Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 971
Filtrar
1.
J Psychiatr Res ; 177: 59-65, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38972266

RESUMO

Abnormal functional connectivity (FC) within the fear network model (FNM) has been identified in panic disorder (PD) patients, but the specific local structural and functional properties, as well as effective connectivity (EC), remain poorly understood in PD. The purpose of this study was to investigate the structural and functional patterns of the FNM in PD. Magnetic resonance imaging data were collected from 33 PD patients and 35 healthy controls (HCs). Gray matter volume (GMV), degree centrality (DC), regional homogeneity (ReHo), and amplitude of low-frequency fluctuation (ALFF) were used to identify the structural and functional characteristics of brain regions within the FNM in PD. Subsequently, FC and EC of abnormal regions, based on local structural and functional features, and their correlation with clinical features were further examined. PD patients exhibited preserved GMV, ReHo, and ALFF in the brain regions of the FNM compared with HCs. However, increased DC in the bilateral amygdala was observed in PD patients. The amygdala and its subnuclei exhibited altered EC with rolandic operculum, insula, medial superior frontal gyrus, supramarginal gyrus, opercular part of inferior frontal gyrus, and superior temporal gyrus. Additionally, Hamilton Anxiety Scale score was positively correlated with EC from left lateral nuclei (dorsal portion) of amygdala to right rolandic operculum and left superior temporal gyrus. Our findings revealed a reorganized functional network in PD involving brain regions regulating exteroceptive-interoceptive signals, mood, and somatic symptoms. These results enhance our understanding of the neurobiological underpinnings of PD, suggesting potential biomarkers for diagnosis and targets for therapeutic intervention.

2.
bioRxiv ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38948771

RESUMO

The balance of excitation and inhibition is a key functional property of cortical microcircuits which changes through the lifespan. Adolescence is considered a crucial period for the maturation of excitation-inhibition balance. This has been primarily observed in animal studies, yet human in vivo evidence on adolescent maturation of the excitation-inhibition balance at the individual level is limited. Here, we developed an individualized in vivo marker of regional excitation-inhibition balance in human adolescents, estimated using large-scale simulations of biophysical network models fitted to resting-state functional magnetic resonance imaging data from two independent cross-sectional (N = 752) and longitudinal (N = 149) cohorts. We found a widespread relative increase of inhibition in association cortices paralleled by a relative age-related increase of excitation, or lack of change, in sensorimotor areas across both datasets. This developmental pattern co-aligned with multiscale markers of sensorimotor-association differentiation. The spatial pattern of excitation-inhibition development in adolescence was robust to inter-individual variability of structural connectomes and modeling configurations. Notably, we found that alternative simulation-based markers of excitation-inhibition balance show a variable sensitivity to maturational change. Taken together, our study highlights an increase of inhibition during adolescence in association areas using cross sectional and longitudinal data, and provides a robust computational framework to estimate microcircuit maturation in vivo at the individual level.

3.
Cereb Cortex ; 34(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38864573

RESUMO

The experience of an extremely aversive event can produce enduring deleterious behavioral, and neural consequences, among which posttraumatic stress disorder (PTSD) is a representative example. Although adolescence is a period of great exposure to potentially traumatic events, the effects of trauma during adolescence remain understudied in clinical neuroscience. In this exploratory work, we aim to study the whole-cortex functional organization of 14 adolescents with PTSD using a data-driven method tailored to our population of interest. To do so, we built on the network neuroscience framework and specifically on multilayer (multisubject) community analysis to study the functional connectivity of the brain. We show, across different topological scales (the number of communities composing the cortex), a hyper-colocalization between regions belonging to occipital and pericentral regions and hypo-colocalization in middle temporal, posterior-anterior medial, and frontal cortices in the adolescent PTSD group compared to a nontrauma exposed group of adolescents. These preliminary results raise the question of an altered large-scale cortical organization in adolescent PTSD, opening an interesting line of research for future investigations.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Transtornos de Estresse Pós-Traumáticos , Humanos , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem , Transtornos de Estresse Pós-Traumáticos/psicologia , Adolescente , Feminino , Masculino , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Vias Neurais/fisiopatologia , Mapeamento Encefálico/métodos , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Córtex Cerebral/fisiopatologia , Córtex Cerebral/diagnóstico por imagem
4.
Schizophr Res ; 270: 281-288, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38944974

