Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 375
Filtrar
1.
Gene ; 927: 148741, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969246

RESUMO

Rhododendron delavayi, a notable ornamental plant primarily found in regions of China like Yunnan and Guizhou provinces, holds substantial horticultural value. To elucidate the systematic phylogenetic relationships and organelle genomic differences within R. delavayi and related Rhododendron species, we conducted sequencing and assembly of the complete mitochondrial genome of R. delavayi. The full-length mitochondrial genome of it was a singular circular molecule spanning 1,009,263 bp, comprising 53 protein-coding genes, including 18 transfer RNA (tRNA) genes, 3 ribosomal RNA (rRNA) genes, and 32 protein-coding genes. A total of 1,182 simple sequence repeats (SSRs) loci were identified in the R. delavayi mitochondrial genome, primarily consisting of single nucleotide, dinucleotide, and trinucleotide repeats. Nucleotide diversity analysis highlighted five genes (atp6, atp9, cox2, nad1, and rpl10) with the highest diversity within the mitochondrial genomes of Rhododendron genus. Comparative analysis of the mitochondrial genome of R. delavayi with those of four other Rhododendron species indicated complex rearrangements in 21 genes, including rps4, nad6, rps3, atp6, cob, atp9, nad7, among others. The mitochondrial phylogenetic tree revealed a close relationship between R. delavayi and R. decorum, forming a sister clade to R. × pulchrum and R. simsii. Furthermore, 126 plastid-to-mitochondrial gene transfers in R. delavayi were identified, ranging from 30 bp to 19,385 bp. These fragments collectively constituted 47.54 % and 9.52 % of the chloroplast and mitochondrial genomes (202,169 bp), respectively. Complex mitochondrial-to-mitochondrial transfers were also observed, with 843 identified fragments totaling 312,036 bp (30.92 % of the mitochondrial genome). Segments exceeding 10 kb may mediate homologous recombination within the mitochondrial molecules. Remarkably, our study underscores that the mitochondrial genome of R. delavayi was the largest reported within the Rhododendron genus to date. The intricate rearrangements observed in the mitochondrial genomes of Rhododendron species, alone with the identification of five potential molecular marker sites, provided valuable insights for species classification and parentage identification within the Rhododendron genus.

2.
J Ethnopharmacol ; : 118524, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971344

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: As a traditional Chinese medicine, the flower of Rhododendron molle G. Don (RMF) is record in the Chinese pharmacopoeia, and is commonly utilized for treating rheumatoid arthritis (RA) in clinical practice. However, its precise mechanisms necessitate further exploration. AIM OF THE STUDY: To expound the effective components, targets, metabolites, and pathways participated in RMF's anti-RA effects by metabolomics integrated network pharmacology. MATERIALS AND METHODS: CIA rats were intragastric administered RMF for 2 weeks, following which the therapeutic effects were comprehensively evaluated. Serum metabolomics was adopted to investigate the differential metabolites (DEMs). UHPLC-Q-Exactive-MS method was applied to identify the components of RMF, and then network pharmacology was utilize to select the component-RA-targets. Molecular docking and Western blotting were utilized to validate the key targets. RESULTS: RA symptoms were alleviated by RMF through the inhibition secretion of pro-inflammatory factors IL-1ß, IL-6 and TNF-α, along with relief in bone destruction observed in CIA rats. Four targets, namely AKR1B1, TPH1, CYP1A1, and CYP1A2, were identified, along with their corresponding metabolites, namely D-glucose, D-mannose, L-tryptophan, 11-deoxycorticosterone, and 17α-hydroxyprogesterone. These were found to be involved in three key metabolic pathways: steroid hormone biosynthesis, tryptophan metabolism, and galactose metabolism. Additionally, five significant anti-RA active components were identified from RMF, including Rhodojaponin (Rj)-Ⅱ, Rj-Ⅲ, Rj-Ⅴ, Rj-Ⅵ, and quercetin. CONCLUSIONS: The anti-RA mechanisms of RMF were investigated in this study, focusing on active components, upstream targets, and downstream metabolites. These findings lay a foundation for the clinical practice and drug development of RMF.

