Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Crit Rev Biotechnol ; : 1-20, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710611

RESUMO

Every year, a huge amount of lethal compounds, such as synthetic dyes, pesticides, pharmaceuticals, hydrocarbons, etc. are mass produced worldwide, which negatively affect soil, air, and water quality. At present, pesticides are used very frequently to meet the requirements of modernized agriculture. The Food and Agriculture Organization of the United Nations (FAO) estimates that food production will increase by 80% by 2050 to keep up with the growing population, consequently pesticides will continue to play a role in agriculture. However, improper handling of these highly persistent chemicals leads to pollution of the environment and accumulation in food chain. These effects necessitate the development of technologies to eliminate or degrade these pollutants. Degradation of these compounds by physical and chemical processes is expensive and usually results in secondary compounds with higher toxicity. The biological strategies proposed for the degradation of these compounds are both cost-effective and eco-friendly. Microbes play an imperative role in the degradation of xenobiotic compounds that have toxic effects on the environment. This review on the fate of xenobiotic compounds in the environment presents cutting-edge insights and novel contributions in different fields. Microbial community dynamics in water bodies, genetic modification for enhanced pesticide degradation and the use of fungi for pharmaceutical removal, white-rot fungi's versatile ligninolytic enzymes and biodegradation potential are highlighted. Here we emphasize the factors influencing bioremediation, such as microbial interactions and carbon catabolism repression, along with a nuanced view of challenges and limitations. Overall, this review provides a comprehensive perspective on the bioremediation strategies.

2.
J Hazard Mater ; 466: 133651, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309165

RESUMO

6:2 Fluorotelomer alcohol (FTOH), one of per- and polyfluoroalkyl substances (PFAS), is widely used as a raw material in synthesizing surfactants and fluorinated polymers. However, little is known about the role of root exudates on 6:2 FTOH biodegradation in the rhizosphere. This study examined the effects of root exudates produced from dicot (Arabidopsis thaliana) and monocot (Brachypodium distachyon) grown under different nutrient conditions (nutrient-rich, sulfur-free, and potassium-free) on 6:2 FTOH biotransformation with or without bioaugmentating agent Rhodococcus jostii RHA1. All the exudates enhanced defluorination of 6:2 FTOH by glucose-grown RHA1. Amendment of dicot or monocot root exudates, regardless of the plant growth conditions, also enhanced 6:2 FTOH biotransformation in soil microcosms. Interestingly, high levels of humic-like substances in the root exudates are linked to high extents of 6:2 FTOH defluorination. Bioaugmenting strain RHA1 along with root exudates facilitated 6:2 FTOH transformation with a production of more diverse metabolites. Microbial community analysis revealed that Rhodococcus was predominant in all strain RHA1 spiked treatments. Different root exudates changed the soil microbiome dynamics. This study provided new insight into 6:2 FTOH biotransformation with different root exudates, suggesting that root exudates amendment and bioaugmentation are promising approaches to promote rhizoremediation for PFAS-contaminated soil.


Assuntos
Arabidopsis , Fluorocarbonos , Microbiota , Solo , Fluorocarbonos/análise , Substâncias Húmicas/análise , Arabidopsis/metabolismo , Exsudatos e Transudatos/química , Exsudatos e Transudatos/metabolismo
3.
Environ Sci Pollut Res Int ; 30(41): 94649-94668, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37535290

RESUMO

Hydrocarbonoclastic bacterial strains were isolated from rhizosphere of plants growing in crude oil-contaminated sites of Assam, India. These bacteria showed plant growth-promoting attributes, even when exposed to crude oil. Two independent pot trials were conducted to test the rhizodegradation ability of the bacterial consortium in combination of plants Azadirchta indica or Delonix regia in crude oil-contaminated soil. Field experiments were conducted at two crude oil-contaminated agricultural field at Assam (India), where plants (A. indica or D. regia) were grown with the selected bacterial consortium consisting of five hydrocarbonoclastic bacterial isolates (Gordonia amicalis BB-DAC, Pseudomonas aeruginosa BB-BE3, P. citronellolis BB-NA1, Rhodococcus ruber BB-VND, and Ochrobactrum anthropi BB-NM2), and NPK was added to the soil for biostimulation. The bacterial consortium-NPK biostimulation led to change in rhizosphere microbiome with enhanced degradation of petroleum hydrocarbons (PHs) in soils contaminated with crude oil. After 120 days of planting A. indica + consortium + NPK treatment, degradation of PHs was found to be up to 67%, which was 55% with D. regia with the same treatment. Significant changes in the activities of plant and soil enzymes were also noted. The shift is bacterial community was also apparent as with A. indica, the relative abundance of Proteobacteria, Actinobacteria, and Acidobacteria increased by 35.35%, 26.59%, and 20.98%, respectively. In the case of D. regia, the relative abundance of Proteobacteria, Actinobacteria, and Acidobacteria were increased by 39.28%, 35.79%, and 9.60%, respectively. The predicted gene functions shifted in favor of the breakdown of xenobiotic compounds. This study suggests that a combination of plant-bacterial consortium and NPK biostimulation could be a productive approach to bioengineering the rhizosphere microbiome for the purpose of commercial bioremediation of crude oil-contaminated sites, which is a major environmental issue faced globally.