RESUMO

BACKGROUND: The striatum is thought to play a critical role in the pathophysiology and antipsychotic treatment of schizophrenia. Previous studies have revealed abnormal functional connectivity (FC) of the striatum in early-onset schizophrenia (EOS) patients. However, no prior studies have examined post-treatment changes of striatal FC in EOS patients. METHODS: We recruited 49 first-episode drug-naïve EOS patients to have resting-state functional magnetic resonance imaging scans at baseline and after 8 weeks of treatment with antipsychotics, along with baseline scanning of 34 healthy controls (HCs) for comparison purposes. We examined the FC values between each seed in striatal subregion and the rest of the brain. The Positive and Negative Syndrome Scale (PANSS) was applied to measure psychiatric symptoms in patients. RESULTS: Compared with HCs at baseline, EOS patients exhibited weaker FC of striatal subregions with several brain regions of the salience network and default mode network. Meanwhile, FC between the dorsal caudal putamen (DCP) and left supplementary motor area, as well as between the DCP and right postcentral gyrus, was negatively correlated with PANSS negative scores. Furthermore, after 8 weeks of treatment, EOS patients showed decreased FC between subregions of the putamen and the triangular part of inferior frontal gyrus, middle frontal gyrus, supramarginal gyrus and inferior parietal lobule. CONCLUSIONS: Decreased striatal FC is evident, even in the early stages of schizophrenia, and enhance our understanding of the neurodevelopmental abnormalities in schizophrenia. The findings also demonstrate that reduced striatal FC occurs after antipsychotic therapy, indicating that antipsychotic effects need to be accounted for when considering striatal FC abnormalities in schizophrenia.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38906983

RESUMO

BACKGROUND: Attention-deficit hyperactivity disorder (ADHD) has a high prevalence of co-occurring impaired self-regulation (dysregulation), exacerbating adverse outcomes. Neural correlates underlying impaired self-regulation in ADHD remain inconclusive. We aimed to investigate the impact of dysregulation on intrinsic functional connectivity (iFC) in children with ADHD and the correlation of iFC with dysregulation among children with ADHD relative to typically developing controls (TDC). METHODS: Resting-state functional MRI data of 71 children with ADHD (11.38 ± 2.44 years) and 117 age-matched TDC were used in the final analysis. We restricted our analyses to resting-state networks (RSNs) of interest derived from independent component analysis. Impaired self-regulation was estimated based on the Child Behavioral Checklist-Dysregulation Profile. RESULTS: Children with ADHD showed stronger iFC than TDC in the left frontoparietal network, somatomotor network (SMN), visual network (VIS), default-mode network (DMN), and dorsal attention network (DAN) (FWE-corrected alpha < 0.05). After adding dysregulation levels as an extra regressor, the ADHD group only showed stronger iFC in the VIS and SMN. ADHD children with high dysregulation had higher precuneus iFC within DMN than ADHD children with low dysregulation. Angular gyrus iFC within DMN was positively correlated with dysregulation in the ADHD group but negatively correlated with dysregulation in the TDC group. Functional network connectivity showed ADHD had a greater DMN-DAN connection than TDC, regardless of the dysregulation level. CONCLUSIONS: Our findings suggest that DMN connectivity may contribute to impaired self-regulation in ADHD. Impaired self-regulation should be considered categorical and dimensional moderators for the neural correlates of altered iFC in ADHD.

6.
Addict Biol ; 29(6): e13398, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38899438

RESUMO

A growing body of evidence indicates the existence of abnormal local and long-range functional connection patterns in patients with alcohol use disorder (AUD). However, it has yet to be established whether AUD is associated with abnormal interhemispheric and intrahemispheric functional connection patterns. In the present study, we analysed resting-state functional magnetic resonance imaging data from 55 individuals with AUD and 32 healthy nonalcohol users. For each subject, whole-brain functional connectivity density (FCD) was decomposed into ipsilateral and contralateral parts. Correlation analysis was performed between abnormal FCD and a range of clinical measurements in the AUD group. Compared with healthy controls, the AUD group exhibited a reduced global FCD in the anterior and middle cingulate gyri, prefrontal cortex and thalamus, along with an enhanced global FCD in the temporal, parietal and occipital cortices. Abnormal interhemispheric and intrahemispheric FCD patterns were also detected in the AUD group. Furthermore, abnormal global, contralateral and ipsilateral FCD data were correlated with the mean amount of pure alcohol and the severity of alcohol addiction in the AUD group. Collectively, our findings indicate that global, interhemispheric and intrahemispheric FCD may represent a robust method to detect abnormal functional connection patterns in AUD; this may help us to identify the neural substrates and therapeutic targets of AUD.


