Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.809
Filtrar
1.
J Drug Target ; : 1-18, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990642

RESUMO

The present research looked for ways to develop shielded nanoparticles (NPs)-drug transporters made of chitosan (CS) to enhance the bioavailability of Edoxaban tosylate monohydrate (ETM) for oral administration by examining the correlation among design aspects and data from experiments using response surface methodology. ETM-loaded CS nanoparticles (ETM-CS-NPs) were developed using the ionic gelation of CS with tripolyphosphate (TPP). Utilizing Zeta-sizer and scanning electron microscopy, the ETM-CS-NPs were evaluated for particle size (PS), zeta potential (ZP), surface morphology, polydispersity index (PDI), entrapment efficiency (EE), and drug loading (DL). Drug and polymer interactions in NPs were assessed using Fourier transform infrared spectroscopy. The response surface approach and Design-Expert software optimized the ETM-CS-NPs. Using response surface methodology, the effects of independent variables such as the amount of CS, the amount of TPP, and the amount of glacial acetic acid on PS, PDI, and ZP were analyzed. The optimal combination of PS (354.8 nm), PDI (0.509), ZP (43.7 + mV), % EE (70.3 ± 1.3), and % DL (9.1 ± 0.4) has been identified for the optimized ETM-CS-NPs. ETM-CS-NPs' anticoagulant activity was evaluated using activated partial thromboplastin time (aPTT), prothrombin time (PT), and thrombin time (TT) assays. In conclusion, a practical and consistent method has been established, and its application has been proven in vitro, indicating its utility for future studies of the biological distribution of ETM-CS-NPs in vivo for specific antithrombotic treatments.

2.
Chem Biodivers ; : e202400907, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38993058

RESUMO

The current study proposes an optimized ethanolic extraction for the efficient recovery of high-value components from Pakistani olives (cv. Arbequina) using response surface methodology (RSM) and artificial neural networking (ANN). The extracts were investigated for antioxidant properties and GC-MS metabolite profiling.  Four factors such as time, temperature, solvent concentration, and solute weight (g/100 mL) were utilized as independent variables for determining the response (% yield).  The results obtained under optimum extraction conditions such as duration (25 min), temperature (45°C), solvent concentration (65%; ethanol: water v/v), and solute (7.50 g) indicated an extract yield of 40.96% from Arbiquina olives. The analysis of variance (ANOVA) for the RSM model showed significant p-values and a correlation coefficient (R2) of 0.9960, confirming model reliability.  The multilayer perceptron architecture was used in ANN, and the results were fairly consistent with the experimental findings. Arbequina olive extract (AOE) demonstrated significant antioxidant ability in terms of total phenolics, total flavonoid concentration, and DPPH radical scavenging. The GC-MS analysis of AOE revealed the presence of several bioactives, including oleic acid (36.22%), hydroxytyrosol (3.95%), tyrosol (3.32%), ß-sitosterol (2.10%), squalene (1.10%), sinapic acid (0.67%), α-tocopherol (0.66%), vanillic acid (0.56%), 3,5-di-tert-butylcatechol (0.31%), and quercetin.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38987516

RESUMO

The effluent from the oil drilling site is a complex mixture of hazardous chemicals that causes environmental impacts on its disposal. The treatment of oil drill-site wastewater has not been explored much, and understanding its characteristics and optimizing the treatment process are required. In the present study, we have optimized the electrocoagulation process with aluminum electrodes for drill-site wastewater treatment. A multi-level factorial center composite design using response surface methodology is applied to optimize the effect of current density (CD), pH, and inter-electrode distance (IED) on chemical oxygen demand (COD) removal. The increasing current density shows a significant increase in COD removal, and a similar trend was observed with a decreased pH. It was found that with current density and inter-electrode distance, the maximum COD removal achieved was 70% at the CD of 19.04 mA cm-2 and IED 2.6 cm. By varying pH and current density, the COD removal reached up to 90% at pH 6 and CD 19.04 mA cm-2. The study shows that the current density is the dominant factor for the process's energy consumption and operating cost, followed by pH. This study's findings could be effectively used to develop large-scale treatment processes through electrocoagulation.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38949731