3.
Molecules ; 29(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38893339

RESUMO

Six ionone glycosides (1-3 and 5-7), including three new ones, named capitsesqsides A-C (1-3), together with an eudesmane sesquiterpenoid glycoside (4) and three known triterpenoid saponins (8-10) were isolated from Rhododendron capitatum. The structures of these compounds were determined by extensive spectroscopic techniques (MS, UV, 1D-NMR, and 2D-NMR) and comparison with data reported in the literature. The absolute configurations were determined by comparison of the experimental and theoretically calculated ECD curves and LC-MS analyses after acid hydrolysis and derivatization. The anti-inflammatory activities of these compounds were evaluated in the LPS-induced RAW264.7 cells. Molecular docking demonstrated that 2 has a favorable affinity for NLRP3 and iNOS.


Assuntos
Glicosídeos , Rhododendron , Rhododendron/química , Camundongos , Glicosídeos/química , Glicosídeos/farmacologia , Glicosídeos/isolamento & purificação , Células RAW 264.7 , Animais , Simulação de Acoplamento Molecular , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Norisoprenoides/química , Norisoprenoides/farmacologia , Norisoprenoides/isolamento & purificação , Estrutura Molecular , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia
4.
PeerJ ; 12: e17325, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38832044

RESUMO

The azalea (Rhododendron simsii Planch.) is an important ornamental woody plant with various medicinal properties due to its phytochemical compositions and components. However little information on the metabolite variation during flower development in Rhododendron has been provided. In our study, a comparative analysis of the flavonoid profile was performed in Rhododendron pulchrum sweet at three stages of flower development, bud (stage 1), partially open flower (stage 2), and full bloom (stage 3). A total of 199 flavonoids, including flavone, flavonol, flavone C-glycosides, flavanone, anthocyanin, and isoflavone were identified. In hierarchical clustering analysis (HCA) and principal component analysis (PCA), the accumulation of flavonoids displayed a clear development stage variation. During flower development, 78 differential accumulated metabolites (DAMs) were identified, and most were enriched to higher levels at the full bloom stage. A total of 11 DAMs including flavone (chrysin, chrysoeriol O-glucuronic acid, and chrysoeriol O-hexosyl-O-pentoside), isoflavone (biochanin A), and flavonol (3,7-di-O-methyl quercetin and isorhamnetin) were significantly altered at three stages. In particular, 3,7-di-O-methyl quercetin was the top increased metabolite during flower development. Furthermore, integrative analyses of metabolomic and transcriptomic were conducted, revealing that the contents of isoflavone, biochanin A, glycitin, and prunetin were correlated with the expression of 2-hydroxyisoflavanone dehydratase (HIDH), which provide insight into the regulatory mechanism that controls isoflavone biosynthesis in R. pulchrum. This study will provide a new reference for increasing desired metabolites effectively by more accurate or appropriate genetic engineering strategies.


Assuntos
Flavonoides , Flores , Rhododendron , Rhododendron/metabolismo , Rhododendron/genética , Rhododendron/crescimento & desenvolvimento , Flores/metabolismo , Flores/crescimento & desenvolvimento , Flores/genética , Flavonoides/metabolismo , Flavonoides/análise
5.
J Asian Nat Prod Res ; : 1-9, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38853517

RESUMO

Investigation of the fruits of Rhododendron molle G. Don led to the isolation of three new grayanane-type diterpenoids, rhodomolleins LIV-LVI (1-3). The structures and absolute configurations of new compounds were fully elucidated by spectroscopic analysis and single-crystal X-ray diffraction, including HRESIMS, 1 D and 2 D NMR data. Compounds 1-3 were evaluated for analgesic activities utilizing an acetic acid-induced writhing test in mice. Compound 1 showed a significant antinociceptive effect with writhe inhibition rates of 72.9% and 100% at doses of 6 mg/kg and 20 mg/kg in mice, respectively. The binding mode of 1 to N-ethylmaleimide-sensitive factor (NSF, PDB: 6IP2) was explored by molecular docking, indicating the presence of hydrogen bond interactions which account for its analgesic activity.