Assuntos
Alcoolismo , Encéfalo , Imageamento por Ressonância Magnética , Humanos , Masculino , Alcoolismo/fisiopatologia , Alcoolismo/diagnóstico por imagem , Adulto , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Pessoa de Meia-Idade , Córtex Pré-Frontal/fisiopatologia , Córtex Pré-Frontal/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Tálamo/fisiopatologia , Estudos de Casos e Controles , Giro do Cíngulo/fisiopatologia , Giro do Cíngulo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Adulto Jovem
7.
BMC Musculoskelet Disord ; 25(1): 450, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844898

RESUMO

OBJECTIVE: To investigate the brain mechanism of non-correspondence between imaging presentations and clinical symptoms in cervical spondylotic myelopathy (CSM) patients and to test the utility of brain imaging biomarkers for predicting prognosis of CSM. METHODS: Forty patients with CSM (22 mild-moderate CSM, 18 severe CSM) and 25 healthy controls (HCs) were recruited for rs-fMRI and cervical spinal cord diffusion tensor imaging (DTI) scans. DTI at the spinal cord (level C2/3) with fractional anisotropy (FA) and degree centrality (DC) were recorded. Then one-way analysis of covariance (ANCOVA) was conducted to detect the group differences in the DC and FA values across the three groups. Pearson correlation analysis was then separately performed between JOA with FA and DC. RESULTS: Among them, degree centrality value of left middle temporal gyrus exhibited a progressive increase in CSM groups compared with HCs, the DC value in severe CSM group was higher compared with mild-moderate CSM group. (P < 0.05), and the DC values of the right superior temporal gyrus and precuneus showed a decrease after increase. Among them, DC values in the area of precuneus in severe CSM group were significantly lower than those in mild-moderate CSM and HCs. (P < 0.05). The fractional anisotropy (FA) values of the level C2/3 showed a progressive decrease in different clinical stages, that severe CSM group was the lowest, significantly lower than those in mild-moderate CSM and HCs (P < 0.05). There was negative correlation between DC value of left middle temporal gyrus and JOA scores (P < 0.001), and the FA values of dorsal column in the level C2/3 positively correlated with the JOA scores (P < 0.001). CONCLUSION: Structural and functional changes have taken place in the cervical spinal cord and brain of CSM patients. The Brain reorganization plays an important role in maintaining the symptoms and signs of CSM, aberrant DC values in the left middle temporal gyrus may be the possible mechanism of inconsistency between imaging findings and clinical symptoms. Degree centrality is a potentially useful prognostic functional biomarker in cervical spondylotic myelopathy.


Assuntos
Vértebras Cervicais , Imagem de Tensor de Difusão , Plasticidade Neuronal , Índice de Gravidade de Doença , Espondilose , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Espondilose/diagnóstico por imagem , Espondilose/fisiopatologia , Vértebras Cervicais/diagnóstico por imagem , Vértebras Cervicais/fisiopatologia , Plasticidade Neuronal/fisiologia , Adulto , Imageamento por Ressonância Magnética , Idoso , Doenças da Medula Espinal/diagnóstico por imagem , Doenças da Medula Espinal/fisiopatologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Encéfalo/patologia , Estudos de Casos e Controles , Anisotropia
8.
Cogn Neurodyn ; 18(3): 973-986, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38826661

RESUMO

Sex differences in the brain have been widely reported and may hold the key to elucidating sex differences in many medical conditions and drug response. However, the molecular correlates of these sex differences in structural and functional brain measures in the human brain remain unclear. Herein, we used sample entropy (SampEn) to quantify the signal complexity of resting-state functional magnetic resonance imaging (rsfMRI) in a large neuroimaging cohort (N = 1,642). The frontoparietal control network and the cingulo-opercular network had high signal complexity while the cerebellar and sensory motor networks had low signal complexity in both men and women. Compared with those in male brains, we found greater signal complexity in all functional brain networks in female brains with the default mode network exhibiting the largest sex difference. Using the gene expression data in brain tissues, we identified genes that were significantly associated with sex differences in brain signal complexity. The significant genes were enriched in the gene sets that were differentially expressed between the brain cortex and other tissues, the estrogen-signaling pathway, and the biological function of neural plasticity. In particular, the G-protein-coupled estrogen receptor 1 gene in the estrogen-signaling pathway was expressed more in brain regions with greater sex differences in SampEn. In conclusion, greater complexity in female brains may reflect the interactions between sex hormone fluctuations and neuromodulation of estrogen in women. Supplementary Information: The online version contains supplementary material available at 10.1007/s11571-023-09954-y.