RESUMO

To maximize the efficiency of biomass waste utilization and waste management, a novel acid-modified magnetic biomass spent coffee grounds (NiFe2O4/SCG) was obtained by pyrolysis at 473 K and co-precipitation methods and employed to eliminate bivalent mercury (Hg(II)) in water bodies. The prepared NiFe2O4/SCG adsorbent exhibits remarkable magnetism with a strength of 45.78 emu/g and can easily be separated from water via a magnetic force. The adsorption of Hg(II) over the NiFe2O4/SCG has an optimal conditions of pH = 8, T = 39 ℃, and dosage of 0.055 g/L, and the maximal adsorption capacity for Hg(II) is 167.44 mg/g via Response Surface Methodology optimization. The removal of Hg(II) over NiFe2O4/SCG primarily involves ion exchange, electrostatic attraction, and chelation; conforms to the pseudo-second-order kinetic and Langmuir models; and is an endothermic reaction. Additionally, the magnetic biomass NiFe2O4/SCG has good regeneration capability and stability. The application research reveal that inorganic salt ions, nitrogen fertilizer urea, humus, and other contaminants in different actual water bodies (river water, lake water, and the effluent of sewage treatment plant) have little effect on the adsorption of Hg(II) over the NiFe2O4/SCG. The prepared adsorbent NiFe2O4/SCG has practical application value for removing Hg(II) from water bodies.

5.
Heliyon ; 10(11): e32346, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38961934

RESUMO

Ultrasonic-assisted oxidative desulfurization (UAOD) is utilized to lessen environmental problems due to sulfur emissions. The process uses immiscible polar solvents and ultrasonic waves to enhance desulfurization efficiency. Prior research focused on comparing the effectiveness of UAOD for gasoline using response surface methodology. This study evaluates the desulfurization efficiency and operating costs, including ultrasonic power, irradiation time, and oxidant amount to determine optimal conditions. The study used a multi-objective fuzzy optimization (MOFO) approach to evaluate the economic viability of UAOD for gasoline. It identified upper and lower boundaries and then optimized the desulfurization efficiency and operating costs while considering uncertainty errors. The fuzzy model employed max-min aggregation to optimize the degree of satisfaction on a scale from 0 (unsatisfied) to 1 (satisfied). Optimal conditions for gasoline UAOD were found at 445.43 W ultrasonic power, 4.74 min irradiation time, and 6.73 mL oxidant, resulting in a 66.79 % satisfaction level. This yielded a 78.64 % desulfurization efficiency (YA) at an operating cost of 13.49 USD/L. Compared to existing literature, gasoline desulfurization was less efficient and less costly. The solutions provided by MOFO demonstrate not only economic viability through decreased overall operating costs and simplified process conditions, but also offer valuable insights for optimizing prospective future industrial-scale UAOD processes.

6.
Prep Biochem Biotechnol ; : 1-19, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963714

RESUMO

This study aimed to enhance the extracellular polymeric substances (EPS) production of Virgibacillus dokdonensis VITP14 and explore its antioxidant potential. EPS and biomass production by VITP14 strain were studied under different culture parameters and media compositions using one factor at a time method. Among different nutrient sources, glucose and peptone were identified as suitable carbon and nitrogen sources. Furthermore, the maximum EPS production was observed at 5% of inoculum size, 5 g/L of NaCl, and 96 h of fermentation. Response surface methodology was employed to augment EPS production and investigate the optimal levels of nutrient sources with their interaction. The strain was observed to produce actual maximum EPS of about 26.4 g/L for finalized optimum medium containing glucose 20 g/L, peptone 10 g/L, and NaCl 50 g/L while the predicted maximum EPS was 26.5 g/L. There was a nine fold increase in EPS production after optimization study. Additionally, EPS has exhibited significant scavenging, reducing, and chelating potential (>85%) at their higher concentration. This study imparts valuable insights into optimizing moderately halophilic bacterial EPS production and evaluating its natural antioxidant properties. According to findings, V. dokdonensis VITP14 was a promising isolate that will provide significant benefits to biopolymer producing industries.