Assuntos
Microbiota , Petróleo , Poluentes do Solo , Solo , Poluentes do Solo/análise , Petróleo/metabolismo , Hidrocarbonetos/metabolismo , Biodegradação Ambiental , Bactérias/metabolismo , Microbiologia do Solo
4.
J Microbiol Biotechnol ; 33(7): 886-894, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37164683

RESUMO

During the rhizoremediation of diesel-contaminated soil, methane (CH4), a representative greenhouse gas, is emitted as a result of anaerobic metabolism of diesel. The application of methantrophs is one of solutions for the mitigation CH4 emissions during the rhizoremediation of diesel-contaminated soil. In this study, CH4-oxidizing rhizobacteria, Methylocystis sp. JHTF4 and Methyloversatilis sp. JHM8, were isolated from rhizosphere soils of tall fescue and maize, respectively. The maximum CH4 oxidation rates for the strains JHTF4 and JHM8 were 65.8 and 33.8 mmol·g-DCW-1·h-1, respectively. The isolates JHTF4 and JHM8 couldn't degrade diesel. The inoculation of the isolate JHTF4 or JHM8 significantly enhanced diesel removal during rhizoremediation of diesel-contaminated soil planted with maize for 63 days. Diesel removal in the tall fescue-planting soil was enhanced by inoculating the isolates until 50 days, while there was no significant difference in removal efficiency regardless of inoculation at day 63. In both the maize and tall fescue planting soils, the CH4 oxidation potentials of the inoculated soils were significantly higher than the potentials of the non-inoculated soils. In addition, the gene copy numbers of pmoA, responsible for CH4 oxidation, in the inoculated soils were significantly higher than those in the non-inoculated soils. The gene copy numbers ratio of pmoA to 16S rDNA (the ratio of methanotrophs to total bacteria) in soil increased during rhizoremediation. These results indicate that the inoculation of Methylocystis sp. JHTF4 and Methyloversatilis sp. JHM8, is a promising strategy to minimize CH4 emissions during the rhizoremediation of diesel-contaminated soil using maize or tall fescue.


Assuntos
Metano , Microbiologia do Solo , Metano/metabolismo , Bactérias/genética , Bactérias/metabolismo , Oxirredução , Solo
5.
Environ Sci Pollut Res Int ; 30(6): 16612-16625, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36184709

RESUMO

Rhizoremediation is a promising method based on the synergism between plant and rhizobacteria to remediate soil co-contaminated with heavy metals and total petroleum hydrocarbons (TPHs). A plant growth-promoting (PGP) rhizobacterium with diesel-degrading capacity and heavy metal tolerance was isolated from the rhizosphere of tall fescue (Festuca arundinacea L.), after which the effects of its inoculation on rhizoremediation performance were evaluated in heavy metal- and diesel-contaminated soil planted with tall fescue. The bacterial isolate (Novosphingobium sp. CuT1) was characterized by its indole-3-acetic acid (IAA) production, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, and siderophore productivity as PGP traits. CuT1 was able to grow on 1/10 LB-agar plates containing 5 mM of Cu or 5 mM of Pb. To evaluate the remediation effect of heavy metal- and diesel-contaminated soil by CuT1 inoculation, the experimental conditions were prepared as follows. The soil was artificially contaminated with heavy metals (Cu and Pb) at a final concentration of 500 ppm. The soil was then further contaminated with diesel at final concentrations of 0, 10,000, and 30,000 ppm. Finally, all plots were planted with tall fescue, a representative hyperaccumulating plant. Compared to the rhizoremediation performance of the co-contaminated soil (Cu + Pb + diesel) without inoculation, the bioavailable Cu concentrations in the soil and the tall fescue biomass were significantly increased in CuT1 inoculation. Additionally, the root growth of tall fescue was also promoted in CuT1 inoculation. Correlation analysis showed that Cu bioavailability and bioconcentration factor were positively correlated with CuT1 inoculation. The diesel removal efficiency showed a positive correlation with CuT1 inoculation, although the diesel removal was below 30%. CuT1 inoculation was positively correlated with IAA and dehydrogenase activity in the soil. Moreover, the dry biomass of the tall fescue's roots was highly associated with CuT1 inoculation. Collectively, our findings suggest that Novosphingobium sp. CuT1 can be utilized as an applicable bioresource to enhance rhizoremediation performance in heavy metal- and TPH-contaminated soils.


