Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.219
Filtrar
1.
Glycobiology ; 34(8)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38963938

RESUMO

Heparan sulfate (HS) is a linear polysaccharide with high structural and functional diversity. Detection and localization of HS in tissues can be performed using single chain variable fragment (scFv) antibodies. Although several anti-HS antibodies recognizing different sulfation motifs have been identified, little is known about their interaction with HS. In this study the interaction between the scFv antibody HS4C3 and heparin was investigated. Heparin-binding lysine and arginine residues were identified using a protect and label methodology. Site-directed mutagenesis was applied to further identify critical heparin-binding lysine/arginine residues using immunohistochemical and biochemical assays. In addition, computational docking of a heparin tetrasaccharide towards a 3-D homology model of HS4C3 was applied to identify potential heparin-binding sites. Of the 12 lysine and 15 arginine residues within the HS4C3 antibody, 6 and 9, respectively, were identified as heparin-binding. Most of these residues are located within one of the complementarity determining regions (CDR) or in their proximity. All basic amino acid residues in the CDR3 region of the heavy chain were involved in binding. Computational docking showed a heparin tetrasaccharide close to these regions. Mutagenesis of heparin-binding residues reduced or altered reactivity towards HS and heparin. Identification of heparin-binding arginine and lysine residues in HS4C3 allows for better understanding of the interaction with HS and creates a framework to rationally design antibodies targeting specific HS motifs.


Assuntos
Heparina , Heparitina Sulfato , Heparitina Sulfato/química , Heparitina Sulfato/imunologia , Heparitina Sulfato/metabolismo , Heparina/química , Heparina/metabolismo , Simulação de Acoplamento Molecular , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/genética , Humanos , Animais , Mutagênese Sítio-Dirigida , Sítios de Ligação , Sequência de Aminoácidos
2.
Bioresour Technol ; 406: 131082, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972432

RESUMO

Biobased L-lactic acid (L-LA) appeals to industries; however, existing technologies are plagued by limited productivity and high energy consumption. This study established an integrated process for producing macroalgae-based L-LA from Eucheuma denticulatum phycocolloid (EDP). Dilute acid-assisted microbubbles-mediated ozonolysis (DAMMO) was selected for the ozonolysis of EDP to optimize D-galactose recovery. Through single-factor optimization of DAMMO treatment, a maximum D-galactose recovery efficiency (59.10 %) was achieved using 0.15 M H2SO4 at 80 °C for 75 min. Fermentation with 3 % (w/v) mixed microbial cells (Bacillus coagulans ATCC 7050 and Lactobacillus acidophilus-14) and fermented residues achieved a 97.67 % L-LA yield. Additionally, this culture approach was further evaluated in repeated-batch fermentation and showed an average L-LA yield of 93.30 %, providing a feasible concept for macroalgae-based L-LA production.

3.
Gene ; : 148755, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992760

RESUMO

African swine fever (ASF) is an acute and severe infectious disease caused by the African Swine Fever Virus (ASFV). ASFV exhibits significant resistance and stability in the environment, which, coupled with its double-stranded DNA and large genome, predisposes it to contaminate laboratory samples. This characteristic can lead to false-positive results in swine farm settings even days after disinfection, as detectable through polymerase chain reaction (PCR) or real-time fluorescent quantitative PCR (qPCR) assays. To meet the demand for efficient clinical methods capable of discriminating between ASFV nucleic acid and ASFV virions, this study aims to ascertain the efficacy of the nuclease "BenzoNuclease" in distinguishing ASFV nucleic acid (ASFV-DNA) from ASFV virions. BenzoNuclease is a versatile nucleic acid enzyme with the capacity to degrade nearly all forms of DNA and RNA. Initially, this research established a highly sensitive general PCR detection method for ASFV. Subsequently, a positive control was constructed using the M13 bacteriophage to substitute for active ASFV, facilitating the development of an improved qPCR method. It is important to note that common disinfectants have the potential to deactivate BenzoNuclease. However, in an environment simulating actual production applications, residual disinfectants do not interfere with the enzymatic efficacy of BenzoNuclease, thus not affecting the detection capabilities of this method. Positive clinical samples from pig farms, upon testing with the improved method, revealed that three samples were positive, indicating the presence of viral particles, while the remaining samples were negative, indicating the presence of nucleic acids. This provides an additional new option for sample testing in pig farms.

