Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 416
Filtrar
1.
BMC Complement Med Ther ; 24(1): 247, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926825

RESUMO

BACKGROUND: Ginsenoside Rg3 is a component of ginseng that protects against myocardial ischemia/reperfusion (MI/R) injury. Ferroptosis is a new form of cell death characterized by oxidative damage to phospholipids. The purpose of this study was to examine the role and of ginsenoside Rg3 in MI/R and the mechanism. METHODS: A mouse model of left anterior descending (LAD) ligation-induced myocardial ischemia/reperfusion (MI/R) injury and oxygen-glucose deprivation/reperfusion (OGD/R) were used as in vitro and in vivo models, respectively. Echocardiographic analysis, 2,3,5-triphenyltetrazolium chloride (TTC) staining and hematoxylin-eosin (H&E) staining were used to assess the cardioprotective effects of ginsenoside Rg3. Western blotting, biochemical analysis, small interfering RNA analysis and molecular docking were performed to examine the underlying mechanism. RESULTS: Ginsenoside Rg3 improved cardiac function and infarct size in mice with MI/R injury. Moreover, ginsenoside Rg3 increased the expression of the ferroptosis-related protein GPX4 and inhibited iron deposition in mice with MI/R injury. Ginsenoside Rg3 also activated the Nrf2 signaling pathway. Ginsenoside Rg3 attenuated myocardial ischemia/reperfusion-induced ferroptosis via the Nrf2 signaling pathway. Notably, ginsenoside Rg3 regulated the keap1/Nrf2 signaling pathway to attenuate OGD/R-induced ferroptosis in H9C2 cells. Taken together, ginsenoside Rg3 attenuated myocardial ischemia/reperfusion-induced ferroptosis via the keap1/Nrf2/GPX4 signaling pathway. CONCLUSIONS: Our findings demonstrated that ginsenoside Rg3 ameliorate MI/R-induced ferroptosis via the keap1/Nrf2/GPX4 signaling pathway.


Assuntos
Ferroptose , Ginsenosídeos , Proteína 1 Associada a ECH Semelhante a Kelch , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica , Fator 2 Relacionado a NF-E2 , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Transdução de Sinais , Ginsenosídeos/farmacologia , Animais , Ferroptose/efeitos dos fármacos , Camundongos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Modelos Animais de Doenças
2.
Aging (Albany NY) ; 16(11): 9933-9943, 2024 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-38850526

RESUMO

BACKGROUND: Ginsenoside Rg3 is an active saponin isolated from ginseng, which can reduce renal inflammation. However, the role and mechanism of Rg3 in diabetic kidney disease (DKD) are far from being studied. METHODS: The effects of Rg3 and miR-216a-5p on the proliferation, apoptosis, and MAPK pathway in high glucose (HG)-induced SV40 MES 13 were monitored by CCK-8, TUNEL staining, and western blot. RESULTS: Rg3 treatment could accelerate proliferation and suppress apoptosis in HG-induced SV40 MES. Moreover, miR-216a-5p inhibition also could alleviate renal injury, prevent apoptosis, and activate the MAPK pathway in kidney tissues of diabetic model mice. CONCLUSION: Rg3 could attenuate DKD progression by downregulating miR-216a-5p, suggesting Rg3 and miR-216a-5p might be the potential drug and molecular targets for DKD therapy.


Assuntos
Apoptose , Proliferação de Células , Diabetes Mellitus Experimental , Nefropatias Diabéticas , Ginsenosídeos , Sistema de Sinalização das MAP Quinases , Células Mesangiais , MicroRNAs , Ginsenosídeos/farmacologia , MicroRNAs/metabolismo , MicroRNAs/genética , Animais , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/tratamento farmacológico , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Camundongos , Células Mesangiais/efeitos dos fármacos , Células Mesangiais/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Masculino , Linhagem Celular
3.
Cell Cycle ; 23(6): 662-681, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38796716