6.
Phytochemistry ; 225: 114200, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38936530

RESUMO

Rhododendron dauricum L. is a perennial herb belonging to the genus Rhododendron, commonly utilized in formulations for treating coughs and bronchitis, as well as in herbal teas for enhancing immunity and preventing tracheitis. In this study, fifteen previously undescribed chromene meroterpenoids (1a/1b-4a/4b, 5-8, 9b, 10a, 11b), along with twenty-one known compounds were isolated from the dried twigs and leaves of Rhododendron dauricum L. Of these, (-)-rhodonoid E (9b), (+)-confluentin (10a), and (-)-rubiginosin D (11b) were separated for the first time by chiral HPLC separation. The elucidation of their structures, including absolute configurations, was achieved through a combination of techniques such as NMR, HRESIMS, modified Mosher's method and quantum-chemical calculation of electronic circular dichroism (ECD) spectra. Seven pairs of enantiomers, compounds 1a/1b-4a/4b and 9a/9b-11a/11b, were initially obtained in a racemic manner and were further separated by chiral HPLC preparation. The biological assessment of these compounds against NO production was conducted in the LPS-induced RAW264.7 macrophage cells model. Compounds 9a, 9b, and 11a displayed inhibitory rates exceeding 80%, with IC50 values ranging from 8.69 ± 0.94 to 13.01 ± 1.11 µM. A preliminary examination of the structure-activity relationship (SAR) for these isolates indicated that chromene meroterpenoids with α, ß-unsaturated ketone carbonyl and Δ12(13) double bond functionalities exhibited enhanced anti-inflammatory properties.


Assuntos
Anti-Inflamatórios , Benzopiranos , Rhododendron , Terpenos , Rhododendron/química , Terpenos/química , Terpenos/farmacologia , Terpenos/isolamento & purificação , Camundongos , Células RAW 264.7 , Animais , Benzopiranos/farmacologia , Benzopiranos/química , Benzopiranos/isolamento & purificação , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Estrutura Molecular , Relação Estrutura-Atividade , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/antagonistas & inibidores , Óxido Nítrico/biossíntese , Óxido Nítrico/antagonistas & inibidores , Relação Dose-Resposta a Droga
7.
PeerJ ; 12: e17435, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827309

RESUMO

Background: This work explored the characteristics of the WRKY transcription factor family in Rhododendron henanense subsp. lingbaoense (Rhl) and the expression patterns of these genes under abiotic stress by conducting bioinformatics and expression analyses. Methods: RhlWRKY genes were identified from a gene library of Rhl. Various aspects of these genes were analyzed, including genetic structures, conserved sequences, physicochemical properties, cis-acting elements, and chromosomal location. RNA-seq was employed to analyze gene expression in five different tissues of Rhl: roots, stems, leaves, flowers, and hypocotyls. Additionally, qRT-PCR was used to detect changes in the expression of five RhlWRKY genes under abiotic stress. Result: A total of 65 RhlWRKY genes were identified and categorized into three subfamilies based on their structural characteristics: Groups I, II, and III. Group II was further divided into five subtribes, with shared similar genetic structures and conserved motifs among members of the same subtribe. The physicochemical properties of these proteins varied, but the proteins are generally predicted to be hydrophilic. Most proteins are predicted to be in the cell nucleus, and distributed across 12 chromosomes. A total of 84 cis-acting elements were discovered, with many related to responses to biotic stress. Among the identified RhlWRKY genes, there were eight tandem duplicates and 97 segmental duplicates. The majority of duplicate gene pairs exhibited Ka/Ks values <1, indicating purification under environmental pressure. GO annotation analysis indicated that WRKY genes regulate biological processes and participate in a variety of molecular functions. Transcriptome data revealed varying expression levels of 66.15% of WRKY family genes in all five tissue types (roots, stems, leaves, flowers, and hypocotyls). Five RhlWRKY genes were selected for further characterization and there were changes in expression levels for these genes in response to various stresses. Conclusion: The analysis identified 65 RhlWRKY genes, among which the expression of WRKY_42 and WRKY_17 were mainly modulated by the drought and MeJA, and WRKY_19 was regulated by the low-temperature and high-salinity conditions. This insight into the potential functions of certain genes contributes to understanding the growth regulatory capabilities of Rhl.