9.
Brain Behav ; 14(6): e3550, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38841739

RESUMO

BACKGROUND: Cerebral specialization and interhemispheric cooperation are two vital features of the human brain. Their dysfunction may be associated with disease progression in patients with Alzheimer's disease (AD), which is featured as progressive cognitive degeneration and asymmetric neuropathology. OBJECTIVE: This study aimed to examine and define two inherent properties of hemispheric function in patients with AD by utilizing resting-state functional magnetic resonance imaging (rs-fMRI). METHODS: Sixty-four clinically diagnosed AD patients and 52 age- and sex-matched cognitively normal subjects were recruited and underwent MRI and clinical evaluation. We calculated and compared brain specialization (autonomy index, AI) and interhemispheric cooperation (connectivity between functionally homotopic voxels, CFH). RESULTS: In comparison to healthy controls, patients with AD exhibited enhanced AI in the left middle occipital gyrus. This increase in specialization can be attributed to reduced functional connectivity in the contralateral region, such as the right temporal lobe. The CFH of the bilateral precuneus and prefrontal areas was significantly decreased in AD patients compared to controls. Imaging-cognitive correlation analysis indicated that the CFH of the right prefrontal cortex was marginally positively related to the Montreal Cognitive Assessment score in patients and the Auditory Verbal Learning Test score. Moreover, taking abnormal AI and CFH values as features, support vector machine-based classification achieved good accuracy, sensitivity, specificity, and area under the curve by leave-one-out cross-validation. CONCLUSION: This study suggests that individuals with AD have abnormal cerebral specialization and interhemispheric cooperation. This provides new insights for further elucidation of the pathological mechanisms of AD.


Assuntos
Doença de Alzheimer , Imageamento por Ressonância Magnética , Humanos , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/diagnóstico por imagem , Feminino , Masculino , Idoso , Imageamento por Ressonância Magnética/métodos , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Pessoa de Meia-Idade , Máquina de Vetores de Suporte , Idoso de 80 Anos ou mais
10.
BMC Psychiatry ; 24(1): 428, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849793

RESUMO

BACKGROUND: Theoretical and empirical evidence indicates the critical role of the default mode network (DMN) in the pathophysiology of the bipolar disorder (BD). This study aims to identify the specific brain regions of the DMN that is impaired in patients with BD. METHODS: A total of 56 patients with BD and 71 healthy controls (HC) underwent resting-state functional magnetic resonance imaging. Three commonly used functional indices, i.e., fractional amplitude of low-frequency fluctuation (fALFF), regional homogeneity (ReHo), and degree centrality (DC), were utilized to identify the brain region showing abnormal spontaneous brain activity in patients with BD. Then, this region served as the seed region for resting-state functional connectivity (rsFC) analysis. RESULTS: Compared to the HC group, the BD group showed reduced fALFF, ReHo, and DC values in the left precuneus. Moreover, patients exhibited decreased rsFCs within the left precuneus and between the left precuneus and the medial prefrontal cortex. Additionally, there was diminished negative connectivity between the left precuneus and the left putamen, extending to the left insula (putamen/insula). The abnormalities in DMN functional connectivity were confirmed through various analysis strategies. CONCLUSIONS: Our findings provide convergent evidence for the abnormalities in the DMN, particularly located in the left precuneus. Decreased functional connectivity within the DMN and the reduced anticorrelation between the DMN and the salience network are found in patients with BD. These findings suggest that the DMN is a key aspect for understanding the neural basis of BD, and the altered functional patterns of DMN may be a potential candidate biomarker for diagnosis of BD.


Assuntos
Transtorno Bipolar , Rede de Modo Padrão , Imageamento por Ressonância Magnética , Humanos , Transtorno Bipolar/fisiopatologia , Transtorno Bipolar/diagnóstico por imagem , Feminino , Masculino , Adulto , Rede de Modo Padrão/fisiopatologia , Rede de Modo Padrão/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Lobo Parietal/fisiopatologia , Lobo Parietal/diagnóstico por imagem , Conectoma/métodos , Córtex Pré-Frontal/fisiopatologia , Córtex Pré-Frontal/diagnóstico por imagem , Estudos de Casos e Controles , Adulto Jovem , Pessoa de Meia-Idade , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico
11.
Brain Behav ; 14(6): e3585, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38849981