RESUMO

This investigation examined the potential of ginsenoside Rg3 in addressing traumatic brain injury (TBI). A TBI mouse model underwent treatment with ginsenoside Rg3 and nicotinamide (NAM). Neurological and motor functions were assessed using modified neurological severity score and rotarod tests. Brain water content in mice was detected. Primary mouse microglia were exposed to lipopolysaccharide (LPS), ginsenoside Rg3, and NAM. Nissl and immunofluorescence staining were utilized to investigate hippocampal damage, and localization of P65, Iba1 and INOS in microglia. Hippocampal neurons were grown in a culture medium derived from microglia. CCK-8 and TUNEL assays were employed to evaluate the viability and apoptosis of hippocampal neurons. Proinflammatory factors and proteins were tested using ELISA, western blot and immunofluorescence staining. As a result, ginsenoside Rg3 enhanced neurological and motor functions in mice post-TBI, reduced brain water content, alleviated hippocampal neuronal neuroinflammation and damage, activated SIRT1, and deactivated the NF-kB pathway. In LPS-stimulated microglia, ginsenoside Rg3 diminished inflammation, activated SIRT1, deactivated the NF-kB pathway, and facilitated nuclear localization of P65 and co-localization of Iba1 and INOS. The effects of ginsenoside Rg3 were countered by NAM in both TBI mice and LPS-stimulated microglia. Hippocampal neurons cultured in a medium containing LPS, ginsenoside Rg3, and NAM-treated microglia showed improved viability and reduced apoptosis compared to those cultured in a medium with LPS and ginsenoside Rg3-treated microglia alone. Ginsenoside Rg3 was effective in reducing neuroinflammation and damage in hippocampal neurons following TBI by modulating the SIRT1/NF-kB pathway, suggesting its potential as a therapeutic agent for TBI.


Assuntos
Lesões Encefálicas Traumáticas , Ginsenosídeos , Hipocampo , Microglia , NF-kappa B , Doenças Neuroinflamatórias , Neurônios , Transdução de Sinais , Sirtuína 1 , Animais , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/metabolismo , Sirtuína 1/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Hipocampo/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Camundongos , NF-kappa B/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Transdução de Sinais/efeitos dos fármacos , Masculino , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Apoptose/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Lipopolissacarídeos , Fármacos Neuroprotetores/farmacologia , Modelos Animais de Doenças
4.
Adv Healthc Mater ; : e2400046, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767575

RESUMO

Triple negative breast cancer (TNBC) featuring high relapses and metastasis shows limited clinical therapeutic efficiency with chemotherapy for the extremely complex tumor microenvironment, especially angiogenesis and immunosuppression. Combination of antiangiogenesis and immunotherapy holds promise for effective inhibition of tumor proliferation and invasion, while it remains challenging for specific targeting drug delivery to tumors and metastatic lesions. Here, a multifunctional biomimetic liposome loading Gambogic acid (G/R-MLP) is developed using Ginsenoside Rg3 (Rg3) to substitute cholesterol and cancer cell membrane coating, which is designed to increase long-circulating action by a low immunogenicity and specifically deliver gambogic acid (GA) to tumor site and metastatic lesions by homologous targeting and glucose transporter targeting. After G/R-MLP accumulates in the primary tumors and metastatic nodules, it synergistically enhances the antitumor efficacy of GA, effectively suppressing the tumor growth and lung metastasis by killing tumor cells, inhibiting tumor cell migration and invasion, achieving antiangiogenesis and improving the antitumor immunity. All in all, the strategy combining chemotherapy, antiangiogenesis, and immunotherapy improves therapeutic efficiency and prolonged survival, providing a new perspective for the clinical treatment of TNBC.

5.
Pharmacol Res ; 204: 107203, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38719196

RESUMO

Recent research has demonstrated the immunomodulatory potential of Panax notoginseng in the treatment of chronic inflammatory diseases and cerebral hemorrhage, suggesting its significance in clinical practice. Nevertheless, the complex immune activity of various components has hindered a comprehensive understanding of the immune-regulating properties of Panax notoginseng, impeding its broader utilization. This review evaluates the effect of Panax notoginseng to various types of white blood cells, elucidates the underlying mechanisms, and compares the immunomodulatory effects of different Panax notoginseng active fractions, aiming to provide the theory basis for future immunomodulatory investigation.