Assuntos
Regulação da Expressão Gênica de Plantas , Família Multigênica , Proteínas de Plantas , Rhododendron , Estresse Fisiológico , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Estresse Fisiológico/genética , Rhododendron/genética , Rhododendron/metabolismo , Rhododendron/química , Família Multigênica/genética , Perfilação da Expressão Gênica , Filogenia , Genoma de Planta/genética
8.
PhytoKeys ; 243: 9-14, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38912087

RESUMO

Based on a critical examination of type specimens, images of living plants, and the literature has shown Rhododendronoligocarpum to be conspecific with R.leishanicum. Although slight variations in corolla colour exist amongst different populations of R.oligocarpum, it does not serve as a key distinguishing trait. Therefore, we reduced R.oligocarpum to a synonym of R.leishanicum, and recommend placing it in Subsection Maculifera.

9.
Sci Rep ; 14(1): 10294, 2024 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704448

RESUMO

The Himalayas provide unique opportunities for the extension of shrubs beyond the upper limit of the tree. However, little is known about the limitation of the biotic factors belowground of shrub growth at these cruising altitudes. To fill this gap, the present study deals with the documentation of root-associated microbiota with their predicted functional profiles and interactions in the host Rhododendron campanulatum, a krummholz species. While processing 12 root samples of R. campanulatum from the sites using Omics we could identify 134 root-associated fungal species belonging to 104 genera, 74 families, 39 orders, 17 classes, and 5 phyla. The root-associated microbiota members of Ascomycota were unambiguously dominant followed by Basidiomycota. Using FUNGuild, we reported that symbiotroph and pathotroph as abundant trophic modes. Furthermore, FUNGuild revealed the dominant prevalence of the saptroptroph guild followed by plant pathogens and wood saprotrophs. Alpha diversity was significantly different at the sites. The heatmap dendrogram showed the correlation between various soil nutrients and some fungal species. The study paves the way for a more in-depth exploration of unidentified root fungal symbionts, their interactions and their probable functional roles, which may serve as an important factor for the growth and conservation of these high-altitude ericaceous plants.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Raízes de Plantas , Rhododendron , Rhododendron/microbiologia , Rhododendron/genética , Raízes de Plantas/microbiologia , Fungos/genética , Fungos/classificação , Micobioma , Microbiologia do Solo , Simbiose , Filogenia
10.
Bioorg Chem ; 148: 107428, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38733749

RESUMO

Five pairs of new merosesquiterpenoid enantiomers, named dauresorcinols A-E (1-5), were isolated from the leaves of Rhododendron dauricum. Their structures were elucidated by comprehensive spectroscopic data analysis, quantum chemical calculations, Rh2(OCOCF3)4-induced ECD, and single-crystal X-ray diffraction analysis. Dauresorcinols A (1) and B (2) possess two new merosesquiterpene skeletons bearing an unprecedented 2,6,7,10,14-pentamethyl-11-oxatetracyclo[8.8.0.02,7.012,17]octadecane and a caged 15-isohexyl-1,5,15-trimethyl-2,10-dioxatetracyclo[7.4.1.111,14.03,8]pentadecane motif, respectively. Plausible biosynthetic pathways of 1-5 are proposed involving key oxa-electrocyclization and Wagner-Meerwein rearrangement reactions. (+)/(-)-1 and 3-5 showed potent α-glucosidase inhibitory activity, 3 to 22 times stronger than acarbose, an antidiabetic drug targeting α-glucosidase. Docking results provide a basis to design and develop merosesquiterpenoids as potent α-glycosidase inhibitors.