7.
J Environ Manage ; 365: 121683, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38963968

RESUMO

Ammonia recovery from wastewater has positive environmental benefits, avoiding eutrophication and reducing production energy consumption, which is one of the most effective ways to manage nutrients in wastewater. Specifically, ammonia recovery by membrane distillation has been gradually adopted due to its excellent separation properties for volatile substances. However, the global optimization of direct contact membrane distillation (DCMD) operating parameters to maximize ammonia recovery efficiency (ARE) has not been attempted. In this work, three key operating factors affecting ammonia recovery, i.e., feed ammonia concentration, feed pH, and DCMD running time, were identified from eight factors, by a two-level Plackett-Burman Design (PBD). Subsequently, Box-Behnken design (BBD) under the response surface methodology (RSM) was used to model and optimize the significant operating parameters affecting the recovery of ammonia though DCMD identified by PBD and statistically verified by analysis of variance (ANOVA). Results showed that the model had a high coefficient of determination value (R2 = 0.99), and the interaction between NH4Cl concentration and feed pH had a significant effect on ARE. The optimal operating parameters of DCMD as follows: NH4Cl concentration of 0.46 g/L, feed pH of 10.6, DCMD running time of 11.3 h, and the maximum value of ARE was 98.46%. Under the optimized conditions, ARE reached up to 98.72%, which matched the predicted value and verified the validity and reliability of the model for the optimization of ammonia recovery by DCMD process.

8.
Meat Sci ; 216: 109577, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38964227

RESUMO

This study aimed to evaluate the sous-vide cooking and ficin treatment effects on the tenderness of beef steak and optimize it for the elderly using response surface methodology (RSM). The M. semitendinosus (ST) from Chikso cattle was shaped into 5 × 5 × 2.54 cm pieces. Ficin solution was injected into the ST steak at 10% of the meat weight, and sous-vide cooked in a water bath at 65 °C for 6 or 12 h. As ficin concentration increased, L*- and a*-value, shear force, and hardness decreased, while soluble peptides increased (P < 0.05). As cooking time increased, cooking loss and collagen solubility of the steak increased (P < 0.05). An interaction effect between ficin and sous-vide cooking was found in L*- and a*-value, shear force, hardness, and soluble peptides (P < 0.05). A model to optimize the hardness for elderly people was established (R2 = 0.7991). Optimization conditions by RSM were 0.86 U/L with 8.87 h (23 N/cm3) for tooth intake (grade 1), 16.31 U/L with 13.24 h (3 N/cm3) for gums intake (grade 2), according to KS H 4897 and Universal Design Foods concept for the elderly. These optimized conditions enable the production of customized products tailored to the oral conditions of elderly people.

9.
Nat Prod Res ; : 1-9, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972058

RESUMO

This study's main objectives are to evaluate and confirm the effects of the extraction process, operating conditions, solvent type and solvent polarity on the yield and quality of the extracts. Supercritical carbon dioxide (scCO2) and Soxhlet were specially used in this study to extract bioactive chemicals from the seeds of a natural plant known as Plantago ovata. No studies have been published so far regarding the extraction from the seeds of this plant using scCO2.The effects of three operating parameters (pressure, temperature and particle size) on the extraction yield, total phenolic content, total flavonoid content (TFC), total tannin content (TTC) and antioxidant activity were assessed in this study using the Box-Behnken statistical experimental design (BBD). The chemical components in the extracts were separated and identified using gas chromatography mass spectrometry. According to the antioxidant activity results, scCO2 failed to produce bioactive compounds with interesting properties when operated within operating range conditions.