Assuntos
Panax notoginseng , Panax notoginseng/química , Humanos , Animais , Sistema Imunitário/efeitos dos fármacos , Leucócitos/efeitos dos fármacos , Leucócitos/imunologia , Agentes de Imunomodulação/farmacologia , Agentes de Imunomodulação/uso terapêutico , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia
6.
J Ginseng Res ; 48(3): 310-322, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38707648

RESUMO

Background: Osteosarcopenia is a common condition characterized by the loss of both bone and muscle mass, which can lead to an increased risk of fractures and disability in older adults. The study aimed to elucidate the response of various mouse strains to treatment with Rg3, one of the leading ginsenosides, on musculoskeletal traits and immune function, and their correlation. Methods: Six Collaborative Cross (CC) founder strains induced muscle atrophy and bone loss with dexamethasone (15 mg/kg) treatment for 1 month, and half of the mice for each strain were orally administered Rg3 (20 mg/kg). Different responses were observed depending on genetic background and Rg3 treatment. Results: Rg3 significantly increased grip strength, running performance, and expression of muscle and bone health-related genes in a two-way analysis of variance considering the genetic backgrounds and Rg3 treatment. Significant improvements in grip strength, running performance, bone area, and muscle mass, and the increased gene expression were observed in specific strains of PWK/PhJ. For traits related to muscle, bone, and immune functions, significant correlations between traits were confirmed following Rg3 administration compared with control mice. The phenotyping analysis was compiled into a public web resource called Rg3-OsteoSarco. Conclusion: This highlights the complex interplay between genetic determinants, pathogenesis of muscle atrophy and bone loss, and phytochemical bioactivity and the need to move away from single inbred mouse models to improve their translatability to genetically diverse humans. Rg3-OsteoSarco highlights the use of CC founder strains as a valuable tool in the field of personalized nutrition.

7.
Pharmacol Res ; 203: 107182, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614373

RESUMO

Inflammatory diseases, including infectious diseases, diabetes-related diseases, arthritis-related diseases, neurological diseases, digestive diseases, and tumor, continue to threaten human health and impose a significant financial burden despite advancements in clinical treatment. Pyroptosis, a pro-inflammatory programmed cell death pathway, plays an important role in the regulation of inflammation. Moderate pyroptosis contributes to the activation of native immunity, whereas excessive pyroptosis is associated with the occurrence and progression of inflammation. Pyroptosis is complicated and tightly controlled by various factors. Accumulating evidence has confirmed that epigenetic modifications and post-translational modifications (PTMs) play vital roles in the regulation of pyroptosis. Epigenetic modifications, which include DNA methylation and histone modifications (such as methylation and acetylation), and post-translational modifications (such as ubiquitination, phosphorylation, and acetylation) precisely manipulate gene expression and protein functions at the transcriptional and post-translational levels, respectively. In this review, we summarize the major pathways of pyroptosis and focus on the regulatory roles and mechanisms of epigenetic and post-translational modifications of pyroptotic components. We also illustrate these within pyroptosis-associated inflammatory diseases. In addition, we discuss the effects of novel therapeutic strategies targeting epigenetic and post-translational modifications on pyroptosis, and provide prospective insight into the regulation of pyroptosis for the treatment of inflammatory diseases.


Assuntos
Epigênese Genética , Inflamação , Processamento de Proteína Pós-Traducional , Piroptose , Humanos , Piroptose/efeitos dos fármacos , Animais , Inflamação/genética , Inflamação/metabolismo , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia
8.
Sci Rep ; 14(1): 9157, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644456

RESUMO

Brown adipose tissue (BAT) which is a critical regulator of energy homeostasis, and its activity is inhibited by obesity and low-grade chronic inflammation. Ginsenoside Rg3, the primary constituent of Korean red ginseng (steamed Panax ginseng CA Meyer), has shown therapeutic potential in combating inflammatory and metabolic diseases. However, it remains unclear whether Rg3 can protect against the suppression of browning or activation of BAT induced by inflammation. In this study, we conducted a screening of ginsenoside composition in red ginseng extract (RGE) and explored the anti-adipogenic effects of both RGE and Rg3. We observed that RGE (exist 0.25 mg/mL of Rg3) exhibited significant lipid-lowering effects in adipocytes during adipogenesis. Moreover, treatment with Rg3 (60 µM) led to the inhibition of triglyceride accumulation, subsequently promoting enhanced fatty acid oxidation, as evidenced by the conversion of radiolabeled 3H-fatty acids into 3H-H2O with mitochondrial activation. Rg3 alleviated the attenuation of browning in lipopolysaccharide (LPS)-treated beige adipocytes and primary brown adipocytes by recovered by uncoupling protein 1 (UCP1) and the oxygen consumption rate compared to the LPS-treated group. These protective effects of Rg3 on inflammation-induced inhibition of beige and BAT-derived thermogenesis were confirmed in vivo by treating with CL316,243 (a beta-adrenergic receptor agonist) and LPS to induce browning and inflammation, respectively. Consistent with the in vitro data, treatment with Rg3 (2.5 mg/kg, 8 weeks) effectively reversed the LPS-induced inhibition of brown adipocyte features in C57BL/6 mice. Our findings confirm that Rg3-rich foods are potential browning agents that counteract chronic inflammation and metabolic complications.