RESUMO

INTRODUCTION: Premature ejaculation (PE), a common male sexual dysfunction, often accompanies by abnormal psychological factors, such as depression. Recent neuroimaging studies have revealed structural and functional brain abnormalities in PE patients. However, there is limited neurological evidence supporting the comorbidity of PE and depression. This study aimed to explore the topological changes of the functional brain networks of PE patients with depression. METHODS: Resting-state functional magnetic resonance imaging (rs-fMRI) data were acquired from 60 PE patients (30 with depression and 30 without depression) and 29 healthy controls (HCs). Functional brain networks were constructed for all participants based on rs-fMRI data. The nodal parameters including nodal centrality and efficiency were calculated by the method of graph theory analysis and then compared between groups. In addition, the results were corrected for multiple comparisons by family-wise error (FWE) (p < .05). RESULTS: PE patients with depression had increased degree centrality and global efficiency in the right pallidum, as well as increased degree centrality in the right thalamus when compared with HCs. PE patients without depression showed increased degree centrality in the right pallidum and thalamus, as well as increased global efficiency in the right precuneus, pallidum, and thalamus when compared with HCs. PE patients with depression demonstrated decreased degree centrality in the right pallidum and thalamus, as well as decreased global efficiency in the right precuneus, pallidum, and thalamus when compared to those without depression. All the brain regions above survived the FWE correction. CONCLUSION: The results suggested that increased and decreased functional connectivity, as well as the capability of global integration of information in the brain, might be related to the occurrence of PE and the comorbidity depression in PE patients, respectively. These findings provided new insights into the understanding of the pathological mechanisms underlying PE and those with depression.


Assuntos
Depressão , Imageamento por Ressonância Magnética , Rede Nervosa , Ejaculação Precoce , Humanos , Masculino , Adulto , Ejaculação Precoce/fisiopatologia , Ejaculação Precoce/diagnóstico por imagem , Depressão/fisiopatologia , Depressão/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Tálamo/fisiopatologia , Tálamo/diagnóstico por imagem , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Adulto Jovem , Córtex Cerebral/fisiopatologia , Córtex Cerebral/diagnóstico por imagem , Conectoma , Vias Neurais/fisiopatologia , Vias Neurais/diagnóstico por imagem
12.
Front Nutr ; 11: 1349738, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706562

RESUMO

Introduction: Macronutrient intake can be one of the most influential factors in cognitive and neural development in adolescents. Adolescence is a specific period of cognitive and neural development, and nutritional effects during this period could be life-long. Therefore, understanding the effects of macronutrient intake on cognitive and neural development in adolescents is crucially important. We thus examined the association across macronutrient intake, intelligence, and neural development using population-based cohort data. Methods: We conducted two studies. In study 1, we included a total of 1,734 participants (boys, 907, age [mean ± standard deviation] 171.9 ± 3.44 months; range 163.0-186.0 months) from the Tokyo TEEN Cohort (TTC) to examine the association between macronutrient intake and intelligence quotient (IQ). In study 2, we included a total of 63 participants (boys, 38, age 174.4 ± 7.7 months; range 160.7-191.6 months) to investigate the effect of nutrition intake on neural development using graph theory analysis for resting-state functional magnetic resonance imaging (rs-fMRI) derived from a subset of the TTC. Results: TTC data revealed that a higher IQ was associated in boys with increased protein intake (ß = 0.068, p = 0.031), and in girls, with reduced carbohydrate intake (ß = -0.076, p = 0.024). Graph theory analysis for rs-fMRI at approximately age 12 has shown that impaired local efficiency in the left inferior frontal gyrus was associated with higher carbohydrate and fat intake ([x, y, z] = [-51, 23, 8], pFDR-corrected = 0.00018 and 0.02290, respectively), whereas increased betweenness centrality in the left middle temporal gyrus was associated with higher carbohydrate, fat, and protein intake ([x, y, z] = [-61, -43, -13], pFDR-corrected = 0.0027, 0.0029, and 0.00075, respectively). Moreover, we identified a significant moderating effect of fat and protein intake on the relationship between change in betweenness centrality over a 2-year measurement gap in the left middle temporal gyrus and intelligence (ß = 12.41, p = 0.0457; ß = 12.12, p = 0.0401, respectively). Conclusion: Our study showed the association between macronutrient intake and neural development related to intelligence in early adolescents. Appropriate nutritional intake would be a key factor for healthy cognitive and neural development.

13.
Brain Res ; 1838: 148989, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38723740

RESUMO

Repetitive transcranial magnetic stimulation (rTMS) to the left dorsolateral prefrontal cortex (DLPFC) is an established treatment for medication-resistant depression. Several targeting methods for the left DLPFC have been proposed including identification with resting-state functional magnetic resonance imaging (rs-fMRI) neuronavigation, stimulus coordinates based on structural MRI, or electroencephalography (EEG) F3 site by Beam F3 method. To date, neuroanatomical and neurofunctional differences among those approaches have not been investigated on healthy subjects, which are structurally and functionally unaffected by psychiatric disorders. This study aimed to compare the mean location, its dispersion, and its functional connectivity with the subgenual cingulate cortex (SGC), which is known to be associated with the therapeutic outcome in depression, of various approaches to target the DLPFC in healthy subjects. Fifty-seven healthy subjects underwent MRI scans to identify the stimulation site based on their resting-state functional connectivity and were measured their head size for targeting with Beam F3 method. In addition, we included two fixed stimulus coordinates over the DLPFC in the analysis, as recommended in previous studies. From the results, the rs-fMRI method had, as expected, more dispersed target sites across subjects and the greatest anticorrelation with the SGC, reflecting the known fact that personalized neuronavigation yields the greatest antidepressant effect. In contrast, the targets located by the other methods were relatively close together with less dispersion, and did not differ in anticorrelation with the SGC, implying their limitation of the therapeutic efficacy and possible interchangeability of them.