4.
Food Chem ; 458: 140246, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38954952

RESUMO

In this study, a simple, sensitive, and rapid method was developed for the simultaneous determination of 99 kinds of pesticides in fatty milk samples. This novel emulsification-demulsification clean-up approach, coupled with an automatic demulsification-dehydration cartridge, allowed rapid single-step clean-up operation and high throughput. It also achieved effective and selective removal of lipids. The analysis was performed using low-pressure gas chromatography-tandem mass spectrometry (LPGC-MS/MS). Based on the optimal conditions, the targeted pesticides showed good linearity in the range of 5-250 µg/kg, with recoveries of 70-120% at spiking levels of 5, 10, and 20 µg/kg in cow milk, goat milk, and almond milk, respectively. The limit of quantification for most pesticides was 5 µg/kg, and the RSDs were lower than 20%. Analysis of real dairy products obtained from local markets revealed a potential risk in plant-derived almond milk, but no significant risks were found for cow and goat milk.

5.
J Vet Res ; 68(2): 223-232, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38947162

RESUMO

Introduction: The occurrence of pesticide residues in animal products deserves attention because of the contamination by environmental pollutants and pesticides that may be present in the food that animals are fed. The goal of this work was the validation of a method for detection of residues of multiple classes of pesticide and determination of their residues in chicken breast fillets. Material and Methods: Gas chromatography with mass spectrometry was used for analysis. A modified quick, easy, cheap, effective, rugged and safe (QuEChERS) method was put into practice for its validation and applied to real samples. The study optimised mass detection and investigated the effect of a freezing step during the preparation of samples. Pesticides were determined in samples from conventional and organic production. Results: The impact of the matrix effect decreased, with the largest number of pesticides and satisfactory recovery determined by the application of mixed solvent acetonitrile and ethyl acetate for extraction. Detection of pesticide residues was achieved in a linear range between 5 and 50 µg/kg with satisfactory excellent correlation coefficients greater than 0.99. The recovery of all the pesticide residues ranged between 71.2 and 118.80%. The relative standard deviation was from 2.9% to 18.1% for all validated pesticide residues. The limits of quantification were in the range of 3.0-4.9 µg/kg. Out of 56 pesticide residues analysed in real samples, 5 were detected: α endosulfan, cypermethrin, endosulfan sulphate, permethrin and p,p´-dichlorodiphenyltrichloroethane (DDT) and their concentrations ranged from 4.9 to 15.2 µg/kg. Conclusion: All tested samples were compliant with the evaluation criteria, and detected values of pesticide residues were lower than the maximum residual levels.

6.
Physiol Mol Biol Plants ; 30(6): 985-1002, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38974358

RESUMO

Present study would be significant in the sustenance of quality characters for postharvest storage of Capsicum fruit with CO2-sensitization in biocompatible manner. The present experiment describes effects of CO2 sensitization on delaying postharvest ripening through physiological attributes in Capsicum fruit. The experiment was conducted with acidified bicarbonate-derived CO2 exposure for 2 h on Capsicum fruit, kept under white light at 25 °C through 7 days postharvest storage. Initially, fruits responded well to CO2 as recorded sustenance of greenness and integrity of fruit coat resolved through scanning electron micrograph. Loss of water and accumulation of total soluble solids were marginally increased on CO2-sensitized fruit as compared to non-sensitized (control) fruit. The ethylene metabolism biosynthetic genes like CaACC synthase, CaACC oxidase were downregulated on CO2-sensitization. Accompanying ethylene metabolism cellular respiration was downregulated on CO2 induction as compared to control through 7 days of storage. Fruit coat photosynthesis decarboxylating reaction by NADP malic enzyme was upregulated to maintain the reduced carbon accumulation as recorded on 7 days of storage under the same condition. CO2-sensitization effectively reduced the lipid peroxides as oxidative stress products on ripening throughout the storage. Anti-oxidation reaction essentially downregulates the ROS-induced damages of biomolecules that otherwise are highly required for food preservation during postharvest storage. Thus, the major finding is that CO2-sensitization maintains a higher ratio of unsaturated to saturated fatty acids in fruit coat during storage. Tissue-specific downregulation of ROS also maintained the nuclear stability under CO2 exposure. These findings provide basic as well as applied insights for sustaining Capsicum fruit quality with CO2 exposure under postharvest storage. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01471-4.