Assuntos
Festuca , Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Chumbo/farmacologia , Raízes de Plantas , Metais Pesados/farmacologia , Solo , Poluentes do Solo/farmacologia , Microbiologia do Solo
6.
Braz. j. biol ; 83: e242676, 2023. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1278552

RESUMO

Abstract Trees occurring on the margins of agricultural areas can mitigate damage from residual herbicides. Rhizospheric microbial activity associated with trees is one of the main remedial capacity indicators. The objective of this study was to evaluate the rhizospheric microbiological activity in tree species subjected to the herbicides atrazine and sulfentrazone via the rhizosphere. The experiment was designed in four blocks and a 6 × 3 factorial scheme. The first factor consisted of six tree species from Brazil and the second of atrazine, sulfentrazone, and water solutions. Four herbicide applications were performed via irrigation. The total dry mass of the plants, mycorrhizal colonization, number of spores, basal respiration of the rhizospheric soil, and survival rate of bioindicator plants after phytoremediation were determined. Trichilia hirta had higher biomass when treated with atrazine and sulfentrazone. Herbicides decreased the microbial activity in Triplaris americana and did not affect the microbiological indicators of Myrsine gardneriana, Schizolobium parahyba, and Toona ciliata. Fewer bioindicator plants survived in soil with Triplaris americana and sulfentrazone. Microbiological indicators were influenced in different ways between species by the presence of herbicides in the rhizosphere.


Resumo As árvores que ocorrem nas margens das áreas agrícolas podem mitigar os danos dos herbicidas residuais. A atividade microbiana rizosférica associada às árvores é um dos principais indicadores de capacidade corretiva. O objetivo deste trabalho foi avaliar a atividade microbiológica rizosférica em espécies arbóreas submetidas aos herbicidas atrazina e sulfentrazone via rizosfera. O experimento foi estruturado em quatro blocos e esquema fatorial 6 × 3. O primeiro fator consistiu em seis espécies de árvores do Brasil e o segundo em soluções de atrazine, sulfentrazone e água. Quatro aplicações de herbicidas foram realizadas via irrigação. Foram determinados a massa seca total das plantas, colonização micorrízica, número de esporos, respiração basal do solo rizosférico e taxa de sobrevivência de plantas bioindicadoras após fitorremediação. Trichilia hirta apresentou maior biomassa quando tratada com atrazina e sulfentrazone. Os herbicidas diminuíram a atividade microbiana em Triplaris americana e não afetaram os indicadores microbiológicos de Myrsine gardneriana, Schizolobium parahyba e Toona ciliata. Menos plantas bioindicadoras sobreviveram no solo com Triplaris americana e sulfentrazone. Os indicadores microbiológicos foram influenciados de formas distintas entre as espécies pela presença dos herbicidas na rizosfera.


Assuntos
Poluentes do Solo , Micorrizas/química , Herbicidas , Solo , Microbiologia do Solo , Árvores , Brasil , Raízes de Plantas/química , Plântula , Rizosfera
7.
Braz. j. biol ; 83: 1-9, 2023. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1468817

RESUMO

Trees occurring on the margins of agricultural areas can mitigate damage from residual herbicides. Rhizospheric microbial activity associated with trees is one of the main remedial capacity indicators. The objective of this study was to evaluate the rhizospheric microbiological activity in tree species subjected to the herbicides atrazine and sulfentrazone via the rhizosphere. The experiment was designed in four blocks and a 6 × 3 factorial scheme. The first factor consisted of six tree species from Brazil and the second of atrazine, sulfentrazone, and water solutions. Four herbicide applications were performed via irrigation. The total dry mass of the plants, mycorrhizal colonization, number of spores, basal respiration of the rhizospheric soil, and survival rate of bioindicator plants after phytoremediation were determined. Trichilia hirta had higher biomass when treated with atrazine and sulfentrazone. Herbicides decreased the microbial activity in Triplaris americana and did not affect the microbiological indicators of Myrsine gardneriana, Schizolobium parahyba, and Toona ciliata. Fewer bioindicator plants survived in soil with Triplaris americana and sulfentrazone. Microbiological indicators were influenced in different ways between species by the presence of herbicides in the rhizosphere.


As árvores que ocorrem nas margens das áreas agrícolas podem mitigar os danos dos herbicidas residuais. A atividade microbiana rizosférica associada às árvores é um dos principais indicadores de capacidade corretiva. O objetivo deste trabalho foi avaliar a atividade microbiológica rizosférica em espécies arbóreas submetidas aos herbicidas atrazina e sulfentrazone via rizosfera. O experimento foi estruturado em quatro blocos e esquema fatorial 6 × 3. O primeiro fator consistiu em seis espécies de árvores do Brasil e o segundo em soluções de atrazine, sulfentrazone e água. Quatro aplicações de herbicidas foram realizadas via irrigação. Foram determinados a massa seca total das plantas, colonização micorrízica, número de esporos, respiração basal do solo rizosférico e taxa de sobrevivência de plantas bioindicadoras após fitorremediação. Trichilia hirta apresentou maior biomassa quando tratada com atrazina e sulfentrazone. Os herbicidas diminuíram a atividade microbiana em Triplaris americana e não afetaram os indicadores microbiológicos de Myrsine gardneriana, Schizolobium parahyba e Toona ciliata. Menos plantas bioindicadoras sobreviveram no solo com Triplaris americana e sulfentrazone. Os indicadores microbiológicos foram influenciados de formas distintas entre as espécies pela presença dos herbicidas na rizosfera.