Assuntos
Inibidores de Glicosídeo Hidrolases , Rhododendron , Rhododendron/química , Estereoisomerismo , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Estrutura Molecular , Relação Estrutura-Atividade , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Sesquiterpenos/isolamento & purificação , alfa-Glucosidases/metabolismo , Simulação de Acoplamento Molecular , Humanos , Relação Dose-Resposta a Droga , Folhas de Planta/química , Cristalografia por Raios X , Modelos Moleculares
11.
Fitoterapia ; 176: 106017, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38740343

RESUMO

Four new meroterpenoids, namely nivalones CF (1-4), along with a known meroterpenoid, cannabiorcicyclolic acid (5), were isolated from the branches and leaves of Rhododendron nivale. The chemical structures of compounds 1-4 were elucidated through comprehensive spectroscopic analyses, including NMR, UV-Vis, IR, ECD spectroscopy, as well as HR-ESI-MS. The isolated compounds were evaluated for their anti-inflammatory and neuroprotective properties. The inhibitory activity of compound 5 against lipopolysaccharide (LPS)-induced nitric oxide (NO) production was initially demonstrated, showcasing an IC50 value of 21.1 µM. Additionally, both compounds 2 and 5 displayed a notable effect on the viability of H2O2-damaged SH-SY5Y cells, indicating their significant neuroprotection effects.


Assuntos
Anti-Inflamatórios , Fármacos Neuroprotetores , Óxido Nítrico , Compostos Fitoquímicos , Folhas de Planta , Rhododendron , Terpenos , Rhododendron/química , Estrutura Molecular , Humanos , Terpenos/farmacologia , Terpenos/isolamento & purificação , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/isolamento & purificação , Óxido Nítrico/metabolismo , Folhas de Planta/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/química , Linhagem Celular Tumoral , Células RAW 264.7 , Animais , Camundongos , China , Caules de Planta/química
12.
Plants (Basel) ; 13(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38794438

RESUMO

Since the 16th century, Western countries have conducted extensive plant collections in Asia, particularly in China, driven by the need to collect botanical resources and foster academic development. These activities have not only significantly enriched the Western botanical specimen collections but have also had a profound impact on the development of related disciplines such as botany, ecology, and horticulture. During this process, a large number of renowned plant hunters emerged, whose discoveries and contributions are still remembered today. George Forrest (1873-1932) was one of these distinguished plant hunters. From 1904 to 1932, he visited China seven times to collect plants and became famous for the regional distinctiveness of the species he collected. However, due to the lack of systematic collection, organization, and analysis of specimens collected by Forrest, only a few species, such as the species Rhododendron, are well-known among the many species he introduced to the West. Furthermore, the personal collecting characteristics and the characteristic species collected by Forrest are also not clear. This limits a comprehensive understanding of the specimen collection history and impact of Forrest in China. Therefore, systematic organization and analysis of Forrest's plant specimens collected in China are crucial to understanding his impact on botanical classification, Rhododendrons introduction, global horticulture, and plant propagation. This study aims to systematically organize and analyze the plant specimens collected by George Forrest in China to investigate the family, genus, and species composition of the collected specimens and the seven collection expeditions of Forrest in China, as well as the time and altitude of these collections. Furthermore, it seeks to discuss Forrest's scientific contributions to the global spread of plants, the widespread application of the Rhododendron, and his impact on the development of modern gardens, providing a theoretical basis and data reference for related research and professional development. To this end, we extensively consulted important historical literature related to Forrest and systematically collected data from online specimen databases. The conclusions drawn from the available data include 38,603 specimens, with 26,079 collection numbers, belonging to 233 families, 1395 genera, and 5426 species, which account for 48.24%, 32.63%, and 14.17% of the plant families, genera, and species in China, respectively. Rhododendron specimens made up 17.20% of the specimens collected in this study. The collection locations cover three provinces or autonomous regions, 11 prefecture-level cities, and 25 counties. Furthermore, we found that Forrest's collections were concentrated in spring and summer, mainly in high-altitude areas, with 135 species found below 1500 m and 3754 species at 1500 m and above. Rhododendron specimens were mostly found above 3000 m.

