Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38954822

RESUMO

BACKGROUND: Intestinal inflammation and compromised barrier function are critical factors in the pathogenesis of gastrointestinal disorders. This study aimed to investigate the role of miR-192-5p in modulating intestinal epithelial barrier (IEB) integrity and its association with autophagy. METHODS: A DSS-induced colitis model was used to assess the effects of miR-192-5p on intestinal inflammation. In vitro experiments involved cell culture and transient transfection techniques. Various assays, including dual-luciferase reporter gene assays, quantitative real-time PCR, western blotting, and measurements of transepithelial electrical resistance, were performed to evaluate changes in miR-192-5p expression, Rictor levels, and autophagy flux. Immunofluorescence staining, H&E staining, TEER measurements, and FITC-dextran analysis were also employed. RESULTS: Our findings revealed a reduced expression of miR-192-5p in inflamed intestinal tissues, correlating with impaired IEB function. Overexpression of miR-192-5p alleviated TNF-induced IEB dysfunction by targeting Rictor, resulting in enhanced autophagy flux in enterocytes (ECs). Moreover, the therapeutic potential of miR-192-5p was substantiated in colitis mice, wherein increased miR-192-5p expression ameliorated intestinal inflammatory injury by enhancing autophagy flux in ECs through the modulation of Rictor. CONCLUSION: Our study highlights the therapeutic potential of miR-192-5p in enteritis by demonstrating its role in regulating autophagy and preserving IEB function. Targeting the miR-192-5p/Rictor axis is a promising approach for mitigating gut inflammatory injury and improving barrier integrity in enteritis patients.

2.
Mol Cancer ; 23(1): 105, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755661

RESUMO

BACKGROUND: The main drawback of BRAF/MEK inhibitors (BRAF/MEKi)-based targeted therapy in the management of BRAF-mutated cutaneous metastatic melanoma (MM) is the development of therapeutic resistance. We aimed to assess in this context the role of mTORC2, a signaling complex defined by the presence of the essential RICTOR subunit, regarded as an oncogenic driver in several tumor types, including MM. METHODS: After analyzing The Cancer Genome Atlas MM patients' database to explore both overall survival and molecular signatures as a function of intra-tumor RICTOR levels, we investigated the effects of RICTOR downregulation in BRAFV600E MM cell lines on their response to BRAF/MEKi. We performed proteomic screening to identify proteins modulated by changes in RICTOR expression, and Seahorse analysis to evaluate the effects of RICTOR depletion on mitochondrial respiration. The combination of BRAFi with drugs targeting proteins and processes emerged in the proteomic screening was carried out on RICTOR-deficient cells in vitro and in a xenograft setting in vivo. RESULTS: Low RICTOR levels in BRAF-mutated MM correlate with a worse clinical outcome. Gene Set Enrichment Analysis of low-RICTOR tumors display gene signatures suggestive of activation of the mitochondrial Electron Transport Chain (ETC) energy production. RICTOR-deficient BRAFV600E cells are intrinsically tolerant to BRAF/MEKi and anticipate the onset of resistance to BRAFi upon prolonged drug exposure. Moreover, in drug-naïve cells we observed a decline in RICTOR expression shortly after BRAFi exposure. In RICTOR-depleted cells, both mitochondrial respiration and expression of nicotinamide phosphoribosyltransferase (NAMPT) are enhanced, and their pharmacological inhibition restores sensitivity to BRAFi. CONCLUSIONS: Our work unveils an unforeseen tumor-suppressing role for mTORC2 in the early adaptation phase of BRAFV600E melanoma cells to targeted therapy and identifies the NAMPT-ETC axis as a potential therapeutic vulnerability of low RICTOR tumors. Importantly, our findings indicate that the evaluation of intra-tumor RICTOR levels has a prognostic value in metastatic melanoma and may help to guide therapeutic strategies in a personalized manner.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Alvo Mecanístico do Complexo 2 de Rapamicina , Melanoma , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas B-raf , Proteína Companheira de mTOR Insensível à Rapamicina , Humanos , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Melanoma/genética , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Melanoma/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Resistencia a Medicamentos Antineoplásicos/genética , Camundongos , Animais , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Regulação Neoplásica da Expressão Gênica , Mutação , Regulação para Baixo , Proteômica/métodos
3.
Clin Transl Med ; 14(5): e1686, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38769658