Assuntos
Córtex Pré-Frontal Dorsolateral , Imageamento por Ressonância Magnética , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Masculino , Adulto , Feminino , Imageamento por Ressonância Magnética/métodos , Córtex Pré-Frontal Dorsolateral/fisiologia , Adulto Jovem , Eletroencefalografia/métodos , Neuronavegação/métodos , Giro do Cíngulo/fisiologia , Giro do Cíngulo/diagnóstico por imagem , Pessoa de Meia-Idade , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/diagnóstico por imagem , Mapeamento Encefálico/métodos , Voluntários Saudáveis
14.
Front Neurosci ; 18: 1363255, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774788

RESUMO

Many resting-state functional magnetic resonance imaging (rs-fMRI) studies have shown that the brain networks are disrupted in adolescent patients with juvenile myoclonic epilepsy (JME). However, previous studies have mainly focused on investigating brain connectivity disruptions from the perspective of static functional connections, overlooking the dynamic causal characteristics between brain network connections. In our study involving 37 JME patients and 35 Healthy Controls (HC), we utilized rs-fMRI to construct whole-brain functional connectivity network. By applying graph theory, we delved into the altered topological structures of the brain functional connectivity network in JME patients and identified abnormal regions as key regions of interest (ROIs). A novel aspect of our research was the application of a combined approach using the sliding window technique and Granger causality analysis (GCA). This method allowed us to delve into the dynamic causal relationships between these ROIs and uncover the intricate patterns of dynamic effective connectivity (DEC) that pervade various brain functional networks. Graph theory analysis revealed significant deviations in JME patients, characterized by abnormal increases or decreases in metrics such as nodal betweenness centrality, degree centrality, and efficiency. These findings underscore the presence of widespread disruptions in the topological features of the brain. Further, clustering analysis of the time series data from abnormal brain regions distinguished two distinct states indicative of DEC patterns: a state of strong connectivity at a lower frequency (State 1) and a state of weak connectivity at a higher frequency (State 2). Notably, both states were associated with connectivity abnormalities across different ROIs, suggesting the disruption of local properties within the brain functional connectivity network and the existence of widespread multi-functional brain functional networks damage in JME patients. Our findings elucidate significant disruptions in the local properties of whole-brain functional connectivity network in patients with JME, revealing causal impairments across multiple functional networks. These findings collectively suggest that JME is a generalized epilepsy with localized abnormalities. Such insights highlight the intricate network dysfunctions characteristic of JME, thereby enriching our understanding of its pathophysiological features.

15.
J Imaging Inform Med ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780666

RESUMO

Early, accurate diagnosis of neurodegenerative dementia subtypes such as Alzheimer's disease (AD) and frontotemporal dementia (FTD) is crucial for the effectiveness of their treatments. However, distinguishing these conditions becomes challenging when symptoms overlap or the conditions present atypically. Resting-state fMRI (rs-fMRI) studies have demonstrated condition-specific alterations in AD, FTD, and mild cognitive impairment (MCI) compared to healthy controls (HC). Here, we used machine learning to build a diagnostic classification model based on these alterations. We curated all rs-fMRIs and their corresponding clinical information from the ADNI and FTLDNI databases. Imaging data underwent preprocessing, time course extraction, and feature extraction in preparation for the analyses. The imaging features data and clinical variables were fed into gradient-boosted decision trees with fivefold nested cross-validation to build models that classified four groups: AD, FTD, HC, and MCI. The mean and 95% confidence intervals for model performance metrics were calculated using the unseen test sets in the cross-validation rounds. The model built using only imaging features achieved 74.4% mean balanced accuracy, 0.94 mean macro-averaged AUC, and 0.73 mean macro-averaged F1 score. It accurately classified FTD (F1 = 0.99), HC (F1 = 0.99), and MCI (F1 = 0.86) fMRIs but mostly misclassified AD scans as MCI (F1 = 0.08). Adding clinical variables to model inputs raised balanced accuracy to 91.1%, macro-averaged AUC to 0.99, macro-averaged F1 score to 0.92, and improved AD classification accuracy (F1 = 0.74). In conclusion, a multimodal model based on rs-fMRI and clinical data accurately differentiates AD-MCI vs. FTD vs. HC.