13.
Biol Direct ; 19(1): 40, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38807240

RESUMO

Our study aims to identify the mechanisms involved in regulating the response of Rhodoendron Chrysanthum Pall. (R. chrysanthum) leaves to UV-B exposure; phosphorylated proteomics and metabolomics for phenolic acids and plant hormones were integrated in this study. The results showed that UV-B stress resulted in the accumulation of salicylic acid and the decrease of auxin, jasmonic acid, abscisic acid, cytokinin and gibberellin in R. chrysanthum. The phosphorylated proteins that changed in plant hormone signal transduction pathway and phenolic acid biosynthesis pathway were screened by comprehensive metabonomics and phosphorylated proteomics. In order to construct the regulatory network of R. chrysanthum leaves under UV-B stress, the relationship between plant hormones and phenolic acid compounds was analyzed. It provides a rationale for elucidating the molecular mechanisms of radiation tolerance in plants.


Assuntos
Hidroxibenzoatos , Reguladores de Crescimento de Plantas , Rhododendron , Raios Ultravioleta , Hidroxibenzoatos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Rhododendron/metabolismo , Estresse Fisiológico , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Folhas de Planta/efeitos dos fármacos , Proteômica , Transdução de Sinais/efeitos da radiação , Metabolômica/métodos , Fosforilação
14.
Phytochem Anal ; 35(5): 1207-1220, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38634333

RESUMO

INTRODUCTION: Rhododendron arboreum Sm. flowers grow in the Himalayan region and have traditionally been used in beverages and food. These wild edible Himalayan flowers are known for their sweet-sour flavor and beautiful scarlet red color. The primary pigments responsible for the scarlet red color of these flowers are anthocyanins. OBJECTIVE: In the present study, we conducted chemo-profiling and elucidated the chromatic characteristics of R. arboreum flower petals growing in the wild in different altitudinal areas. METHODOLOGY: The content of anthocyanins, phenolics, and other flavonoids was determined in R. arboreum flower petals collected from 38 different locations in two provinces in India (Himachal Pradesh and Uttarakhand) to obtain a distinguishable chemical index. A UHPLC method has also been developed and validated for the quantitative analysis. Besides, the color characteristics of each collected floral sample were also analyzed. RESULTS: Chemometric analysis (principal component analysis [PCA] and heatmap analysis) revealed that floral samples collected from different altitudes exhibited similar chemical diversity, whereas statistical analysis (bivariate linear correlation) revealed a positive correlation between the color parameter a*/b* and cyanidin glycosides. Besides, non-targeted metabolomics analysis was carried out, which resulted in the tentative identification of 150 metabolites. CONCLUSION: The results revealed that there is a direct influence of accumulated anthocyanins to color parameter a*/b* values in the floral samples irrespective of altitude.


Assuntos
Altitude , Antocianinas , Flores , Polifenóis , Análise de Componente Principal , Rhododendron , Rhododendron/química , Flores/química , Polifenóis/análise , Cromatografia Líquida de Alta Pressão , Antocianinas/análise , Cor , Flavonoides/análise
15.
Plants (Basel) ; 13(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38592945

RESUMO

Rhododendron subsect. Ledum is a distinct taxonomic subdivision within the genus Rhododendron, comprising a group of evergreen shrubs and small trees. This review will comprehensively analyse the phytochemical profiles and biological properties of the Rhododendron subsect. Ledum species subsect. Ledum consists of eight plant species indigenous to temperate and subarctic regions of the Northern Hemisphere, collectively known as Labrador tea. Recent investigations have concentrated on the phytochemical constituents of these plants due to limited data, emphasizing their evergreen nature and potential industrial significance. This review summarizes their major phytochemical constituents, including flavonoids, phenolic acids, and terpenoids, and discusses their potential biological activities, such as antioxidant, anti-inflammatory, antimicrobial, antitumor, hypoglycemic, hepatoprotective, neuroprotective, and cardioprotective effects. Traditional uses of these plant species align with scientific findings, emphasizing the significance of these plants in traditional medicine. However, despite promising results, gaps exist in our understanding of specific compounds' therapeutic effects, necessitating further research for comprehensive validation. This review serves as a valuable resource for researchers, identifying current knowledge, uncertainties, and emerging trends in the study of the Rhododendron subsect. Ledum species.