RESUMO

BACKGROUND: Renal allograft interstitial fibrosis/tubular atrophy (IF/TA) constitutes the principal histopathological characteristic of chronic allograft dysfunction (CAD) in kidney-transplanted patients. While renal vascular endothelial-mesenchymal transition (EndMT) has been verified as an important contributing factor to IF/TA in CAD patients, its underlying mechanisms remain obscure. Through single-cell transcriptomic analysis, we identified Rictor as a potential pivotal mediator for EndMT. This investigation sought to elucidate the role of Rictor/mTORC2 signalling in the pathogenesis of renal allograft interstitial fibrosis and the associated mechanisms. METHODS: The influence of the Rictor/mTOR2 pathway on renal vascular EndMT and renal allograft fibrosis was investigated by cell experiments and Rictor depletion in renal allogeneic transplantation mice models. Subsequently, a series of assays were conducted to explore the underlying mechanisms of the enhanced mitophagy and the ameliorated EndMT resulting from Rictor knockout. RESULTS: Our findings revealed a significant activation of the Rictor/mTORC2 signalling in CAD patients and allogeneic kidney transplanted mice. The suppression of Rictor/mTORC2 signalling alleviated TNFα-induced EndMT in HUVECs. Moreover, Rictor knockout in endothelial cells remarkably ameliorated renal vascular EndMT and allograft interstitial fibrosis in allogeneic kidney transplanted mice. Mechanistically, Rictor knockout resulted in an augmented BNIP3-mediated mitophagy in endothelial cells. Furthermore, Rictor/mTORC2 facilitated the MARCH5-mediated degradation of BNIP3 at the K130 site through K48-linked ubiquitination, thereby regulating mitophagy activity. Subsequent experiments also demonstrated that BNIP3 knockdown nearly reversed the enhanced mitophagy and mitigated EndMT and allograft interstitial fibrosis induced by Rictor knockout. CONCLUSIONS: Consequently, our study underscores Rictor/mTORC2 signalling as a critical mediator of renal vascular EndMT and allograft interstitial fibrosis progression, exerting its impact through regulating BNIP3-mediated mitophagy. This insight unveils a potential therapeutic target for mitigating renal allograft interstitial fibrosis.


Assuntos
Fibrose , Transplante de Rim , Alvo Mecanístico do Complexo 2 de Rapamicina , Proteínas de Membrana , Mitofagia , Proteína Companheira de mTOR Insensível à Rapamicina , Transdução de Sinais , Animais , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Camundongos , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Humanos , Transplante de Rim/efeitos adversos , Fibrose/metabolismo , Masculino , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Aloenxertos , Rim/metabolismo , Rim/patologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Proteínas Proto-Oncogênicas
4.
Pathol Oncol Res ; 30: 1611593, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706776

RESUMO

RICTOR gene, which encodes the scaffold protein of mTORC2, can be amplified in various tumor types, including squamous cell carcinoma (SCC) of the lung. RICTOR amplification can lead to hyperactivation of mTORC2 and may serve as a targetable genetic alteration, including in lung SCC patients with no PD-L1 expression who are not expected to benefit from immune checkpoint inhibitor therapy. This study aimed to compare RICTOR amplification detected by fluorescence in situ hybridization (FISH) with Rictor and PD-L1 protein expression detected by immunohistochemistry (IHC) in SCC of the lung. The study was complemented by analysis of the publicly available Lung Squamous Cell Carcinoma (TCGA, Firehose legacy) dataset. RICTOR amplification was observed in 20% of our cases and 16% of the lung SCC cases of the TCGA dataset. Rictor and PD-L1 expression was seen in 74% and 44% of the cases, respectively. Rictor IHC showed two staining patterns: membrane staining (16% of the cases) and cytoplasmic staining (58% of the cases). Rictor membrane staining predicted RICTOR amplification as detected by FISH with high specificity (95%) and sensitivity (70%). We did not find any correlation between RICTOR amplification and PD-L1 expression; RICTOR amplification was detected in 18% and 26% of PD-L1 positive and negative cases, respectively. The TCGA dataset analysis showed similar results; RICTOR copy number correlated with Rictor mRNA and protein expression but showed no association with PD-L1 mRNA and protein expression. In conclusion, the correlation between RICTOR amplification and Rictor membrane staining suggests that the latter can potentially be used as a surrogate marker to identify lung SCC cases with RICTOR amplification. Since a significant proportion of PD-L1 negative SCC cases harbor RICTOR amplification, analyzing PD-L1 negative tumors by RICTOR FISH or Rictor IHC can help select patients who may benefit from mTORC2 inhibitor therapy.