16.
Heliyon ; 10(10): e30698, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38778942

RESUMO

Background: Parkinson's disease (PD), even though generally perceived as a dominantly motor disorder, is associated with a wide range of non-motor symptoms, including mixed anxiety-depressive disorder (MADD). Objectives: The aim of the presented study was to determine whether deep brain stimulation (DBS) of the subthalamic nucleus (STN) brings the functional characteristics of non-motor networks closer to the condition detected in healthy population and whether pre-DBS presence of MADD in PD patients was associated with different reaction to this therapeutic modality. Methods: Resting-state fMRI signature elicited by STN DBS activation and deactivation in 81 PD patients was compared against healthy controls, with the focus on measures of efficiency of information processing and localised subnetwork differences. Results: While all the MRI metrics showed statistically significant differences between PD patients in DBS OFF condition and healthy controls, none were detected in such a comparison against DBS ON condition. Furthermore, in the post-DBS evaluation, PD patients with MADD in the pre-DBS stage showed no differences in depression scales compared to pre-DBS psychiatrically intact PD patients, but still exhibited lower DBS-related connectivity in a subnetwork encompassing anterior and posterior cingulate, dorsolateral prefrontal and medial temporal cortices. Conclusions: STN DBS improved all the metrics of interest towards the healthy state, normalising the resting-state MRI signature of PD. Furthermore, pre-DBS presence of MADD, even though clinically silent at post-DBS MRI acquisition, was associated with lower DBS effect in areas highly relevant for depression. This finding points to a possibly latent nature of post-DBS MADD, calling for caution in further follow-up of these patients.

17.
Neurotoxicology ; 103: 1-8, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38777096

RESUMO

Aluminum (Al) is a low-toxic, accumulative substance with neurotoxicity properties that adversely affect human cognitive function. This study aimed to investigate the neurobiological mechanisms underlying cognitive impairment resulting from occupational Al exposure. Resting-state functional magnetic resonance imaging was conducted on 54 individuals with over 10 years of Al exposure. Al levels were measured, and cognitive function was assessed using the Montreal Cognitive Assessment (MoCA). Subsequently, the K-means clustering algorithm was employed to identify functional gray matter (GM) and white matter (WM) networks. Two-sample t-tests were conducted between the cognition impairment group and the control group. Al exhibited a negative correlation with MoCA scores. Participants with cognitive impairment demonstrated reduced functional connectivity (FC) between the middle cingulum network (WM1) and anterior cingulum network (WM2), as well as between the executive control network (WM6) and limbic network (WM10). Notably, decreased FCs were observed between the executive control network (GM5) and WM1, WM4, WM6, and WM10. Additionally, the FC of GM5-GM4 and WM1-WM2 negatively correlated with Trail Making Test Part A (TMT-A) scores. Prolonged Al accumulation detrimentally affects cognition, primarily attributable to executive control and limbic network disruptions.

18.
Acad Radiol ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38755068

RESUMO

RATIONALE AND OBJECTIVES: The mechanism of comorbidity between alcohol dependence and depressive disorders are not well understood. This study investigated differences in the brain function of alcohol-dependent patients with and without depression by performing functional connectivity analysis using resting-state functional magnetic resonance imaging. MATERIALS AND METHODS: A total of 29 alcohol-dependent patients with depression, 31 alcohol-dependent patients without depression and 31 healthy control subjects were included in this study. The resting-state functional connectivity between the amygdala and the whole brain was compared among the three groups. Additionally, we examined the correlation between functional connectivity values in significantly different brain regions and levels of alcohol dependence and depression. RESULTS: The resting-state functional connectivity between the left amygdala and the right caudate nucleus was decreased in alcohol-dependent patients. Additionally, the resting-state functional connectivity of the right amygdala with the right caudate nucleus, right transverse temporal gyrus, right temporal pole: superior temporal gyrus were also decreased. In alcohol-dependent patients with depression, not only was functional connectivity between the above brain regions significantly decreased, but so was functional connectivity between the right amygdala and the left middle temporal gyrus. Also, there was no significant correlation between the resting-state functional connectivity values in statistically significant brain regions and the levels of alcohol dependence and depression. CONCLUSION: The impairment of the functional connectivity of the amygdala with caudate nucleus and partial temporal lobe may be involved in the neural mechanism of alcohol dependence comorbidity depressive disorders.