7.
Food Sci Anim Resour ; 44(4): 873-884, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38974729

RESUMO

Flunixin is a veterinary nonsteroidal anti-inflammatory agent whose residues have been investigated in their original form within tissues such as muscle and liver. However, flunixin remains in milk as a metabolite, and 5-hydroxy flunixin has been used as the primary marker for its surveillance. This study aimed to develop a quantitative method for detecting flunixin and 5-hydroxy flunixin in milk and to strengthen the monitoring system by applying to other livestock and fishery products. Two different methods were compared, and the target compounds were extracted from milk using an organic solvent, purified with C18, concentrated, and reconstituted using a methanol-based solvent. Following filtering, the final sample was analyzed using liquid chromatography- tandem mass spectrometry. Method 1 is environmentally friendly due to the low use of reagents and is based on a multi-residue, multi-class analysis method approved by the Ministry of Food and Drug Safety. The accuracy and precision of both methods were 84.6%-115% and 0.7%-9.3%, respectively. Owing to the low matrix effect in milk and its convenience, Method 1 was evaluated for other matrices (beef, chicken, egg, flatfish, and shrimp) and its recovery and coefficient of variation are sufficient according to the Codex criteria (CAC/GL 71-2009). The limits of detection and quantification were 2-8 and 5-27 µg/kg for flunixin and 2-10 and 6-33 µg/kg for 5-hydroxy flunixin, respectively. This study can be used as a monitoring method for a positive list system that regulates veterinary drug residues for all livestock and fisheries products.

8.
Methods Mol Biol ; 2836: 219-233, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38995543

RESUMO

Channels, tunnels, and pores serve as pathways for the transport of molecules and ions through protein structures, thus participating to their functions. MOLEonline ( https://mole.upol.cz ) is an interactive web-based tool with enhanced capabilities for detecting and characterizing channels, tunnels, and pores within protein structures. MOLEonline has two distinct calculation modes for analysis of channel and tunnels or transmembrane pores. This application gives researchers rich analytical insights into channel detection, structural characterization, and physicochemical properties. ChannelsDB 2.0 ( https://channelsdb2.biodata.ceitec.cz/ ) is a comprehensive database that offers information on the location, geometry, and physicochemical characteristics of tunnels and pores within macromolecular structures deposited in Protein Data Bank and AlphaFill databases. These tunnels are sourced from manual deposition from literature and automatic detection using software tools MOLE and CAVER. MOLEonline and ChannelsDB visualization is powered by the LiteMol Viewer and Mol* viewer, ensuring a user-friendly workspace. This chapter provides an overview of user applications and usage.


Assuntos
Bases de Dados de Proteínas , Software , Conformação Proteica , Interface Usuário-Computador , Modelos Moleculares , Canais Iônicos/metabolismo , Canais Iônicos/química , Biologia Computacional/métodos , Proteínas/química , Proteínas/metabolismo , Navegador
9.
Environ Geochem Health ; 46(8): 271, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954040

RESUMO

Pyrethroids are synthetic organic insecticides. Deltamethrin, as one of the pyrethroids, has high insecticidal activity against pests and parasites and is less toxic to mammals, and is widely used in cities and urban areas worldwide. After entering the natural environment, deltamethrin circulates between solid, liquid and gas phases and enters organisms through the food chain, posing significant health risks. Increasing evidence has shown that deltamethrin has varying degrees of toxicity to a variety of organisms. This review summarized worldwide studies of deltamethrin residues in different media and found that deltamethrin is widely detected in a range of environments (including soil, water, sediment, and air) and organisms. In addition, the metabolism of deltamethrin, including metabolites and enzymes, was discussed. This review shed the mechanism of toxicity of deltamethrin and its metabolites, including neurotoxicity, immunotoxicity, endocrine disruption toxicity, reproductive toxicity, hepatorenal toxicity. This review is aim to provide reference for the ecological security and human health risk assessment of deltamethrin.