Assuntos
Antígeno B7-H1 , Biomarcadores Tumorais , Carcinoma de Células Escamosas , Amplificação de Genes , Neoplasias Pulmonares , Proteína Companheira de mTOR Insensível à Rapamicina , Humanos , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Feminino , Masculino , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Pessoa de Meia-Idade , Idoso , Hibridização in Situ Fluorescente/métodos , Prognóstico , Idoso de 80 Anos ou mais
5.
Hypertension ; 81(5): 1167-1177, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38497230

RESUMO

BACKGROUND: The mTOR (mechanistic target of rapamycin) is an essential regulator of fundamental biological processes. mTOR forms 2 distinct complexes, mTORC1 (mTOR complex 1) when it binds with RAPTOR (Regulatory-associated Protein of mTOR) and mTORC2 (mTOR complex 2) when it associates with RICTOR (Rapamycin-insesitive companion of mTOR). Due to the previous link between the mTOR pathway, aldosterone, and blood pressure (BP), we anticipated that variants in the mTOR complex might be associated with salt-sensitive BP. METHODS: BP and other parameters were assessed after a one-week liberal Na+ (200 mmol/d) and a one-week restricted Na+ (10 mmol/d) diet in 608 White subjects from the Hypertensive Pathotype cohort, single-nucleotide variants in MTOR, RPTOR, and RICTOR genes were obtained for candidate genes analyses. RESULTS: The analysis revealed a significant association between a single nucleotide variants within the RPTOR gene and BP. Individuals carrying the RPTOR rs9901846 homozygous risk allele (AA) and heterozygous risk allele (GA) exhibited a 5 mm Hg increase in systolic BP on a liberal diet compared with nonrisk allele individuals (GG), but only in women. This single nucleotide variants effect was more pronounced on the restricted diet and present in both sexes, with AA carriers having a 9 mm Hg increase and GA carriers having a 5 mm Hg increase in systolic BP compared with GG. Interestingly, there were no significant associations between MTOR or RICTOR gene variants and BP. CONCLUSIONS: The RPTOR gene variation is associated with elevated BP in White participants, regardless of salt intake, specifically in females.


Assuntos
Pressão Sanguínea , Hipertensão , Proteína Regulatória Associada a mTOR , Cloreto de Sódio na Dieta , Feminino , Humanos , Masculino , Proteínas de Transporte/genética , Hipertensão/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Nucleotídeos/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Proteína Regulatória Associada a mTOR/genética , Proteína Regulatória Associada a mTOR/metabolismo , Sirolimo , Cloreto de Sódio na Dieta/metabolismo , Serina-Treonina Quinases TOR/metabolismo , População Branca
6.
Pathol Oncol Res ; 30: 1611643, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515456

RESUMO

The increasing knowledge of molecular alterations in malignancies, including mutations and regulatory failures in the mTOR (mechanistic target of rapamycin) signaling pathway, highlights the importance of mTOR hyperactivity as a validated target in common and rare malignancies. This review summarises recent findings on the characterization and prognostic role of mTOR kinase complexes (mTORC1 and mTORC2) activity regarding differences in their function, structure, regulatory mechanisms, and inhibitor sensitivity. We have recently identified new tumor types with RICTOR (rapamycin-insensitive companion of mTOR) amplification and associated mTORC2 hyperactivity as useful potential targets for developing targeted therapies in lung cancer and other newly described malignancies. The activity of mTOR complexes is recommended to be assessed and considered in cancers before mTOR inhibitor therapy, as current first-generation mTOR inhibitors (rapamycin and analogs) can be ineffective in the presence of mTORC2 hyperactivity. We have introduced and proposed a marker panel to determine tissue characteristics of mTOR activity in biopsy specimens, patient materials, and cell lines. Ongoing phase trials of new inhibitors and combination therapies are promising in advanced-stage patients selected by genetic alterations, molecular markers, and/or protein expression changes in the mTOR signaling pathway. Hopefully, the summarized results, our findings, and the suggested characterization of mTOR activity will support therapeutic decisions.