Assuntos
Fabaceae/efeitos dos fármacos , Fabaceae/microbiologia , Herbicidas/administração & dosagem , Meliaceae/efeitos dos fármacos , Meliaceae/microbiologia , Myrsine/efeitos dos fármacos , Myrsine/microbiologia , Polygonaceae/efeitos dos fármacos , Polygonaceae/microbiologia , Rizosfera , Atrazina
8.
Braz. j. biol ; 832023.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469033

RESUMO

Abstract Trees occurring on the margins of agricultural areas can mitigate damage from residual herbicides. Rhizospheric microbial activity associated with trees is one of the main remedial capacity indicators. The objective of this study was to evaluate the rhizospheric microbiological activity in tree species subjected to the herbicides atrazine and sulfentrazone via the rhizosphere. The experiment was designed in four blocks and a 6 × 3 factorial scheme. The first factor consisted of six tree species from Brazil and the second of atrazine, sulfentrazone, and water solutions. Four herbicide applications were performed via irrigation. The total dry mass of the plants, mycorrhizal colonization, number of spores, basal respiration of the rhizospheric soil, and survival rate of bioindicator plants after phytoremediation were determined. Trichilia hirta had higher biomass when treated with atrazine and sulfentrazone. Herbicides decreased the microbial activity in Triplaris americana and did not affect the microbiological indicators of Myrsine gardneriana, Schizolobium parahyba, and Toona ciliata. Fewer bioindicator plants survived in soil with Triplaris americana and sulfentrazone. Microbiological indicators were influenced in different ways between species by the presence of herbicides in the rhizosphere.


Resumo As árvores que ocorrem nas margens das áreas agrícolas podem mitigar os danos dos herbicidas residuais. A atividade microbiana rizosférica associada às árvores é um dos principais indicadores de capacidade corretiva. O objetivo deste trabalho foi avaliar a atividade microbiológica rizosférica em espécies arbóreas submetidas aos herbicidas atrazina e sulfentrazone via rizosfera. O experimento foi estruturado em quatro blocos e esquema fatorial 6 × 3. O primeiro fator consistiu em seis espécies de árvores do Brasil e o segundo em soluções de atrazine, sulfentrazone e água. Quatro aplicações de herbicidas foram realizadas via irrigação. Foram determinados a massa seca total das plantas, colonização micorrízica, número de esporos, respiração basal do solo rizosférico e taxa de sobrevivência de plantas bioindicadoras após fitorremediação. Trichilia hirta apresentou maior biomassa quando tratada com atrazina e sulfentrazone. Os herbicidas diminuíram a atividade microbiana em Triplaris americana e não afetaram os indicadores microbiológicos de Myrsine gardneriana, Schizolobium parahyba e Toona ciliata. Menos plantas bioindicadoras sobreviveram no solo com Triplaris americana e sulfentrazone. Os indicadores microbiológicos foram influenciados de formas distintas entre as espécies pela presença dos herbicidas na rizosfera.

9.
Environ Pollut ; 313: 120152, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36100120

RESUMO

Plant-derived saponins are bioactive surfactant compounds that can solubilize organic pollutants in environmental matrices, thereby facilitating pollutant remediation. Externally applied saponin has potential to enhance total petroleum hydrocarbon (TPH) biodegradation in the root zone (rhizosphere) of wild plants, but the associated mechanisms are not well understood. For the first time, this study evaluated a triterpenoid saponin (from red ash leaves, Alphitonia excelsa) in comparison to a synthetic surfactant (Triton X-100) for their effects on plant growth and biodegradation of TPH in the rhizosphere of two native wild species (a grass, Chloris truncata, and a shrub, Hakea prostrata). The addition of Triton X-100 at the highest level (1000 mg/kg) in the polluted soil significantly hindered the plant growth (reduced plant biomass and photosynthesis) and associated rhizosphere microbial activity in both the studied plants. Therefore, TPH removal in the rhizosphere of both plant species treated with the synthetic surfactant was not enhanced (at the lower level, 500 mg/kg soil) and even slightly decreased (at the highest level) compared to that in the surfactant-free (control) treatment. By contrast, TPH removal was significantly increased with saponin application (up to 60% in C. truncata at 1000 mg/kg due to enhanced plant growth and associated rhizosphere microbial activity). No significant difference was observed between the two saponin application levels. Dehydrogenase activity positively correlated with TPH removal (p < 0.001) and thus this parameter could be used as an indicator to predict the rhizoremediation efficiency. This work indicates that saponin-amended rhizoremediation could be an environmentally friendly and effective biological approach to remediate TPH-polluted soils. It was clear that the enhanced plant growth and rhizosphere microbial activity played a crucial role in TPH rhizoremediation efficiency. The saponin-induced molecular processes that promoted plant growth and soil microbial activity in the rhizosphere warrant further studies.