Assuntos
Inseticidas , Nitrilas , Piretrinas , Piretrinas/toxicidade , Nitrilas/toxicidade , Inseticidas/toxicidade , Humanos , Animais , Resíduos de Praguicidas/toxicidade , Resíduos de Praguicidas/análise , Medição de Risco , Poluentes Ambientais/toxicidade
10.
Food Chem ; 458: 140316, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38968711

RESUMO

To enhance curcumin's application in photodynamic inactivation (PDI) of liquid foods, a supramolecular complex of biotin-modified ß-cyclodextrin and curcumin (Biotin-CD@Cur) was synthesized. This complex significantly improves curcumin's solubility, stability, and PDI efficiency. Following PDI, Biotin-CD@Cur can be magnetically separated from the liquid matrix using streptavidin-coated magnetic beads (SA-MBs). Leveraging the reversible binding between streptavidin and biotin, Biotin-CD@Cur and SA-MBs fully dissociate in ultrapure water at 70 °C, enabling reuse. Antibacterial tests in freshly squeezed orange juice demonstrated that a low dose of 1.5 J/cm2 from a 420 nm LED array and 10 µg/mL of Biotin-CD@Cur achieved log reductions of 3.287 ± 0.015 for Staphylococcus aureus and 2.961 ± 0.011 for Listeria monocytogenes, while preserving the juice's flavor and nutritional contents. The PDI system remained effective for at least four cycles. Ultra-performance liquid chromatography and atomic absorption spectroscopy confirmed no residues of system components in the juice after magnetic separation.

11.
Int Microbiol ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970730

RESUMO

The development of technologies that allow the production of enzymes at a competitive cost is of great importance for several biotechnological applications, and the use of agro-industrial by-products is an excellent alternative to minimize costs and reduce environmental impacts. This study aimed to produce endo-xylanases using agro-industrial substrates rich in hemicellulose as sources of xylan in culture media. For this purpose, the yeast Cryptococcus laurentti and five lignocellulosic materials (defatted rice bran, rice husk, corn cob, oat husks, and soybean tegument), with and without pretreatment, were used as a source of xylan for enzyme production. To insert the by-products in the culture medium, they were dried and treated (if applicable) with 4% (w.v-1) NaOH and then added in a concentration of 2% (w.v-1). The cultures were agitated for 96 h, and the aliquots were removed to determine the enzymatic activities. Among the by-products studied, the maximum activity (8.7 U. mL-1 at pH 7.3) was obtained where rice bran was used. In contrast, corn cob was the by-product that resulted in lower enzyme production (1.6 U.mL-1). Thus, the defatted rice bran deserves special attention in front of the other by-products used since it provides the necessary substrate for producing endo-xylanases by yeast.

12.
J Environ Manage ; 365: 121530, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38905799

RESUMO

Atrazine is a widely used herbicide in agriculture, and it has garnered significant attention because of its potential risks to the environment and human health. The extensive utilization of atrazine, alongside its persistence in water and soil, underscores the critical need to develop safe and efficient removal strategies. This comprehensive review aims to spotlight atrazine's potential impact on ecosystems and public health, particularly its enduring presence in soil, water, and plants. As a known toxic endocrine disruptor, atrazine poses environmental and health risks. The review navigates through innovative removal techniques across soil and water environments, elucidating microbial degradation, phytoremediation, and advanced methodologies such as electrokinetic-assisted phytoremediation (EKPR) and photocatalysis. The review notably emphasizes the complex process of atrazine degradation and ongoing scientific efforts to address this, recognizing its potential risks to both the environment and human health.

13.
Food Chem ; 457: 140071, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38905827

RESUMO

In this study, we have developed a novel, hypersensitive, and ultraselective electrochemical sensor containing thermally annealed gold-silver alloy nanoporous matrices (TA-Au-Ag-ANpM) integrated with f-MWCNTs-CPE and poly(l-serine) nanocomposites for the simultaneous detection of sulfathiazole (SFT) and sulfamethoxazole (SFM) residues in honey, beef, and egg samples. TA-Au-Ag-ANpM/f-MWCNTs-CPE/poly(l-serine) was characterized using an extensive array of analytical (UV-Vis, FT-IR, XRD, SEM, and EDX), and electrochemical (EIS, CV and SWV) techniques. It exhibited outstanding performance over a wide linear range, from 4.0 pM to 490 µM for SFT and 4.0 pM to 520 µM for SFM, with picomolar detection and quantification limits (0.53 pM and 1.75 pM for SFT, 0.41 pM and 1.35 pM for SFM, respectively). The sensor demonstrated exceptional repeatability, reproducibility, and anti-interference capability, with percentage recovery of 95.6-102.4% in food samples and RSD below 5%. Therefore, the developed sensor is an ideal tool to address the current antibiotic residue crisis in food sources.