Assuntos
Neoplasias Pulmonares , Serina-Treonina Quinases TOR , Humanos , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Sirolimo/farmacologia , Fatores de Transcrição/metabolismo
7.
Endocrinology ; 165(4)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38325289

RESUMO

The mineralocorticoid receptor (MR) is a transcription factor for genes mediating diverse, cell-specific functions, including trophic effects as well as promoting fluid/electrolyte homeostasis. It was reported that in intercalated cells, phosphorylation of the MR at serine 843 (S843) by Unc-51-like kinase (ULK1) inhibits MR activation and that phosphorylation of ULK1 by mechanistic target of rapamycin (mTOR) inactivates ULK1, and thereby prevents MR inactivation. We extended these findings with studies in M1 mouse cortical collecting duct cells stably expressing the rat MR and a reporter gene. Pharmacological inhibition of ULK1 dose-dependently increased ligand-induced MR transactivation, while ULK1 activation had no effect. Pharmacological inhibition of mTOR and CRISPR/gRNA gene knockdown of rapamycin-sensitive adapter protein of mTOR (Raptor) or rapamycin-insensitive companion of mTOR (Rictor) decreased phosphorylated ULK1 and ligand-induced activation of the MR reporter gene, as well as transcription of endogenous MR-target genes. As predicted, ULK1 inhibition had no effect on aldosterone-mediated transcription in M1 cells with the mutated MR-S843A (alanine cannot be phosphorylated). In contrast, mTOR inhibition dose-dependently decreased transcription in the MR-S843A cells, though not as completely as in cells with the wild-type MR-S843. mTOR, Raptor, and Rictor coprecipitated with the MR and addition of aldosterone increased their phosphorylated, active state. These results suggest that mTOR significantly regulates MR activity in at least 2 ways: by suppressing MR inactivation by ULK1, and by a yet ill-defined mechanism that involves direct association with MR. They also provide new insights into the diverse functions of ULK1 and mTOR, 2 key enzymes that monitor the cell's energy status.


Assuntos
Aldosterona , Receptores de Mineralocorticoides , Animais , Camundongos , Ratos , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Ligantes , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Complexos Multiproteicos/metabolismo , Fosforilação , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Proteína Regulatória Associada a mTOR , RNA Guia de Sistemas CRISPR-Cas , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo
8.
Cancers (Basel) ; 16(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38339294

RESUMO

Lung carcinoma is one of the most common cancer types for both men and women. Despite recent breakthroughs in targeted therapy and immunotherapy, it is characterized by a high metastatic rate, which can significantly affect quality of life and prognosis. Rictor (encoded by the RICTOR gene) is known as a scaffold protein for the multiprotein complex mTORC2. Among its diverse roles in regulating essential cellular functions, mTORC2 also facilitates epithelial-mesenchymal transition and metastasis formation. Amplification of the RICTOR gene and subsequent overexpression of the Rictor protein can result in the activation of mTORC2, which promotes cell survival and migration. Based on recent studies, RICTOR amplification or Rictor overexpression can serve as a marker for mTORC2 activation, which in turn provides a promising druggable target. Although selective inhibitors of Rictor and the Rictor-mTOR association are only in a preclinical phase, they seem to be potent novel approaches to reduce tumor cell migration and metastasis formation. Here, we summarize recent advances that support an important role for Rictor and mTORC2 as potential therapeutic targets in the treatment of lung cancer. This is a traditional (narrative) review based on Pubmed and Google Scholar searches for the following keywords: Rictor, RICTOR amplification, mTORC2, Rictor complexes, lung cancer, metastasis, progression, mTOR inhibitors.

9.
Bioact Mater ; 35: 135-149, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38312519

RESUMO

Spinal cord injury (SCI) causes neuroinflammation, neuronal death, and severe axonal connections. Alleviating neuroinflammation, protecting residual cells and promoting neuronal regeneration via endogenous neural stem cells (eNSCs) represent potential strategies for SCI treatment. Extracellular vesicles (EVs) released by mesenchymal stem cells have emerged as pathological mediators and alternatives to cell-based therapies following SCI. In the present study, EVs isolated from untreated (control, C-EVs) and TGF-ß1-treated (T-EVs) mesenchymal stem cells were injected into SCI mice to compare the therapeutic effects and explore the underlying mechanisms. Our study demonstrated for the first time that the application of T-EVs markedly enhanced the proliferation and antiapoptotic ability of NSCs in vitro. The infusion of T-EVs into SCI mice increased the shift from the M1 to M2 polarization of reactive microglia, alleviated neuroinflammation, and enhanced the neuroprotection of residual cells during the acute phase. Moreover, T-EVs increased the number of eNSCs around the epicenter. Consequently, T-EVs further promoted neurite outgrowth, increased axonal regrowth and remyelination, and facilitated locomotor recovery in the chronic stage. Furthermore, the use of T-EVs in Rictor-/- SCI mice (conditional knockout of Rictor in NSCs) showed that T-EVs failed to increase the activation of eNSCs and improve neurogenesis sufficiently, which suggested that T-EVs might induce the activation of eNSCs by targeting the mTORC2/Rictor pathway. Taken together, our findings indicate the prominent role of T-EVs in the treatment of SCI, and the therapeutic efficacy of T-EVs for SCI treatment might be optimized by enhancing the activation of eNSCs via the mTORC2/Rictor signaling pathway.

