RESUMO
Bisphenol-A (BPA) and 17α-ethinylestradiol (EE2) are considered endocrine disrupting compounds (EDC) and they may be harmful to the normal functioning of endocrine systems of humans and animals. Moreover, the presence of these compounds in superficial and groundwater may represent serious risks, even in low concentrations like ng·L-1. The objectives of this study were to remove BPA and EE2 from solutions containing a mixture of these compounds in ultrapure water at low concentrations through reverse osmosis (RO) membrane combined with a UV/H2O2 process. Furthermore, to assess the estrogenic activity reduction after such treatments, in vitro recombinant yeast-estrogen screen (YES) assay was used. The removal efficiencies of target micropollutants increased with the increase of H2O2 dosage. For RO permeate stream, they enhanced from 91% to 96% for EE2 and from 76% to 90% for BPA while, for the concentrate stream, from 70% to 81% for EE2 and 41% to 84% for BPA as the H2O2 concentration were increased from 100 to 1000â µg·L-1. The OH radicals' generation was the dominant factor in the degradation of EDC during the UV/H2O2 treatment since the photolysis itself was not enough to degrade BPA or EE2. The estrogenic activity reduction after UV/H2O2 treatment was high, ranging from 92% to 98% for the permeate stream and from 50% to 93% for the concentrate stream. The EE2 was responsible for the whole observed estrogenic activity since BPA does not present estrogenicity, by in vitro YES assay, in the concentrations observed.
Assuntos
Disruptores Endócrinos , Poluentes Químicos da Água , Animais , Humanos , Etinilestradiol/análise , Peróxido de Hidrogênio , Estrogênios , Água , Saccharomyces cerevisiae , Osmose , Poluentes Químicos da Água/análise , Disruptores Endócrinos/análiseRESUMO
Fouling mechanisms are mainly caused by the deposition of organic compounds that reduce the removal efficiency on reverse osmosis (RO) membranes. It can be described by mathematical models. The aim of this study was to evaluate the membrane fouling and rejection mechanisms when aqueous solutions containing 17α-ethinylestradiol (EE2) in different concentrations are permeated at 5 and 10â bar in a bench-scale dead-end RO system. Adsorption tests were performed and the fouling mechanism was assessed by Hermia's model for solutions of EE2 at concentrations typically found in the environment (µgâ L-1). Fourier transform infrared spectroscopy (FTIR) has indicated the presence of EE2 on the fouled membrane surface. Membrane rejection of EE2 ranged from 90% to 98% and the main rejection mechanism was size exclusion at all experimental conditions. However, for the higher concentration of EE2 permeated at 5 and 10â bar, adsorption of 7 and 32â mgâ m-2, respectively, also took place. The rejection was influenced by fouling and concentration polarisation. Fouled membranes present higher rejection of hydrophobic neutral compounds and the concentration polarisation reduces rejection. Hermia's model demonstrated that the permeation values fitted better the standard blocking filtration and cake filtration equations for describing fouling mechanism. This study showed that fouling also occurs in the TFC RO membrane after permeation of EE2, which corroborates with studies using other pollutants.