10.
J Food Sci Technol ; 61(8): 1598-1608, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38966794

RESUMO

In this present study, a three-factor Box-Behnken, response surface methodology (RSM) design was employed to optimize the skimmed milk powder (SMP)/whey protein concentrate (WPC) ratio (0.25-0.75%w/v) as a source of milk protein, inulin (1-2%w/v), and honey (4-6%w/v) for production of high-quality goat milk yoghurt (GMY). The resulting ANOVA and response surface equations revealed the significant effect (p < 0.05) of these variables on the various attributes such as total solid (%), pH, titratable acidity [(LA) % by weight], syneresis (%), DPPH (% inhibition), viscosity (m.Pa⋅s), whiteness index (WI), and overall acceptability (OA). The coefficient of determination (R2) for all response variables ranged from 0.88 to 0.99. Lack-of-fit tests resulted in non-significant F-values. The optimal conditions were determined as SMP/WPC at 0.36%w/v, inulin at 1.00%w/v, and honey at 6.00%w/v. The optimum values for total solid, pH, titratable acidity, syneresis, DPPH, viscosity, WI, and OA were 22.03, 4.46, 0.77, 6.34, 25.20, 182.30, 76.29 and 8.37, respectively with desirability value of 0.95.

11.
Environ Res ; : 119542, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969319

RESUMO

Wastewater textile dye treatment is a challenge that requires the development of eco-friendly technology to avoid the alarming problems associated with water scarcity and health-environment. This study investigated the potential of phengite clay as naturally low-cost abundant clay from Tamgroute, Morocco (TMG) that was activated with a 0.1M NaOH base (TMGB) after calcination at 850°C for 3 hours (TMGC) before its application in the Congo red (CR) anionic dye from the aqueous solution. The effect of various key operational parameters: adsorbent dose, contact time, dye concentration, pH, temperature, and the effect of salts, was studied by a series of adsorption experiments in a batch system, which affected the adsorption performance of TMG, TMGC, and TMGB for CR dye removal. In addition, the properties of adsorption kinetics, isotherms, and thermodynamics were also studied. Experimental results showed that optimal adsorption occurred at an acidic pH. At a CR concentration of 100 mg L-1, equilibrium elimination rates were 68%, 38%, and 92% for TMG, TMGC, and TMGB, respectively. The adsorption process is rapid, follows pseudo-second-order kinetics, and is best described by a Temkin and Langmuir isotherm. The thermodynamic parameters indicated that the adsorption of CR onto TMGB is endothermic and spontaneous. The experimental values of CR adsorption on TMGB are consistent with the predictions of the response surface methodology. These led to a maximum removal rate of 99.97% under the following conditions: pH =2, TMGB dose of 7g L-1, and CR concentration of 50 mg L-1. The adsorbent TMGB's relatively low preparation cost of around $2.629 g-1 and its ability to regenerate in more than 6 thermal calcination cycles with a CR removal rate of around 56.98%, stimulate its use for textile effluent treatment on a pilot industrial scale.

12.
Sci Rep ; 14(1): 15570, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971892

RESUMO

This study aims to develop two models for thermodynamic data on hydrogen generation from the combined processes of dimethyl ether steam reforming and partial oxidation, applying artificial neural networks (ANN) and response surface methodology (RSM). Three factors are recognized as important determinants for the hydrogen and carbon monoxide mole fractions. The RSM used the quadratic model to formulate two correlations for the outcomes. The ANN modeling used two algorithms, namely multilayer perceptron (MLP) and radial basis function (RBF). The optimum configuration for the MLP, employing the Levenberg-Marquardt (trainlm) algorithm, consisted of three hidden layers with 15, 10, and 5 neurons, respectively. The ideal RBF configuration contained a total of 80 neurons. The optimum configuration of ANN achieved the best mean squared error (MSE) performance of 3.95e-05 for the hydrogen mole fraction and 4.88e-05 for the carbon monoxide mole fraction after nine epochs. Each of the ANN and RSM models produced accurate predictions of the actual data. The prediction performance of the ANN model was 0.9994, which is higher than the RSM model's 0.9771. The optimal condition was obtained at O/C of 0.4, S/C of 2.5, and temperature of 250 °C to achieve the highest H2 production with the lowest CO emission.