Assuntos
Tecido Adiposo Marrom , Ginsenosídeos , Lipopolissacarídeos , Mitocôndrias , Panax , Extratos Vegetais , Termogênese , Ginsenosídeos/farmacologia , Animais , Termogênese/efeitos dos fármacos , Panax/química , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Camundongos , Extratos Vegetais/farmacologia , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Bege/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Masculino , Adipogenia/efeitos dos fármacos
9.
Curr Top Med Chem ; 24(10): 869-884, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38441023

RESUMO

BACKGROUND: Traditional Chinese Medicine (TCM) has a long history of treating various diseases and is increasingly being recognized as a complementary therapy for cancer. A promising natural compound extracted from the Chinese herb ginseng is ginsenoside Rg3, which has demonstrated significant anticancer effects. It has been tested in a variety of cancers and tumors and has proven to be effective in suppressing cancer. OBJECTIVES: This work covers various aspects of the role of ginsenoside Rg3 in cancer treatment, including its biological functions, key pathways, epigenetics, and potential for combination therapies, all of which have been extensively researched and elucidated. The study aims to provide a reference for future research on ginsenoside Rg3 as an anticancer agent and a support for the potential application of ginsenoside Rg3 in cancer treatment.


Assuntos
Ginsenosídeos , Neoplasias , Ginsenosídeos/química , Ginsenosídeos/farmacologia , Humanos , Neoplasias/tratamento farmacológico , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Medicina Tradicional Chinesa , Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Animais
10.
Oncol Lett ; 27(4): 182, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38476209

RESUMO

Ginsenoside Rg3 (GS-Rg3), a sterol molecule isolated from ginseng, has demonstrated various immunological properties, including inhibition of cancer cell proliferation and metastasis, reversal of drug resistance and enhancement of chemotherapy sensitivity. The recent surge in attention towards GS-Rg3 can be attributed to its potential as an antitumor angiogenesis agent and as a therapeutic candidate for immunotherapy. The development of GS-Rg3 as an agent for these purposes has accelerated research on its mechanisms of action. The present review summarizes recent studies investigating the antitumor activity of GS-Rg3 and its underlying mechanisms, as well as providing essential information for future studies on GS-Rg3.

11.
J Ginseng Res ; 48(2): 129-139, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38465219

RESUMO

Liver diseases are a significant global health burden and are among the most common diseases. Ginssennoside Rg3 (Rg3), which is one of the most abundant ginsenosides, has been found to have significant preventive and therapeutic effects against various types of diseases with minimal side effects. Numerous studies have demonstrated the significant preventive and therapeutic effects of Rg3 on various liver diseases such as viral hepatitis, acute liver injury, nonalcoholic liver diseases (NAFLD), liver fibrosis and hepatocellular carcinoma (HCC). The underlying molecular mechanism behind these effects is attributed to apoptosis, autophagy, antioxidant, anti-inflammatory activities, and the regulation of multiple signaling pathways. This review provides a comprehensive description of the potential molecular mechanisms of Rg3 in the development of liver diseases. The article focuses on the regulation of apoptosis, oxidative stress, autophagy, inflammation, and other related factors. Additionally, the review discusses combination therapy and liver targeting strategy, which can accelerate the translation of Rg3 from bench to bedside. Overall, this article serves as a valuable reference for researchers and clinicians alike.