Assuntos
Petróleo , Saponinas , Poluentes do Solo , Triterpenos , Biodegradação Ambiental , Hidrocarbonetos/metabolismo , Octoxinol , Oxirredutases , Petróleo/metabolismo , Poaceae , Rizosfera , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise
10.
Chemosphere ; 307(Pt 4): 136084, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35988767

RESUMO

The co-existence of heavy metals and polycyclic aromatic hydrocarbons (PAHs) challenges the remediation of polluted soil. This study aimed to investigate whether a combined amendment of biochar-immobilized bacterium (BM) could enhance the phytoremediation of heavy metals and PAHs in co-contaminated soil. The Bacillus sp. KSB7 with the capabilities of plant-growth promotion, metal tolerance, and PAH degradation was immobilized on the peanut shell biochar prepared at 400 °C and 600 °C (PBM4 and PBM6, respectively). After 90 days, PBM4 treatment increased the removal of PAHs by 94.17% and decreased the amounts of diethylenetriamine pentaacetic acid-extractable Zn, Pb, Cr, and Cu by 58.46%, 53.42%, 84.94%, and 83.15%, respectively, compared with Kochia scoparia-alone treatment. Meanwhile, PBM4 was more effective in promoting K. scoparia growth and reducing the uptake of co-contaminants. The abundance of Gram-negative PAH-degrader and 1-aminocyclopropane-1-carboxylic deaminase-producing bacteria within rhizosphere soil was significantly improved after PBM4 treatment. Moreover, the relative abundance of the Bacillus genus increased by 0.66 and 2.05 times under PBM4 treatment compared with biochar alone and KSB7, indicating that KSB7 could colonize in the rhizosphere soil of K. scoparia. However, the removal of PAHs and heavy metals after PBM6 and 600 °C biochar-alone treatments caused no obvious difference. This study suggested that low-temperature BM-amended plant cultivation would be an effective approach to remove PAHs and heavy metals in co-contaminated soil.


Assuntos
Bacillus , Coque , Metais Pesados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Bacillus/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Carvão Vegetal/metabolismo , Chumbo/metabolismo , Metais Pesados/análise , Ácido Pentético , Plantas/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo , Poluentes do Solo/análise
11.
J Appl Microbiol ; 133(6): 3276-3287, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35579173

RESUMO

AIM: Tomato-associated plant-growth-promoting rhizosphere bacteria were screened for effective antagonistic activity against the fungal vascular wilt pathogens; tolerance to heavy metals; and enhancing the bioavailability of iron for tomato plants through in vitro and in vivo approaches. METHODS AND RESULTS: Among the 121 rhizobacteria screened for siderophores, 25 isolates were observed to be siderophore producers and out of these, seven isolates chelate copper and iron thus exhibiting in vitro antagonism against the virulent strains of Fusarium oxysporum f. sp. lycopersici MTCC10270 (Fol), Fusarium equiseti MFol and Sarocladium sp. SWL isolated from infected tomatoes. Pseudomonas stutzeri KRP8 was identified to be the most potent strain among the siderophore producers and its siderophores were chemically characterized by mass spectra as metal bound and metal-free forms. Upon bio-inoculation of fortified bacterial consortium (siderozote) into the rhizosphere of vermiculite pot cultured tomatoes supplied with varying concentrations of iron and copper ions, we observed in planta growth improvements, antagonism, enhancement of bioavailability of iron and heavy metal tolerance using Inductively Coupled Plasma-Optical Emission Spectrometry. CONCLUSION AND SIGNIFICANCE OF THE STUDY: Our rhizobacterial consortium provides an opportunity for soil reclamation through an ecofriendly method for a heavy metal-free agricultural landscape.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/microbiologia , Sideróforos/metabolismo , Doenças das Plantas/microbiologia , Cobre/metabolismo , Rizosfera , Bactérias , Ferro/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-35457496

RESUMO

The objective of this study was to explore the seasonal characteristics of rhizoremediation and the bacterial community structure over the course of a year in soil contaminated with diesel oil. The soil was contaminated with diesel oil at a total petroleum hydrocarbon (TPH) concentration of 30,000 mg-TPH·kg-soil-1. Tall fescue seedlings were planted in the contaminated soil and rhizoremediation performance was monitored for 317 days. The TPH concentration gradually declined, reaching 75.6% after day 61. However, the TPH removability decreased by up to 30% after re-contamination in the fall and winter. The bacterial community structure exhibited distinct seasonal dynamics. Genus Pseudomonas significantly increased up to 55.7% in the winter, while the genera Immundisolibacter and Lysobacter, well-known petroleum hydrocarbon (PH)-degrading bacteria, were found to be positively linked to the TPH removal rate. Consequently, knowledge of this seasonal variation in rhizoremediation performance and the bacterial community structure is useful for the improvement of rhizoremediation in PH-contaminated environments.


