congeners such as autumn mating season, obligatory sperm storage in the female reproductive tract, seasonal timing of parturition (summer-autumn), female-biased SSD, maturity at larger body sizes in females, and a positive relationship between body size and litter size. These characteristics seem phylogenetically conserved in Bothrops. On the other hand, B. jararacussu exhibits some unique characteristics such as a high degree of SSD (one of the highest values recorded in snakes), a large female body size, and a large litter and offspring size, which are among the largest recorded in the genus. Moreover, larger females reproduce more frequently than smaller conspecifics. These characteristics may be collectively interpreted as the result of a strong selection for increased fecundity. Other peculiarities of the species include an asynchrony between spermiogenesis (summer-autumn) and the peak of SSK hypertrophy (autumn to spring) and a prolonged production of SSK granules. Because SSK hypertrophy and mating are androgen-dependent in snakes, the prolonged SSK hypertrophy suggests that male B. jararacussu may prolong their potential to mate (compared with its congeners), which may increase their reproductive success. Our results and previous literature collectively suggest that, in Bothrops, the evolution of SSD is driven by fecundity selection, variation in reproductive output is influenced by variation in female body size, and the timing of spermiogenesis is influenced by other factors in addition to temperature. We also suggest that male Bothrops have undergone multiple evolutionary shifts in the timing of spermiogenesis.

18.
Am J Bot ; 106(11): 1519-1525, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31664731

RESUMO

PREMISE: The El Niño Southern Oscillation (ENSO) affects tropical environmental conditions, potentially altering ecosystem function as El Niño events interact with longer-term climate change. Anomalously warm equatorial Pacific Ocean temperatures affect rainfall and temperature throughout the tropics and coincide with altered leaf flush phenology and increased fruit production in wet tropical forests; however, the understanding of mechanisms underlying this pattern is limited. There is evidence that increases in tropical tree reproduction anticipate El Niño onset, motivating the continued search for a global driver of tropical angiosperm reproduction. We present the solar-wind energy flux hypothesis: that physical energy influx to the Earth's upper atmosphere and magnetosphere, generated by a positive anomaly in the solar wind preceding El Niño development, cues tropical trees to increase resource allocation to reproduction. METHODS: We test this hypothesis using 19 years of data from Luquillo, Puerto Rico, correlating them with measures of solar-wind energy. RESULTS: From 1994 to 2013, the solar-wind energy flux into Earth's magnetosphere (Ein ) was more strongly correlated with the number of species fruiting and flowering than the Niño 3.4 climate index, despite Niño 3.4 being previously identified as a driver of interannual increases in reproduction. CONCLUSIONS: Changes in the global magnetosphere and thermosphere conditions from increased solar-wind energy affect global atmospheric pressure and circulation patterns, principally by weakening the Walker circulation. We discuss the idea that these changes cue interannual increases in tropical tree reproduction and act through an unidentified mechanism that anticipates and synchronizes the reproductive output of the tropical trees with El Niño.


Assuntos
Árvores , Vento , Ecossistema , Porto Rico , Clima Tropical
19.
Data Brief ; 25: 104177, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31321268

RESUMO

In this article, we supply raw data on the reproductive biology and frequency of pollinators of Paubrasilia echinata, a threatened tree, endemic to the Brazilian Atlantic forest, which is largely used in Brazilian urban areas (e.g. avenues, parks and squares) due to its ornamental potential. Specifically, we share data on the reproductive phenology, pollen/flower, floral visitors and seed set of P. echinata in urban and natural ecosystems. This dataset article is related to the original research article "Reduced reproductive success of the endangered tree brazilwood (Paubrasilia echinata, Leguminosae) in urban ecosystem compared to Atlantic forest remnant: lessons for tropical urban ecology" (Oliveira et al., 2019). As urbanization is thought to negatively impact the maintenance of plant communities by affecting ecological key interactions, such as pollination, we believe that data as the supplied here are relevant and could support the planning of urban green spaces to maintain viable communities of plants and animals. This is especially valid for tropical urban ecosystems since most of the studies on plant ecology have been developed in temperate regions and there are still several gaps on the knowledge of ecological functions and ecosystems services (e.g. pollination) in urban green areas in the tropics.

20.
Am J Bot ; 106(8): 1096-1105, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31334843

RESUMO

PREMISE: Knowledge of intra-specific variation in seed traits and its environmental determinants is important for predicting plant responses to environmental changes. Here, we tested the hypothesis that differences in soil fertility and rainfall during specific phenological phases drive variation in seed traits in a widely distributed tree, Copaifera langsdorffii. We also tested the hypothesis that climatic heterogeneity increases within-plant variation in seed traits. METHODS: Inter- and intra-population and within-plant variation in seed mass, number, and seed size/seed number were evaluated for 50 individuals from five populations distributed along a rainfall gradient and occurring on varying soil types. Using multivariate approaches, we tested the effects of soil fertility characteristics and rainfall in five reproductive phenological phases on seed traits. RESULTS: The seed traits varied greatly both among populations and within plants. Inter-population variation in seed mass was driven by total rainfall during fruit development, and variation in seed number was influenced by total rainfall during the dry season before the reproductive phase. Phosphorus levels and potential acidity of the soil also explained the variations in seed mass and seed mass/seed number, respectively. A positive association between intra-annual variation in rainfall and within-plant variation in seed mass and seed number was found. CONCLUSION: Both rainfall during specific reproductive phases and soil conditions shape the variation in the seed mass and number of C. langsdorffii. Environment-driven seed trait variation may contribute to this species' broad niche breadth, which in turn may determine the species' persistence under future climatic conditions.


Assuntos
Fabaceae , Árvores , Fertilidade , Sementes , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...