13.
Food Chem X ; 23: 101548, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38974200

RESUMO

Granaticins are natural pigments derived from microorganisms with promising bioactivity. However, their practical applications have been restricted due to inherent instability. To improve the stability of granaticins from the novel strain Streptomyces vilmorinianum YP1, microcapsules were prepared using gum Arabic (GA) by a freeze-drying method. The optimal parameters for microencapsulation were determined using response surface methodology. Under the optimal conditions (GA 9.2% (v/v), a wall/-core ratio 4.8 (w/w), encapsulating temperature 29 °C), the maximum encapsulation efficiency achieved was 93.64%. The microcapsules were irregular single crystals with an average particle size of 206.37 ± 2.51 nm. Stability testing indicated improved stability of the microencapsulated granaticins. Notably, granaticnic B retention increased by 17.0% and 6.6% after exposure to sunlight and storage at 4 °C, respectively. These finding suggest that GA as a well material significantly enhances the stability of granaticins from S. vilmorinianum YP1, facilitating their potential applications.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38981203

RESUMO

Considering comprehensive utilization of natural products, isolation and activity determination processes of bioactive compounds are essential. In this study, a combined high-speed countercurrent chromatography (HSCCC) with preparative HPLC method was developed to isolate the five antioxidant polyphenols from 75% ethanol extract of Malus pumila Mill. leaves. The HSCCC conditions were optimized by response surface methodology (RSM) considering two response indexes including retention of stationary phase and analysis time. The optimal HSCCC conditions were flow rate of 2.11 mL/min, revolution speed of 717 rpm, and temperature of 25℃, with a solvent system of ethyl acetate/methanol/water (10:1:10, v/v/v). The unseparated fractions obtained from HSCCC were subjected to preparative HPLC for further isolation. As a result, phloridzin (15.3 mg), isoquercitrin (2.1 mg), quercetin 3-O-xyloside (1.9 mg), quercetin-3-O-arabinoside (4.0 mg), and quercitrin (2.0 mg) were isolated from 200.0 mg extracts. The purities of these compounds were all above 92%. Their chemical structures were identified by mass spectrometer and nuclear magnetic resonance. The five isolated compounds were further investigated for their rat hippocampal neuroprotective effects against hydrogen peroxide-induced oxidative stress. No cytotoxicity was observed in all tested concentrations. While all five compounds except phloridzin showed significantly neurogenic activities and neuroprotective effects, especially at the concentration of 0.5 mg/L. These results demonstrate that RSM is a suitable technique for optimisation of HSCCC and the isolated polyphenols can be used as antioxidants in pharmaceutical and food products.

15.
J Environ Manage ; 366: 121717, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38981274

RESUMO

Sorption enhanced steam gasification of biomass (SESGB) presents a promising approach for producing high-purity H2 with potential for zero or negative carbon emissions. This study investigated the effects of gasification temperature, CaO to carbon in biomass molar ratio [CaO/C], and steam flow on the SESGB process, employing carbide slag (CS) and its modifications, CSSi2 (mass ratio of CS to SiO2 is 98:2) and CSCG5 (mass ratio of CS to coal gangue (CG) is 95:5), as CaO-based sorbents. The investigation included non-isothermal and isothermal gasification experiments and kinetic analyses using corn cob (CC) in a macro-weight thermogravimetric setup, alongside a fixed-bed pyrolysis-gasification system to assess operational parameter effects on gas product. The results suggested that CO2 capture by CaO reduced the mass loss during the main gasification as the [CaO/C] increased. The appropriate temperature for SESGB process should be selected between 550 and 700 °C at atmospheric pressure. The appropriate amount of sorbent or steam could facilitate the gasification reaction, but excessive addition led to adverse effects. Operational parameters influenced the apparent activation energy (Ea) by affecting various gasification reactions. For each test, Ea at the char gasification stage was significantly higher than that at the rapid pyrolysis stage. The addition of CS notably increased H2 concentration and yield, while sharply reducing CO2 levels. H2 concentration initially rose and then fell with greater steam flow, peaking at 76.11 vol% for a steam flow of 1.0 g/min. H2 yield peaked at 298 mL/g biomass with a steam flow of 1.5 g/min, a gasification temperature of 600 °C and a [CaO/C] of 1.0. Increasing gasification temperature remarkably boosted the H2 and CO2 yields. Optimal conditions for the SESGB using CS as a sorbent, determined via response surface methodology (RSM), include a gasification temperature of 666 °C, a [CaO/C] of 1.99, and a steam flow of 0.5 g/min, under which H2 and CO2 yields were 464 and 48 mL/g biomass, respectively. CSSi2 and CSCG5 demonstrated excellent cyclic H2 production stability, maintaining H2 yields around 440 mL/g biomass and low CO2 yields (∼60 mL/g biomass) across five cycles. The study results offer new insights for the high-value utilization of agroforestry biomass and the reduction and resource utilization of industrial waste.