12.
J Ginseng Res ; 48(2): 171-180, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38465222

RESUMO

Background: Epimers of ginsenoside Rg3 (Rg3) have a low bioavailability and are prone to deglycosylation, which produces epimers of ginsenoside Rh2 (S-Rh2 and R-Rh2) and protopanaxadiol (S-PPD and R-PPD). The aim of this study was to compare the efficacy and potency of these molecules as anti-cancer agents. Methods: Crystal violet staining was used to study the anti-proliferatory action of the molecules on a human epithelial breast cancer cell line, MDA-MB-231, and human umbilical vein endothelial cells (HUVEC) and compare their potency. Cell death and cell cycle were studied using flow cytometry and mode of cell death was studied using live cell imaging. Anti-angiogenic effects of the drug were studied using loop formation assay. Molecular docking showed the interaction of these molecules with vascular endothelial growth factor receptor-2 (VEGFR2) and aquaporin (AQP) water channels. VEGF bioassay was used to study the interaction of Rh2 with VEGFR2, in vitro. Results: HUVEC was the more sensitive cell line to the anti-proliferative effects of S-Rh2, S-PPD and R-PPD. The molecules induced necroptosis/necrosis in MDA-MB-231 and apoptosis in HUVEC. S-Rh2 was the most potent inhibitor of loop formation. In silico molecular docking predicted a good binding score between Rh2 or PPD and the ATP-binding pocket of VEGFR2. VEGF bioassay showed that Rh2 was an allosteric modulator of VEGFR2. In addition, SRh2 and PPD had good binding scores with AQP1 and AQP5, both of which play roles in cell migration and proliferation. Conclusion: The combination of these molecules might be responsible for the anti-cancer effects observed by Rg3.

13.
Front Pharmacol ; 15: 1327033, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469409

RESUMO

Ginsenoside Rg3, a compound derived from Panax ginseng C. A. Mey., is increasingly recognized for its wide range of pharmacological effects. Under the worldwide healthcare challenges posed by heart diseases, Rg3 stands out as a key subject in modern research on Chinese herbal medicine, offering a novel approach to therapy. Mental illnesses are significant contributors to global disease mortality, and there is a well-established correlation between cardiac and psychiatric conditions. This connection is primarily due to dysfunctions in the sympathetic-adrenomedullary system (SAM), the hypothalamic-pituitary-adrenal axis, inflammation, oxidative stress, and brain-derived neurotrophic factor impairment. This review provides an in-depth analysis of Rg3's therapeutic benefits and its pharmacological actions in treating cardiac and mental health disorders respectively. Highlighting its potential for the management of these conditions, Rg3 emerges as a promising, multifunctional therapeutic agent.

14.
Am J Cancer Res ; 14(2): 601-615, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455405

RESUMO

Breast cancer stem cells (BCSCs) are responsible for breast cancer metastasis, recurrence and treatment resistance, all of which make BCSCs potential drivers of breast cancer aggression. Ginsenoside Rg3, a traditional Chinese herbal medicine, was reported to have multiple antitumor functions. Here, we revealed a novel effect of Rg3 on BCSCs. Rg3 inhibits breast cancer cell viability in a dose- and time-dependent manner. Importantly, Rg3 suppressed mammosphere formation, reduced the expression of stemness-related transcription factors, including c-Myc, Oct4, Sox2 and Lin28, and diminished ALDH(+) populations. Moreover, tumor-bearing mice treated with Rg3 exhibited robust delay of tumor growth and a decrease in tumor-initiating frequency. In addition, we found that Rg3 suppressed breast cancer stem-like properties mainly through inhibiting MYC expression. Mechanistically, Rg3 accelerated the degradation of MYC mRNA by enhancing the expression of the let-7 family, which was demonstrated to bind to the MYC 3' untranslated region (UTR). In conclusion, our findings reveal the remarkable suppressive effect of Rg3 on BCSCs, suggesting that Rg3 is a promising therapeutic treatment for breast cancer.

15.
Food Sci Biotechnol ; 33(5): 1233-1243, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38440685

RESUMO

High doses or prolonged use of the exogenous synthetic glucocorticoid dexamethasone (Dex) can lead to muscle atrophy. In this study, the anti-atrophic effects of ginsenosides Rh1, Rg2, and Rg3 on Dex-induced C2C12 myotube atrophy were assessed by XTT, myotube diameter, fusion index, and western blot analysis. The XTT assay results showed that treatment with Rh1, Rg2, and Rg3 enhanced cell viability in Dex-injured C2C12 myotubes. Compared with the control group, the myotube diameter and fusion index were both reduced in Dex-treated cells, but treatment with Rh1, Rg2, and Rg3 increased these parameters. Furthermore, Rh1, Rg2, and Rg3 significantly downregulated the protein expression of FoxO3a, MuRF1, and Fbx32, while also upregulating mitochondrial biogenesis through the SIRT1/PGC-1α pathway. It also prevents myotube atrophy by regulating the IGF-1/Akt/ mTOR signaling pathway. These findings indicate that Rh1, Rg2, and Rg3 have great potential as useful agents for the prevention and treatment of muscle atrophy.