14.
Talanta ; 278: 126448, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38905962

RESUMO

The analysis of pesticide residues and mycotoxins in baby food demands exceptionally low limits of quantitation, necessitating the use of highly sensitive instruments capable of conducting trace analyses. High-resolution instruments typically fail to detect such low levels. However, the latest advancements in liquid time-of-flight technology, when coupled with ion trapping, enable ion enrichment, thereby improving detection levels. This allows for the analysis of these substances at low concentration levels, benefiting from enhanced mass accuracy. Additionally, the use of mass accuracy data helped eliminate matrix interferences, thereby enabling high-confidence identification. We developed a multi-residue method to analyse 219 pesticide residues and 9 mycotoxin residues in baby food matrices. Utilizing a QuEChERS-based extraction method, the samples were then analysed using an LC-Zeno® trap QTOF with mass window screening acquisition. For pesticides, the limit of quantitation was 0.001-0.003 mg/kg for 81 % of the evaluated compounds, 0.005 mg/kg for 13 %, 0.010 mg/kg for 4 % and 0.020-0.030 for 2 %; good linearities were obtained at these levels. Apparent recoveries were evaluated at 0.003, 0.005, and 0.010 mg/kg. At the lowest recovery level, 93 % of compounds showed recoveries between 70 and 120 %. The rest of the compounds were in the range of 63-129 %, with relative standard deviation values below 20 %. For mycotoxins, the limits of quantitation ranged from 0.0001 to 0.100 mg/kg, with matrix-matched concentrations assessed within this range. Recoveries were evaluated at low concentration range (0.001-0.003 mg/kg) and high range (0.020-0.050) with apparent recoveries values between 92 and 140 %. Finally, a total of 31 commercial baby food samples were analysed using this method. The results indicated that 16 samples contained pesticide residues, while two samples were found to have mycotoxins.

15.
Int J Legal Med ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38898153

RESUMO

The analysis of traces of injuries can be difficult in cases of charred human remains since the alteration and fragmentation are high. The aim of this study is to explore the use of X-Ray Fluorescence (XRF) technique as a screening tool for detecting and analyzing gunshot residues (GSR) on cremated and highly fragmented materials, as it is a technique that allows for fast qualitative investigations without altering the sample or requiring sample preparation. The study was carried out on two steps: firstly, on completed skeletonized bones to verify if GSR survive to burning; secondly, we considered a more realistic situation, in which soft tissues were present before the shooting. To this aim, nine adult bovine ribs, four retaining soft tissue, five completely skeletonized, were subjected to a shooting test using two types of 9 mm projectiles (jacketed and unjacketed bullets). The ribs were then burnt until complete calcination in an electric furnace. The entry wound of each rib was analyzed using XRF, revealing traces of GSR. The XRF analysis showed that all samples, except for one, contain Pb and/or Sb near the lesion. Furthermore, the samples hit by unjacketed bullets had a more significant presence of Pb in macroscopic yellow areas, which persisted when moving away from the gunshot. These findings could pave the way for the use of XRF technology, mostly when a fast and immediate scan must be done on osteologic materials by a conservative method.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38900139

RESUMO

Pesticides and veterinary drugs are widely employed to support food production. Assessing potential risks associated with the dietary consumption of pesticide and veterinary drug residues is, however, essential. Potential risks depend on the toxicity degree of the analyzed residue and population exposure levels. Human populations are exposed to numerous chemical substances through different pathways with varying exposure times, leading to increased health risks when compared to exposure to individual chemicals. Cumulative exposure assessments usually assess combined exposures to multiple chemicals through multiple exposure pathways. In this sense, this comprehensive review aims to provide insights into cumulative dietary pesticide and veterinary drug residue exposures. The main methodologies, strategies, and legislation employed by international agencies to this end are discussed. A review concerning articles that apply existing methodologies and approaches, as well as the challenges in this context faced by Brazil is also presented. As this is a critical issue not only for Brazilian public health but also for the global community, regulatory agencies should prioritize formulating regulations that incorporate exposure assessments regarding the simultaneous presence of residues and contaminants in foodstuffs.