Assuntos
Biodegradação Ambiental , Festuca , Lolium , Petróleo , Microbiologia do Solo , Poluentes do Solo , Gasolina , Hidrocarbonetos , Petróleo/toxicidade , Estações do Ano , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
13.
Front Microbiol ; 13: 863702, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35422791

RESUMO

The use of plant growth-promoting rhizobacteria (PGPR) as a bioremediation enhancer in plant-assisted phytoremediation requires several steps, consisting of the screening, selection, and characterization of isolates. A subset of 50 bacterial isolates representing a wide phylogenetic range were selected from 438 morphologically different bacteria that were originally isolated from a petroleum hydrocarbon (PHC)-polluted site of a former petrochemical plant. Selected candidate bacteria were screened using six conventional plant growth-promoting (PGP) traits, complemented with the genetic characterization of genes involved in alkane degradation, as well as other pertinent functions. Finally, the bacterial isolates were subjected to plant growth promotion tests using a gnotobiotic approach under normal and stressed conditions. Our results indicated that 35 bacterial isolates (70%) possessed at least four PGP traits. Twenty-nine isolates (58%) were able to utilize n-hexadecane as a sole carbon source, whereas 43 isolates (86%) were able to utilize diesel as the sole carbon source. The presence of catabolic genes related to hydrocarbon degradation was assessed using endpoint PCR, with the alkane monooxygenase (alkB) gene found in 34 isolates, the cytochrome P450 hydroxylase (CYP153) gene found in 24 isolates, and the naphthalene dioxygenase (nah1) gene found to be present in 33 isolates. Thirty-six strains (72%) promoted canola root elongation in the growth pouch assay. After several rounds of screening, seven bacterial candidates (individually or combined in a consortium) were tested for canola root and shoot growth promotion in substrates amended by different concentrations of n-hexadecane (0%, 1%, 2%, and 3%) under gnotobiotic conditions. Our results showed that Nocardia sp. (WB46), Pseudomonas plecoglossicida (ET27), Stenotrophomonas pavanii (EB31), and Gordonia amicalis (WT12) significantly increased the root length of canola grown in 3% n-hexadecane compared with the control treatment, whereas Nocardia sp. (WB46) and Bacillus megaterium (WT10) significantly increased shoot length compared to control treatment at the same concentration of n-hexadecane. The consortium had a significant enhancement effect on root length compared to all isolates inoculated individually or to the control. This study demonstrates that the combination of PGPR traits and the PHC degradation potential of bacteria can result in an enhanced beneficial effect in phytoremediation management, which could lead to the development of innovative bacterial inoculants for plants to remediate PHC-contaminated soils.

14.
J Hazard Mater ; 431: 128588, 2022 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-35248957

RESUMO

Benzophenone-3 (BP-3) has attracted widespread attention due to its large accumulation in the environment and its potential toxicity effects to human. This study aimed to investigate the effects of the combined application of tobacco and Methylophilus sp. strain FP-6 with both plant growth promoting (PGP) traits and BP-3 degradation function on BP-3 remediation in soil. The results showed that about 79.18% of BP-3 was removed from the soil after 30 days of plant culture inoculated with the FP-6 strain, which was significantly higher than the plant-alone treatment. Simultaneously, inoculation with strain FP-6 significantly improved growth performance, biomass production, antioxidant levels, osmoregulation substance, photosynthetic capacity and chlorophyll accumulation in tobacco. Moreover, the application of FP-6 shifted the bacterial community, and enhanced the abundance of BP-3-degrading or soil nutrient cycling-affecting bacteria (e.g., Chloroflexi, Bryobacter, MND1 and Myxococcales), which might be valuable for the promotion of plant growth and degradation of BP-3 in the soil. The results from this study gave first insights into the enhancement of BP-3 removal efficiency from soil by phytoremediation assisted with bacteria possessing both PGP properties and BP-3 degradation function. The role of soil bacterial community in this remediation process was also discussed.


Assuntos
Methylophilus , Microbiota , Poluentes do Solo , Bactérias/metabolismo , Benzofenonas , Biodegradação Ambiental , Homeostase , Humanos , Methylophilus/metabolismo , Oxirredução , Solo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Nicotiana/metabolismo
15.
Environ Res ; 212(Pt A): 113137, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35358545

RESUMO

Cypermethrin is a toxic pyrethroid insecticide that is widely used in agricultural and household activities. One of the most serious issues is its persistence in the environment, because it is easily transported to the soil and aquatic ecosystem. The biodegradation of cypermethrin is emerging as an environmentally friendly method for large-scale treatment. This study examined the application of a novel binary bacterial combination-based (Bacillus thuringiensis strain SG4 and Bacillus sp. strain SG2) approach used for the enhanced degradation of cypermethrin from the environment. The bacterial strains degraded cypermethrin (80% and 85%) in the presence of external nitrogen sources (KNO3 and NaNO3). Furthermore, when immobilized in agar disc beads, the co-culture degraded cypermethrin (91.3%) with a half-life (t1/2) of 4.3 days compared to 4.9 days using sodium alginate beads. Cereal straw, farmyard manure, press mud compost, fresh cow dung, and gypsum were used as organic amendments in the soil to stimulate cypermethrin degradation. Cereal straw promoted the fastest cypermethrin degradation among the different organic amendments tested, with a t1/2 of 4.4 days. The impact of cypermethrin-degrading bacterial consortium on cypermethrin rhizoremediation was also investigated. Bacterial inoculums exhibited beneficial effects on plant biomass. Moreover, Zea mays and the bacterial partnership substantially enhanced cypermethrin degradation in soil. Six intermediate metabolites were detected during the degradation of cypermethrin, indicating that cypermethrin could be degraded first by the hydrolysis of its carboxyl ester bond, followed by the cleavage of the diaryl linkage and subsequent metabolism. Our findings highlight the promising potential and advantages of the bacterial consortium for the bioremediation of a cypermethrin-contaminated environment.