16.
Sci Rep ; 14(1): 15067, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956163

RESUMO

The dyeing process of textile materials is inherently intricate, influenced by a myriad of factors, including dye concentration, dyeing time, pH level, temperature, type of dye, fiber composition, mechanical agitation, salt concentration, mordants, fixatives, water quality, dyeing method, and pre-treatment processes. The intricacy of achieving optimal settings during dyeing poses a significant challenge. In response, this study introduces a novel algorithmic approach that integrates response surface methodology (RSM), artificial neural network (ANN), and genetic algorithm (GA) techniques for the precise fine-tuning of concentration, time, pH, and temperature. The primary focus is on quantifying color strength, represented as K/S, as the response variable in the dyeing process of polyamide 6 and woolen fabric, utilizing plum-tree leaves as a sustainable dye source. Results indicate that ANN (R2 ~ 1) performs much better than RSM (R2 > 0.92). The optimization results, employing ANN-GA integration, indicate that a concentration of 100 wt.%, time of 86.06 min, pH level of 8.28, and a temperature of 100 °C yield a K/S value of 10.21 for polyamide 6 fabric. Similarly, a concentration of 55.85 wt.%, time of 120 min, pH level of 5, and temperature of 100 °C yield a K/S value of 7.65 for woolen fabric. This proposed methodology not only paves the way for sustainable textile dyeing but also facilitates the optimization of diverse dyeing processes for textile materials.

17.
J Sci Food Agric ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979987

RESUMO

BACKGROUND: This study investigated the effects of γ-aminobutyric acid (GABA) combined with ultrasonic stress germination (AUG) treatment on the phenolic content and antioxidant activity of highland barley (HB). Key variables, including germination times (ranging from 0 to 96 h), ultrasonic power (200-500 W), and GABA concentration (5-20 mmol/L), were optimized using response surface methodology (RSM) to enhance the enrichment of phenolic compounds. Furthermore, the study assessed the content, composition, and antioxidant activities of phenolic compounds in HB under various treatment conditions such as germination alone (G), ultrasonic stress germination (UG), and AUG treatment. RESULTS: The study identified optimal conditions for the phenolic enrichment of HB, which included a germination time of 60 h, an ultrasound power of 300 W, and a GABA concentration of 15 mmol L-1. Under these conditions, the total phenolic content (TPC) in HB was measured at 7.73 milligrams of gallic acid equivalents per gram dry weight (mg GAE/g DW), representing a 34.96% enhancement compared to untreated HB. Notably, all treatment modalities - G, UG, and AUG - significantly increased the phenolic content and antioxidant activity in HB, with the AUG treatment proving to be the most effective. CONCLUSION: These obtained results suggest that AUG treatment is a promising processing method for enriching phenolic compounds and improving antioxidant activity in HB. Subsequently, the AUG-treated HB can be used to develop phenolic-rich germinated functional foods to further broaden the application of HB. © 2024 Society of Chemical Industry.