17.
PeerJ ; 12: e17513, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887617

RESUMO

Biochar is increasingly gaining popularity due to its extensive recommendation as a potential solution for addressing the concerns of food security and climate change in agroecosystems, with biochar application for increased carbon sequestration, enhanced soil fertility, improved soil health, and increased crop yield and quality. There have been multiple studies on crop yield utilizing various biochar types and application amounts; however, none have focused on the influence of diverse biochar types at various pyrolysis temperatures with different application amounts and the integration of fertilizer regimes in maize crops. Therefore, a two-year factorial field experiment was designed in a temperate Himalayan region of India (THRI) to evaluate the residual effect of different biochar on maize yield under different pyrolysis temperatures, various application rates and fertilizer regimes. The study included three factors viz., amendment type (factor 1), rate of application (factor 2) and fertilizer regime (factor 3). Amendment type included 7 treatments: No biochar- control (A1), apple biochar @ 400 °C pyrolysis temperature (A2), apple biochar @ 600 °C pyrolysis temperature (A3), apple residue biomass (A4), dal weed biochar @ 400 °C pyrolysis temperature (A5), dal weed biochar @ 600 °C pyrolysis temperatures (A6), and dal weed residue biomass (A7). The rate of application included 3 levels: Low (L- 1 t ha-1), medium (M- 2 t ha-1), and high (H- 3 t ha-1). At the same time, the fertilizer regimes included 2 treatments: No fertilizer (N) and recommended dose of fertilizer (F). The results revealed that among the various amendment type, rate of application and fertilizer regimes, the A3 amendment, H rate of application and F fertilizer regime gave the best maize growth and productivity outcome. Results revealed that among the different pyrolyzed residues used, the A3 amendment had the highest plant height (293.87 cm), most kernels cob-1 (535.75), highest soil plant analysis development (SPAD) value (58.10), greatest cob length (27.36 cm), maximum cob girth (18.18 cm), highest grain cob yield (1.40 Mg ha-1), highest grain yield (4.78 Mg ha-1), higher test weight (305.42 gm), and highest stover yield (2.50 Mg ha-1). The maximum dry weight in maize and the number of cobs plant-1 were recorded with amendments A4 (14.11 Mg ha-1) and A6 (1.77), respectively. The comparatively 2nd year of biochar application than the 1st year, the H level of the rate of application than the L rate and the application and integration of the recommended dose of fertilizer in maize results in significantly higher values of growth and productivity in maize. Overall, these findings suggest that the apple biochar @ 600 °C pyrolysis temperature (A3) at a high application rate with the addition of the recommended dose of fertilizer is the optimal biochar for enhancing the growth and productivity of maize in the THRI.


Assuntos
Carvão Vegetal , Fertilizantes , Zea mays , Fertilizantes/análise , Zea mays/crescimento & desenvolvimento , Carvão Vegetal/química , Índia , Pirólise , Solo/química , Biomassa , Produtos Agrícolas/crescimento & desenvolvimento
18.
J Environ Health Sci Eng ; 22(1): 31-51, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38887764