16.
Plants (Basel) ; 13(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38592957

RESUMO

The mining of metal minerals generates considerable mining wasteland areas, which are characterized by poor soil properties that hinder plant growth. In this study, a field plot experiment was carried out in the mining wasteland of the Lanping lead-zinc mine in Yunnan Province to study the effects of applying three organic materials-biochar (B), organic fertilizer (OF), and sludge (S)-at concentrations of 1% (mass fraction), on promoting the soil of mining wasteland and the growth of two plant varieties (Huolieniao and Yingshanhong). The results showed that the amount of available nutrients in the surface soil of a mining wasteland could be considerably increased by S and OF compared to the control check (CK). In the rhizosphere soils of two Rhododendron simsii varieties, the application of S increased the available phosphorus (P) content by 66.4% to 108.8% and the alkali-hydrolyzed nitrogen (N) content by 61.7% to 295.5%. However, the contents of available cadmium (Cd) and available lead (Pb) were reduced by 17.1% to 32.0% and 14.8% to 19.0%, respectively. Moreover, three organic materials increased the photosynthetic rate and biomass of two R. simsii varieties. Specifically, OF and S were found to significantly increase the biomass of R. simsii. Organic materials have direct impacts on the increased plant height and biomass of R. simsii. Additionally, organic materials indirectly contribute to the growth of R. simsii by reducing the content of available Cd and available Pb in rhizosphere soil while increasing the content of available nutrients according to the structural equation model (SEM). Overall, S can stabilize Cd and Pb, increase soil nutrient contents, and promote the growth of R. simsii effectively, and has great potential in the vegetation reconstruction of mining wasteland.

17.
Plants (Basel) ; 13(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38674471

RESUMO

Rhododendron chrysanthum (R. chrysanthum) development is hampered by UV-B sunlight because it damages the photosynthetic system and encourages the buildup of carotenoids. Nevertheless, it is still unclear how R. chrysanthum repairs the photosynthetic system to encourage the formation of carotenoid pigments. The carotenoid and abscisic acid (ABA) concentrations of the R. chrysanthum were ascertained in this investigation. Following UV-B stress, the level of carotenoids was markedly increased, and there was a strong correlation between carotenoids and ABA. The modifications of R. chrysanthum's OJIP transient curves were examined in order to verify the regulatory effect of ABA on carotenoid accumulation. It was discovered that external application of ABA lessened the degree of damage on the donor side and lessened the damage caused by UV-B stress on R. chrysanthum. Additionally, integrated metabolomics and transcriptomics were used to examine the changes in differentially expressed genes (DEGs) and differential metabolites (DMs) in R. chrysanthum in order to have a better understanding of the role that ABA plays in carotenoid accumulation. The findings indicated that the majority of DEGs were connected to carotenoid accumulation and ABA signaling sensing. To sum up, we proposed a method for R. chrysanthum carotenoid accumulation. UV-B stress activates ABA production, which then interacts with transcription factors to limit photosynthesis and accumulate carotenoids, such as MYB-enhanced carotenoid biosynthesis. This study showed that R. chrysanthum's damage from UV-B exposure was lessened by carotenoid accumulation, and it also offered helpful suggestions for raising the carotenoid content of plants.