19.
Epilepsy Behav ; 157: 109751, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38820678

RESUMO

BACKGROUND: Hippocampal sclerosis (HS) is a prevalent cause of temporal lobe epilepsy (TLE). However, up to 30% of individuals with TLE present negative magnetic resonance imaging (MRI) findings. A comprehensive grasp of the similarities and differences in brain activity among distinct TLE subtypes holds significant clinical and scientific importance. OBJECTIVE: To comprehensively examine the similarities and differences between TLE with HS (TLE-HS) and MRI-negative TLE (TLE-N) regarding static and dynamic abnormalities in spontaneous brain activity (SBA). Furthermore, we aimed to determine whether these alterations correlate with epilepsy duration and cognition, and to determine a potential differential diagnostic index for clinical utility. METHODS: We measured 12 SBA metrics in 38 patients with TLE-HS, 51 with TLE-N, and 53 healthy volunteers. Voxel-wise analysis of variance (ANOVA) and post-hoc comparisons were employed to compare these metrics. The six static metrics included amplitude of low-frequency fluctuations (ALFF), fractional amplitude of low-frequency fluctuations (fALFF), regional homogeneity (ReHo), voxel-mirrored homotopic connectivity (VMHC), degree centrality (DC), and global signal correlation (GSCorr). Additionally, six corresponding dynamic metrics were assessed: dynamic ALFF (dALFF), dynamic fALFF (dfALFF), dynamic ReHo (dReHo), dynamic DC (dDC), dynamic VMHC (dVMHC), and dynamic GSCorr (dGSCorr). Receiver operating characteristic (ROC) curve analysis of abnormal indices was employed. Spearman correlation analyses were also conducted to examine the relationship between the abnormal indices, epilepsy duration and cognition scores. RESULTS: Both TLE-HS and TLE-N presented as extensive neural network disorders, sharing similar patterns of SBA alterations. The regions with increased fALFF, dALFF, and dfALFF levels were predominantly observed in the mesial temporal lobe, thalamus, basal ganglia, pons, and cerebellum, forming a previously proposed mesial temporal epilepsy network. Conversely, decreased SBA metrics (fALFF, ReHo, dReHo, DC, GSCorr, and VMHC) consistently appeared in the lateral temporal lobe ipsilateral to the epileptic foci. Notably, SBA alterations were more obvious in patients with TLE-HS than in those with TLE-N. Additionally, patients with TLE-HS exhibited reduced VMHC in both mesial and lateral temporal lobes compared with patients with TLE-N, with the hippocampus displaying moderate discriminatory power (AUC = 0.759). Correlation analysis suggested that alterations in SBA indicators may be associated with epilepsy duration and cognitive scores. CONCLUSIONS: The simultaneous use of static and dynamic SBA metrics provides evidence supporting the characterisation of both TLE-HS and TLE-N as complex network diseases, facilitating the exploration of mechanisms underlying epileptic activity and cognitive impairment. Overall, SBA abnormality patterns were generally similar between the TLE-HS and TLE-N groups, encompassing networks related to TLE and auditory and occipital visual functions. These changes were more pronounced in the TLE-HS group, particularly within the mesial and lateral temporal lobes.

20.
Psychoradiology ; 4: kkae009, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799033

RESUMO

Background: Social intelligence refers to an important psychosocial skill set encompassing an array of abilities, including effective self-expression, understanding of social contexts, and acting wisely in social interactions. While there is ample evidence of its importance in various mental health outcomes, particularly social anxiety, little is known on the brain correlates underlying social intelligence and how it can mitigate social anxiety. Objective: This research aims to investigate the functional neural markers of social intelligence and their relations to social anxiety. Methods: Data of resting-state functional magnetic resonance imaging and behavioral measures were collected from 231 normal students aged 16 to 20 years (48% male). Whole-brain voxel-wise correlation analysis was conducted to detect the functional brain clusters related to social intelligence. Correlation and mediation analyses explored the potential role of social intelligence in the linkage of resting-state brain activities to social anxiety. Results: Social intelligence was correlated with neural activities (assessed as the fractional amplitude of low-frequency fluctuations, fALFF) among two key brain clusters in the social cognition networks: negatively correlated in left superior frontal gyrus (SFG) and positively correlated in right middle temporal gyrus. Further, the left SFG fALFF was positively correlated with social anxiety; brain-personality-symptom analysis revealed that this relationship was mediated by social intelligence. Conclusion: These results indicate that resting-state activities in the social cognition networks might influence a person's social anxiety via social intelligence: lower left SFG activity → higher social intelligence → lower social anxiety. These may have implication for developing neurobehavioral interventions to mitigate social anxiety.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...