16.
Pharmacol Res ; 202: 107141, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490314

RESUMO

Osteoarthritis (OA) is a degenerative disease characterised by articular cartilage destruction, and its complex aetiology contributes to suboptimal clinical treatment outcomes. A close association exists between glucose metabolism dysregulation and OA pathogenesis. Owing to the unique environment of low oxygen and glucose concentrations, chondrocytes rely heavily on their glycolytic capacity, exhibiting distinct spatiotemporal differences. However, under pathological stimulation, chondrocytes undergo excessive glycolytic activity while mitochondrial respiration and other branches of glucose metabolism are compromised. This metabolic change induces cartilage degeneration by reprogramming the inflammatory responses. Sirtuins, a highly conserved family of nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases, regulate glucose metabolism in response to energy fluctuations in different cellular compartments,alleviating metabolic stress. SIRT1, the most extensively studied sirtuin, participates in maintaining glucose homeostasis in almost all key metabolic tissues. While actively contributing to the OA progression and displaying diverse biological effects in cartilage protection, SIRT1's role in regulating glucose metabolism in chondrocytes has not received sufficient attention. This review focuses on discussing the beneficial role of SIRT1 in OA progression from a metabolic regulation perspective based on elucidating the primary characteristics of chondrocyte glucose metabolism. We also summarise the potential mechanisms and therapeutic strategies targeting SIRT1 in chondrocytes to guide clinical practice and explore novel therapeutic directions.


Assuntos
Glucose , Osteoartrite , Sirtuína 1 , Animais , Humanos , Cartilagem Articular/patologia , Glucose/metabolismo , Osteoartrite/metabolismo , Sirtuína 1/metabolismo , Sirtuínas/metabolismo
17.
Int J Pharm ; 654: 123963, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38430952

RESUMO

Inflammation in hair follicles will reduce the effectiveness of minoxidil (MXD) in the treatment of androgen alopecia (AGA) caused by elevated androgen levels. To target multiple physiological and pathological processes in AGA, a novel natural bioactive compound modified transfersomes (MXD-Rg3@TFs) was prepared to replace cholesterol that may disrupt hair growth, with ginsenosides Rg3 (Rg3) that have anti-inflammatory effects on AGA. The effects of MXD, Rg3 and their combination on AGA were evaluated using dihydrotestosterone (DHT) induced human dermal papilla cells (DPCs), and the results showed that the combination of MXD and Rg3 can significantly promote the proliferation, reduce the level of intracellular ROS and inflammatory factors, and inhibit the aging of DHT induced DPCs. Compared with cholesterol membrane transfersomes (MXD-Ch@TFs), MXD-Rg3@TFs has similar deformability, smaller particle size and better stability. MXD-Rg3@TFs has also significant advantages in shortening telogen phase and prolonging the growth period of hair follicles in C57BL/6 mice than MXD-Ch@TFs and commercial MXD tincture. The prominent ability of MXD-Rg3@TFs to inhibit the conversion of testosterone to DHT and reduce the level of inflammatory factors suggested that Rg3 and MXD in MXD-Rg3@TFs have synergistic effect on AGA therapy. MXD-Ch@TFs with no irritation to C57BL/6 mice skin is expected to reduce the dose of MXD and shorten the treatment time, which would undoubtedly provide a promising therapeutic option for treatment of AGA.


Assuntos
Ginsenosídeos , Minoxidil , Camundongos , Animais , Humanos , Minoxidil/farmacologia , Minoxidil/uso terapêutico , Ginsenosídeos/farmacologia , Androgênios/uso terapêutico , Camundongos Endogâmicos C57BL , Alopecia/tratamento farmacológico , Folículo Piloso , Di-Hidrotestosterona , Colesterol
18.
Am J Chin Med ; 52(1): 35-55, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38353635