18.
Plants (Basel) ; 13(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38611476

RESUMO

To explore the population structures and dynamics of Rhododendron shrub communities at different stages of succession in northwest Guizhou, China, this study examined the populations of Rhododendron annae and Rhododendron irroratum shrub with two different stages. A space-for-time substitution was employed to establish the diameter class/height structures, static life tables, and survival/mortality rate/disappearance rate curves of both Rhododendron populations with different orders of succession. Their structural and quantitative dynamics were analyzed, and their development trends were predicted. The results showed that, quantitatively, the populations of R. annae and R. irroratum in the two Rhododendron communities with different orders of succession were dominated by age classes one, two, and three as well as height classes i, ii, and iii. The number of Rhododendron plants at the three age classes and the three height classes accounted for 97.61-100% of the total. The quantitative dynamic indices of R. annae and R. irroratum were both greater than 0, with and without considering external interference. In terms of age class and height structures, both Rhododendron populations were expanding populations, presenting "inverted-J-shaped" and irregular pyramid patterns. There was a sufficient number of young individuals, but few or no old individuals. Both survival curves of the populations of R. annae and R. irroratum in the two Rhododendron communities with different orders of succession belonged to the Deevy-II type. In the late stage of succession, the mortality curves and disappearance curves of both Rhododendron populations in these communities presented a trend of increasing first and then decreasing with increasing age class. This result indicates that at each age class, R. annae and R. irroratum showed a trend of gradual increase after two, four, and six years. In brief, the populations of R. annae and R. irroratum have rich reserves of seedlings and saplings, but high mortality and disappearance rates. In this context, it is necessary to reduce human interference and implement targeted conservation measures to promote the natural renewal of Rhododendron populations.

19.
Molecules ; 29(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38611928

RESUMO

Diterpenes represent one of the most diverse and structurally complex families of natural products. Among the myriad of diterpenoids, grayanane diterpenes are particularly notable. These terpenes are characterized by their unique 5/7/6/5 tetracyclic system and are exclusive to the Ericaceae family of plants. Renowned for their complex structures and broad spectrum of bioactivities, grayanane diterpenes have become a primary focus in extensive phytochemical and pharmacological research. Recent studies, spanning from 2018 to January 2024, have reported a series of new grayanane diterpenes with unprecedented carbon skeletons. These compounds exhibit various biological properties, including analgesic, antifeedant, anti-inflammatory, and inhibition of protein tyrosine phosphatase 1B (PTP1B). This paper delves into the discovery of 193 newly identified grayanoids, representing 15 distinct carbon skeletons within the Ericaceae family. The study of grayanane diterpenes is not only a deep dive into the complexities of natural product chemistry but also an investigation into potential therapeutic applications. Their unique structures and diverse biological actions make them promising candidates for drug discovery and medicinal applications. The review encompasses their occurrence, distribution, structural features, and biological activities, providing invaluable insights for future pharmacological explorations and research.


Assuntos
Produtos Biológicos , Diterpenos , Ericaceae , Diterpenos/farmacologia , Terpenos , Produtos Biológicos/farmacologia , Carbono
20.
Molecules ; 29(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38675642

RESUMO

Flower color is an important ornamental feature that is often modulated by the contents of flavonoids. Chalcone synthase is the first key enzyme in the biosynthesis of flavonoids, but little is known about the role of R. delavayi CHS in flavonoid biosynthesis. In this paper, three CHS genes (RdCHS1-3) were successfully cloned from R. delavayi flowers. According to multiple sequence alignment and a phylogenetic analysis, only RdCHS1 contained all the highly conserved and important residues, which was classified into the cluster of bona fide CHSs. RdCHS1 was then subjected to further functional analysis. Real-time PCR analysis revealed that the transcripts of RdCHS1 were the highest in the leaves and lowest in the roots; this did not match the anthocyanin accumulation patterns during flower development. Biochemical characterization displayed that RdCHS1 could catalyze p-coumaroyl-CoA and malonyl-CoA molecules to produce naringenin chalcone. The physiological function of RdCHS1 was checked in Arabidopsis mutants and tobacco, and the results showed that RdCHS1 transgenes could recover the color phenotypes of the tt4 mutant and caused the tobacco flower color to change from pink to dark pink through modulating the expressions of endogenous structural and regulatory genes in the tobacco. All these results demonstrate that RdCHS1 fulfills the function of a bona fide CHS and contributes to flavonoid biosynthesis in R. delavayi.


Assuntos
Aciltransferases , Chalconas , Flavonoides , Flores , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Rhododendron , Aciltransferases/genética , Aciltransferases/metabolismo , Flavonoides/biossíntese , Flavonoides/metabolismo , Rhododendron/genética , Rhododendron/metabolismo , Flores/genética , Flores/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Plantas Geneticamente Modificadas/genética , Antocianinas/biossíntese , Antocianinas/metabolismo , Clonagem Molecular , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...