Assuntos
Bacillus thuringiensis , Bacillus , Piretrinas , Poluentes do Solo , Biodegradação Ambiental , Ecossistema , Plantas/metabolismo , Piretrinas/metabolismo , Solo , Poluentes do Solo/metabolismo , Zea mays/metabolismo
16.
Int J Phytoremediation ; 24(13): 1444-1454, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35113751

RESUMO

Crude oil/petroleum hydrocarbons (PHs) are major pollutants worldwide. In the present study, three bacterial isolates -Pseudomonas aeruginosa BB-BE3, P. aeruginosa BBBJ, and Gordonia amicalis BB-DAC were selected for their efficient hydrocarbon degradation and plant growth promotion (PGP) abilities. All three isolates were positive for siderophore production, phosphate solubilization, and IAA production, even in the presence of crude oil. The rhizoremediation ability was validated through pot trials where all three isolates promoted the growth of the Azadirachta indica plant in crude oil-contaminated soils. Treatment with the combination of the plant (A. indica) and bacteria, i.e., Pseudomonas aeruginosa BB-BE3; P. aeruginosa BBBJ; Gordonia amicalis BB-DAC showed 95.71, 93.28, and 89.88% removal of TPHs respectively, while the treatment with the plant (only) resulted in 13.44% removal of TPHs whereas, in the control (Sterile bulk soil + Crude oil), the hydrocarbon removal percentage was only 5.87%. The plant tissues were analyzed for catalase (CAT) and peroxidase (POX) activities, and the plants augmented with bacterial strains had significantly low CAT and POX activities as compared to uninoculated control. Therefore, the results suggest that the A. indica plant, in symbiotic association with these hydrocarbonoclastic rhizobacteria, could be used for bioremediation of crude oil-polluted soil.


The main objective of the present study is to evaluate the potential of plant­microbe associations, also including Gordonia amicalis with the Azadirachta indica, for the rhizoremediation of petroleum hydrocarbon (PHs) polluted soil. For rhizoremediation strategy, a stable plant-bacteria partnership is important, along with effective remediation, and the Gordonia amicalis­Azadirachta indica pair is being described here for the first time, for this purpose. This plant-microbe pair was highly effective as also validated through pot trials. The hydrocarbonoclastic rhizobacteria (G. amicalis BB-DAC), in symbiotic association with the A. indica plant, has significantly degraded TPHs.


Assuntos
Alphaproteobacteria , Azadirachta , Petróleo , Poluentes do Solo , Petróleo/metabolismo , Solo , Rizosfera , Biodegradação Ambiental , Catalase/metabolismo , Sideróforos/metabolismo , Poluentes do Solo/metabolismo , Microbiologia do Solo , Hidrocarbonetos/metabolismo , Bactérias/metabolismo , Plantas/metabolismo , Alphaproteobacteria/metabolismo , Fosfatos/metabolismo
17.
Chemosphere ; 289: 133143, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34864011

RESUMO

The slow rate of natural attenuation of organic pollutants, together with unwanted environmental impacts of traditional remediation strategies, has necessitated the exploration of plant-microbe systems for enhanced bioremediation applications. The identification of microorganisms capable of promoting rhizoremediation through both plant growth-promoting and hydrocarbon-degrading processes is crucial to the success and adoption of plant-based remediation techniques. In this study, through successive enrichments of soil samples from a historic oil-contaminated site in Wietze, Germany, we isolated a plant growth-promoting and hydrocarbon-degrading bacterial consortium dominated by Alphaproteobacteria. In microcosm experiments involving Medicago sativa L. and the isolated bacterial consortium, we examined the ability of the consortium to enhance rhizoremediation of petroleum hydrocarbons. The inoculation of M. sativa with the consortium resulted in 66% increase in plant biomass, and achieved a 91% reduction in diesel fuel hydrocarbon concentrations in the soil within 60 days. Metagenome analysis led to the identification of genes and taxa putatively involved in these processes. The majority of the coding DNA sequences associated with plant growth promotion and hydrocarbon degradation in this study were affiliated to Acidocella aminolytica and Acidobacterium capsulatum indicating their potential for biotechnological applications in the rhizoremediation of sites contaminated by petroleum-derived organic pollutants.