RESUMO

Asian ginseng, the root of Panax ginseng C.A. Meyer, occupies a prominent position in the list of best-selling natural products in the world. There are two major types of ginseng roots: white ginseng and red ginseng, each with numerous preparations. White ginseng is prepared by air-drying fresh Asian ginseng roots after harvest. Red ginseng is prepared by steaming roots in controlled conditions using fresh or raw Asian ginseng. Red ginseng is commonly used in Asian countries due to its unique chemical profile, different therapeutic efficacy, and increased stability. Compared with the widespread research on white ginseng, the study of red ginseng is relatively limited. In this paper, after a botanical feature description, the structures of different types of constituents in red ginseng are systematically described, including naturally occurring compounds and those resulting from the steam processing. In red ginseng phytochemical studies, the number of published reports on ginsenosides is significantly higher than that for other constituents. Up to now, 57 ginsenosides have been isolated and characterized in red ginseng. The structural transformation pathways during steaming have been summarized. In comparison with white ginseng, red ginseng also contains other constituents, including polyacetylenes, Maillard reaction products, other types of glycosides, lignans, amino acids, fatty acids, and polysaccharides, which have also been presented. Appropriate analytical methods are necessary for differentiating between unprocessed white ginseng and processed red ginseng. Specific marker compounds and chemical profiles have been used to discriminate red ginseng from white ginseng and adulterated commercial products. Additionally, a brief phytochemical profile comparison has been made between white ginseng and black ginseng, and the latter is another type of processed ginseng prepared from white or red ginseng by steaming several times. In conclusion, to ensure the safe and effective use of red ginseng, phytochemical and analytical studies of its constituents are necessary and even crucial.


Assuntos
Terapias Complementares , Ginsenosídeos , Panax , Ginsenosídeos/uso terapêutico , Vapor , Panax/química , Compostos Fitoquímicos
19.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(1): 111-117, 2024 Jan 20.
Artigo em Chinês | MEDLINE | ID: mdl-38322531

RESUMO

Objective: To evaluate the inhibitory effect of ginsenoside Rg3 combined with 5-fluorouracil (5-FU) on tumor angiogenesis and tumor growth in colon cancer in mice. Methods: CT26 mouse model of colon cancer was established and the mice were randomly assigned to the control group, the ginsenoside Rg3 group, the 5-FU group, and the Rg3 combined with 5-FU group. The 5-FU group was injected intraperitoneally at the dose of 20 mg/kg, 0.2 mL/animal, and once a day for 10 days. Treatment for the Rg3 group was given at the dose of 20 mg/kg, 0.2 mL/animal, and once a day for 21 days via gastric gavage. The dose and the mode of treatment for the Rg3+5-FU combination group were the same as those for the 5-FU and the Rg3 group. The control group was intraperitoneally injected with 0.2 mL/d of normal saline for 10 days. The expression of vascular endothelial growth factor (VEGF) and CD31 and the microvascular density (MVD) of the tumor tissues were examined by immunohistochemistry. The blood flow signals and tumor necrosis were examined by color Doppler flow imaging (CDFI). The quality of life, survival rate, tumor volume, tumor mass, and tumor inhibition rate of the mice were monitored. Results: After 21 days of treatment, the tumor volume and the tumor mass of all treatment groups were significantly decreased compared with those the control group, with the combination treatment group exhibiting the most significant decrease. The tumor inhibition rates of the Rg3 group, the 5-FU group, and the combination group were 29.96%, 68.78%, and 73.42%, respectively. Rg3 treatment alone had inhibitory effect on tumor growth to a certain degree, while 5-FU treatment alone or 5-FU combined with Rg3 had a stronger inhibitory effect on tumor growth. The tumor inhibition rate of the combination group was higher than that of the 5-FU group, but the difference was not statistically significant (P>0.05). Color Doppler ultrasound showed that there were multiple localized and large tumor necrotic areas that were obvious and observable in the Rg3 group and the combination group, and that there were only small tumor necrotic areas in the 5-FU group and the control group. The tumor necrosis rate of the combination group was (55.63±3.12)%, which was significantly higher than those of the other groups (P<0.05). CDFI examination of the blood flow inside of the tumor of the mice showed that the blood flow signals in the combination group were mostly grade 0-Ⅰ, and that the blood flow signals in the control group were the most abundant, being mostly grade Ⅱ-Ⅲ. The abundance of the blood flow signals in the Rg3 and 5-FU groups were between those of the control group and the combination group. Compared with those of the control group, the expression levels of MVD and VEGF in the tumor tissues of the Rg3 group, the 5-FU group, and the combination group were significantly decreased, with the combination group showing the most significant decrease (P<0.05). HE staining results indicated that there was significant tumor necrosis in mice in the control group and that there were more blood vessels. In contrast, in the tumor of the Rg3 group and the 5-FU group, there were fewer blood vessels and necrotic gaps appeared within the tumors. In the combination group, the tumor tissues had the fewest blood vessels and rope-like necrosis was observed. The mice started dying on the 18th day after treatment started, and all the mice in the control group died on the 42nd day. By this time, there were 3, 5, and 7 mice still alive in the Rg3 group, the 5-FU group, and the combination group, respectively, presenting a survival rate of 30%, 50%, and 70%, respectively. All mice in all the groups died on day 60 after treatment started. Conclusion: Ginsenoside Rg3 combined with 5-FU can significantly inhibit tumor angiogenesis and tumor growth of colon cancer in mice and improve the survival and quality of life of tumor-bearing mice.