RESUMO

Background: Today, antibiotics are widely used for treatment and feed additives to enhance livestock growth. Antibiotic residues may be found in food of animal origin for various reasons, including ignoring the withdrawal period after treatment, overuse for animals, and contamination of feed with treated animals in animal products. Among animal products, dairy products have a special place in the human diet, and antibiotic residues in them have caused a great deal of concern among consumers. Objective: This systematic review and meta-analysis aimed to evaluate and compare studies conducted in Iran on antibiotic residues in dairy products during 2000-2022. Methods: In this review, 52 eligible studies were collected by searching the Scientific Information Database (SID), Magiran, Google Scholar, Science-Direct, Scopus, and PubMed using the English or Persian keywords such as an antibiotic or antimicrobial residue, Beta-lactam residue, Tetracycline residue, Sulfonamide residue, Chloramphenicol residue, Aminoglycosides residue, Macrolide residue, Quinolones residue, Milk, Raw milk, Pasteurized milk, UHT milk, Powder milk, Cheese, Yogurt, Butter, Cream, Doogh, Kashk, Ice cream, and Iran. Results: According to the reviewed studies, the total prevalence of antibiotic residues in dairy products was 29% (95% CI: 15-43%). Among the seven evaluated antibiotic groups, most studies have been conducted on tetracycline, beta-lactam, and sulfonamide groups, with 16, 10, and 7 respectively, and the highest level of contamination with 663 ± 1540 µg/l is related to tetracycline. Most studies on antibiotic dairy product residues in Iran with 12, 11, and 8 studies are associated with East Azarbaijan province, then Tehran and Khorasan Razavi respectively, and no study has been conducted in 11 provinces of the country. According to the studies, Gilan, Qazvin and Razavi Khorasan provinces had the highest amount of antibiotic residue in milk with an average value of 56.415 ± 33.354, 45.955 ± 4.179 and 45.928 ± 33.027, respectively. Most of the methods used in the studies to measure antibiotic residues in milk were the Copan test kit and the HPLC method, which were used in 19 and 14 studies, respectively. Conclusions: Studies have shown that the prevalence of antibiotic residue in dairy products in Iran is high, so applying an effective strategy and developing the necessary standards in this field to control milk quality is a public health necessity. The findings of this study show that further evaluation of fermented dairy products, especially non-fermented ones such as butter and cream, is needed to prevent adverse health reactions.

19.
J Environ Health Sci Eng ; 22(1): 123-137, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38887769

RESUMO

Purpose: This study aimed to present an index (IEP) to evaluate the environmental performance of the sugar-energy industrial process based on the waste generated in manufacturing operations. The residues considered in this study were: vinasse, filter cake, ash and soot, residual waters, and sewage sludge. Methods: The index created was developed to take into account, and to be directly proportional to the environmental impact of each residue generated by the sugar-energy production, to the relative spatial dispersion that each waste can reach, and to the environmental fragility of the hydrographic basin where the plant under evaluation is inserted and works. The lower IEP, the better the company valuation. Results: The index was tested in a real company and exhibited an IEP Total = 1,4.1013 km2.p/yr, which shows weak waste management by the enterprise. Vinasse was responsible for 50% of the IEP Total, while filter cake contributed 45% to it. Ash and soot, residual waters, and sewage sludge were together responsible for 5% of the IEP Total. Conclusion: The theoretical conception used in this study is inspiring for the development of new studies on environmental assessment measurement. The study showed that vinasse is the most problematic waste in environmental terms, a conclusion that is in line with academic studies. Nevertheless, the waste with the greatest potential impact on the environment is filter cake. Despite this, filter cake presented a lower IEP(i) than vinasse, given that its negative impact on the basin is smaller. Both wastes contributed 95% of the IEP Total, which places them among the residues to be managed with greater attention.

20.
Bioresour Technol ; 406: 131002, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38889869

RESUMO

A continuous chemical-free green approach was investigated for the comprehensive reutilization of all components in herbal extraction residues (HERs), taking Glycyrrhiza uralensis residue (GUR) as an example. The GUR structural changes induced by mechanical extrusion which improve the specific surface area and enzyme accessibility of GUR. With 3 % pretreated GUR loading of high-tolerance Penicillium oxalicum G2. The reducing sugar yield of 11.45 g/L was achieved, along with an 81.06 % in situ enzymatic hydrolysis. Finally, 8.23 g/L bioethanol (0.40 g/g total sugar) was produced from GUR hydrolysates after 24 h fermentation of Pichia stipitis G32. The amount of functional medicinal ingredients extracted from GUR after hydrolysis (39.63 mg/g) was 37.69 % greater than that of un-pretreated GUR. In total, 1.49 g flavonoids, 294.36 U cellulase, and 14.13 g ethanol could be produced from 100 g GUR using this process, illustrating that this green and efficient process has the potential for industrial production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...