Assuntos
Petróleo , Poluentes do Solo , Biodegradação Ambiental , Hidrocarbonetos , Solo , Microbiologia do Solo , Poluentes do Solo/análise
18.
Int J Phytoremediation ; 24(1): 101-109, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34378998

RESUMO

During rhizoremediation process, plant roots secrete the specific exudates which enhance or stimulate growth and activity of microbial community in the rhizosphere resulting in effective degradation of pollutants. The present study characterized cowpea (CP) and mung bean (MB) root exudates and examined their influences on the degradation of total petroleum hydrocarbons (TPHs) and polycyclic aromatic hydrocarbons (PAHs) by the two oil degraders Micrococcus luteus WN01 and Bacillus cereus W2301. The effects of root exudates on soil microbial population dynamic and their enzymes dehydrogenase (DHA), and catechol 2,3 dioxygenase (C23O) activities were assessed. Both root exudates enhanced the degradation by both oil degraders. Cowpea root exudates maximized the removal of TPHs and PAHs by M. luteus WN01. Both bacterial population and DHA increased significantly in the presence of both root exudates. However, the C23O activities were significantly higher in WN01 treated. No significant influence of root exudates was observed on the C23O activities of W2301 treated. By using gas chromatography -mass spectroscopy, the dominant compounds found in cowpea and mung bean root exudates were 4-methoxy-cinnamic acid and terephthalic acid. Found in lower amount were propionic, malonic acid, and citric acid which were associated with enhanced PAHs desorption from soil and subsequent degradation. Novelty statement This is the first study to characterize the low molecular weight organic acids from root exudates of cowpea and mung bean and their influences on hydrocarbon desorption and hence enhancing the biodegradation process. The findings of the present study will greatly contribute to a better understanding of plant-microbe interaction in total petroleum hydrocarbons contaminated soil.


Assuntos
Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Biodegradação Ambiental , Exsudatos e Transudatos/química , Cinética , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo , Microbiologia do Solo , Poluentes do Solo/análise
19.
Environ Res ; 204(Pt A): 111924, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34487695

RESUMO

This study assessed the ability of phosphorus (P) fertilizer to remediate the rhizosphere of three wild plant species (Banksia seminuda, a tree; Chloris truncata, a grass; and Hakea prostrata, a shrub) growing in a soil contaminated with total (aliphatic) petroleum hydrocarbon (TPH). Plant growth, photosynthesis (via chlorophyll fluorescence), soil microbial activity, alkane hydroxylase AlkB (aliphatic hydrocarbon-degrading) gene abundance, and TPH removal were evaluated 120 days after planting. Overall, although TPH served as an additional carbon source for soil microorganisms, the presence of TPH in soil resulted in decreased plant growth and photosynthesis. However, growth, photosynthesis, microbial activities, and AlkB gene abundance were enhanced by the application of P fertilizer, thereby increasing TPH removal rates, although the extent and optimum P dosage varied among the plant species. The highest TPH removal (64.66%) was observed in soil planted with the Poaceae species, C. truncata, and amended with 100 mg P kg-1 soil, while H. prostrata showed higher TPH removal compared to the plant belonging to the same Proteaceae family, B. seminuda. The presence of plants resulted in higher AlkB gene abundance and TPH removal relative to the unplanted control. The removal of TPH was associated directly with AlkB gene abundance (R2 > 0.9, p < 0.001), which was affected by plant identity and P levels. The results indicated that an integrated approach involving wild plant species and optimum P amendment, which was determined through experimentation using different plant species, was an efficient way to remediate soil contaminated with TPH.


Assuntos
Petróleo , Poluentes do Solo , Biodegradação Ambiental , Citocromo P-450 CYP4A/genética , Hidrocarbonetos , Fósforo , Rizosfera , Solo , Microbiologia do Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
20.
Sci Total Environ ; 818: 151791, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34808185

RESUMO

The minimization of Cd pollution in wheat is urgently needed in many parts of the world. Thus, the aims of the present study were to evaluate the feasibility of popular technologies (i.e., soil amendment and low-Cd wheat cultivar) at sites with different Cd risk levels (high and low) and to propose a risk-based strategy for safe grain production. At a high-Cd site, wheat variety JM22 yielded significantly lower grain Cd than SX828, regardless of soil amendment (biochar, sepiolite, and microbial agent YZ1). Neither biochar nor sepiolite amendment reduced grain Cd, DTPA-Cd, or bioconcentration factors, possibly due to low dosage. Metagenomic sequencing and quantitative PCR showed that YZ1 colonization had little effect on rhizospheric fungal community structure and could not be sustained through winter. At a low-Cd site, significantly lower grain Cd was observed in JM22, LX99, and JM262, which could be used as low-Cd cultivars in the study area. Interestingly, the grain Cd of JM22 was linearly correlated with soil Cd (R2 = 0.84), which allowed the inference of a soil Cd threshold of 1.55 mg·kg-1, below which JM22 alone was capable of producing safe grain. Cost-benefit analysis also indicated that the use of low-Cd cultivars is promising for pollution control. This study provides viable technical solutions for minimizing the grain Cd of wheat grown in northern China.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/análise , China , Grão Comestível/química , Solo/química , Poluentes do Solo/análise , Triticum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...