Assuntos
Neoplasias do Colo , Ginsenosídeos , Camundongos , Animais , Fluoruracila/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Angiogênese , Qualidade de Vida , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Neovascularização Patológica/tratamento farmacológico , Necrose/tratamento farmacológico , Linhagem Celular Tumoral
20.
Phytomedicine ; 126: 155402, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350242

RESUMO

BACKGROUND: Vasculogenic mimicry (VM) is an angiogenesis-independent process that potentially contributes to the poor clinical outcome of anti-angiogenesis therapy in multiple malignant cancers, including pancreatic adenocarcinoma (PAAD). Several studies have shown that ginsenoside Rg3, a bioactive component of ginseng, holds considerable potential for cancer treatment. Our previous work has proved that Rg3 can inhibit VM formation in PAAD. However, its underlying mechanism remains unclear. PURPOSE: To explore the underlying mechanism by which Rg3 affects VM formation in PAAD. METHODS: We first investigated the effects of Rg3 on the cellular phenotypes of two PAAD cell lines (SW-1990 and PCI-35), and the expression of EMT- and stemness-related proteins. SW-1990 cells were adopted to construct xenograft models, and the anti-tumor effects of Rg3 in vivo were validated. Subsequently, we isolated the exosomes from the two PAAD cell lines with Rg3 treatment or not, and explored whether Rg3 regulated VM via PAAD cell-derived exosomes. MiRNA sequencing, clinical analysis, and rescue experiments were performed to investigate whether and which miRNA was involved. Subsequently, the target gene of miRNA was predicted using the miRDB website (https://mirdb.org/), and rescue experiments were further conducted to validate those in vitro and in vivo. RESULTS: Rg3 indeed exhibited excellent anti-tumor effects both in vitro and in vivo, with inhibitory effects on EMT and stemness of PAAD cells. More interestingly, Rg3-treated PAAD cell-derived exosomes suppressed the tube-forming ability of HUVEC and PAAD cells, with a decrease in stemness-related protein expression, indicating that Rg3 inhibited both angiogenesis and VM processes. Subsequently, we found that Rg3 induced the up-regulation of miR-204 in PAAD cell-derived exosomes, and miR-204 alone inhibited tube and sphere formation abilities of PAAD cells like exosomes. Specifically, miR-204 down-regulated DVL3 expression, which was involved in regulating cancer cell stemness, and ultimately affected VM. The in vivo experiments further indicated that Rg3-treated SW-1990 cell-derived exosome-inhibited tumor growth, VM formation, and stemness-related protein expression can be abrogated by DVL3 overexpression. CONCLUSION: Ginsenoside Rg3 increased the PAAD cell-derived exosomal miR-204 levels, which subsequently inhibited its target genes DVL3 expression in the receptor PAAD cells, and the down-regulated DVL3 broke stemness maintenance, ultimately suppressing VM formation of PAAD. Our findings revealed a novel mechanism by which Rg3 exerted its anti-tumor activity in PAAD via inhibiting VM, and provided a promising strategy to make up for the deficiency of anti-angiogenesis therapy in cancer.


Assuntos
Adenocarcinoma , Ginsenosídeos , MicroRNAs , Neoplasias Pancreáticas , Intervenção Coronária Percutânea , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Linhagem Celular Tumoral , MicroRNAs/genética , Proliferação de Células , Neovascularização Patológica/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica , Proteínas Desgrenhadas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...