18.
Artigo em Inglês | MEDLINE | ID: mdl-38958855

RESUMO

Nanoparticles, owing to their unique physicochemical properties, have garnered significant attention in various scientific disciplines, including materials science, chemistry, biology, and environmental engineering. In recent years, the synthesis of metal oxide nanoparticles, such as NiO, Fe2O3, ZnO, SnO2, and CuO via green routes, has gained attraction due to their diverse applications in fields ranging from catalysis and electronics to medicine and environmental remediation. This study focuses on the green synthesis of copper oxide (CuO) and zinc oxide (ZnO) nanoparticles using Calotropis gigantea (Apple of Sodom) leaf extract as a reducing agent and stabilizer, with zinc nitrate (ZnNO3.6H2O) and copper nitrate (CuNO3.3H2O) as precursors. The hexagonal phase of ZnO and monoclinic plan structure of CuO with high crystallinity was confirmed by XRD and elemental composition by EDX analysis. With the help of an SEM image, particle size measured for CuO and ZnO using ImageJ software was found to be 56.08 nm and 46.49 nm, respectively. This study investigates the efficacy of nanoparticles in wastewater treatment, particularly focusing on methylene blue dye decolorization using the statistical processing of response surface methodology (RSM) using the Box-Behnken method. Additionally, it explores the impact of synthesized nanoparticles on seed growth enhancement, using Vigna radiata (green gram) seeds immersed in various doses of nanoparticles (0, 0.5, 1, 1.5, 2 mg/30 mL). Furthermore, the antibacterial activity of the nanoparticles against both gram-positive and gram-negative bacteria is evaluated. The results confirm the effectiveness of the materials for methylene blue dye removal, achieving 80.53% with CuO and 78.25% with ZnO. Significant seed growth was observed with a low nanoparticle dosage of 1.5 mg/30 mL, resulting in the highest seedling vigour index and germination percentage. This reduces the need for fertilizers and lessens environmental impact.

19.
Heliyon ; 10(12): e33138, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38984305

RESUMO

The optimal conditions of applied factors to reuse Aluminium AA6061 scraps are (450, 500, and 550) °C preheating temperature, (1-15) % Boron Carbide (B4C), and Zirconium (ZrO2) hybrid reinforced particles at 120 min forging time via Hot Forging (HF) process. The response surface methodology (RSM) and machine learning (ML) were established for the optimisations and comparisons towards materials strength structure. The Ultimate Tensile Strength (UTS) strength and Microhardness (MH) were significantly increased by increasing the processed temperature and reinforced particles because of the material dispersion strengthening. The high melting point of particles caused impedance movements of aluminium ceramics dislocations which need higher plastic deformation force and hence increased the material's mechanical and physical properties. But, beyond Al/10 % B4C + 10 % ZrO2 the strength and hardness were decreased due to more particle agglomeration distribution. The optimisation tools of both RSM and ML show high agreement between the reported results of applied parameters towards the materials' strength characterisation. The microstructure analysis of Field Emission Scanning Electron Microscopy (FE-SEM) and Atomic Force Microscope (AFM) provides insights mapping behavioural characterisation supports related to strength and hardness properties. The distribution of different volumes of ceramic particle proportion was highlighted. The environmental impacts were also analysed by employing a life cycle assessment (LCA) to identify energy savings because of its fewer processing steps and produce excellent hybrid materials properties.

20.
J Environ Manage ; 366: 121779, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38986380

RESUMO

An investigation was conducted on the electrocoagulation treatment of high-strength young landfill leachate using an electrode made of aluminium in a batch electrochemical cell reactor. An iron sheet of 1 m⨯1 m⨯1.1 m (L: B: H) was used to construct the two landfill simulating reactors, both the reactors were operated at different conditions, i.e., one without rainfall (S1) and the other with rainfall (S2). Both reactors have 51% wet and 49% dry waste, which is the typical waste composition of India, and the quantity of waste taken was 450 kg; hence, the generated leachate was treated. This work focuses on the utilization of electrocoagulation as the sole treatment method where coagulation and adsorption occur simultaneously for young landfill leachate. The study employed a central composite design (CCD) to systematically vary the initial pH, current density (CD), and reaction time to examine their impact on the removal efficiency of COD (Chemical oxygen demand), TOC (Total organic carbon), and TSS (Total Suspended Solids). The optimum conditions obtained were a pH of 7.35, a CD of 15.29 mA/cm2, and a reaction duration of 57 min. When the conditions were optimized, the COD, TSS, and TOC removal efficiencies were 83.56%, 73.12%, and 85.58%, respectively. Also, the electrodes depleted 2.78 g of Al/L. In addition, pseudo-first-order and pseudo-second-order kinetics were employed to examine the elimination of contaminants by adsorption on aluminium hydroxide, thereby confirming the adsorption process. After investigation through energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD), with the produced sludge confirmed that electrocoagulation removed a significant amount of metals from landfill leachate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...