10.
Philos Trans R Soc Lond B Biol Sci ; 379(1896): 20220490, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38186282

RESUMO

Understanding metabolic performance limitations is key to explaining the past, present and future of life. We investigated whether heat tolerance in actively flying Drosophila melanogaster is modified by individual differences in cell size and the amount of oxygen in the environment. We used two mutants with loss-of-function mutations in cell size control associated with the target of rapamycin (TOR)/insulin pathways, showing reduced (mutant rictorΔ2) or increased (mutant Mnt1) cell size in different body tissues compared to controls. Flies were exposed to a steady increase in temperature under normoxia and hypoxia until they collapsed. The upper critical temperature decreased in response to each mutation type as well as under hypoxia. Females, which have larger cells than males, had lower heat tolerance than males. Altogether, mutations in cell cycle control pathways, differences in cell size and differences in oxygen availability affected heat tolerance, but existing theories on the roles of cell size and tissue oxygenation in metabolic performance can only partially explain our results. A better understanding of how the cellular composition of the body affects metabolism may depend on the development of research models that help separate various interfering physiological parameters from the exclusive influence of cell size. This article is part of the theme issue 'The evolutionary significance of variation in metabolic rates'.


Assuntos
Drosophila melanogaster , Termotolerância , Feminino , Masculino , Animais , Drosophila melanogaster/genética , Tamanho Celular , Mutação , Hipóxia/genética , Oxigênio
11.
Oncol Rep ; 51(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38186315

RESUMO

Gastrointestinal tumors account for five of the top 10 causes of mortality from all cancers (colorectal, liver, stomach, esophageal and pancreatic cancer). Mammalian target of rapamycin (mTOR) signaling is commonly dysregulated in various human cancers. As a core component of the mTOR complex 2 (mTORC2), Rictor is a key effector molecule of the PI3K/Akt pathway. A high alteration rate of Rictor has been observed in gastrointestinal tumors, and such Rictor alterations are often associated with resistance to chemotherapy and related adverse clinical outcomes. However, the exact roles of Rictor in gastrointestinal tumors remain elusive. The aim of the present study was to critically discuss the following: i) Mutation and biological characteristics of Rictor in tumors with a detailed overview of Rictor in cell proliferation, angiogenesis, apoptosis, autophagy and drug resistance; ii) the role of Rictor in tumors of the digestive system, particularly colorectal, hepatobiliary, gastric, esophageal and pancreatic cancer and cholangiocarcinoma; and iii) the current status and prospects of targeted therapy for Rictor by inhibiting Akt activation. Despite the growing realization of the importance of Rictor/mTORC2 in cancer, the underlying mechanistic details remain poorly understood; this needs to change in order for the development of efficient targeted therapies and re­sensitization of therapy­resistant cancers to be made possible.


Assuntos
Neoplasias dos Ductos Biliares , Neoplasias Colorretais , Neoplasias Gastrointestinais , Neoplasias Pancreáticas , Humanos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt/genética , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/genética , Ductos Biliares Intra-Hepáticos , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Serina-Treonina Quinases TOR/genética
12.
Cell Signal ; 116: 111065, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38281616

RESUMO

Cardiomyocyte apoptosis and cardiac fibrosis are the leading causes of mortality in patients with ischemic heart disease. As such, these processes represent potential therapeutic targets to treat heart failure resulting from ischemic insult. We previously demonstrated that the mitochondrial acetyltransferase protein GCN5L1 regulates cardiomyocyte cytoprotective signaling in ischemia-reperfusion injury in vivo and hypoxia-reoxygenation injury in vitro. The current study investigated the mechanism underlying GCN5L1-mediated regulation of the Akt/mTORC2 cardioprotective signaling pathway. Rictor protein levels in cardiac tissues from human ischemic heart disease patients were significantly decreased relative to non-ischemic controls. Rictor protein levels were similarly decreased in cardiac AC16 cells following hypoxic stress, while mRNA levels remained unchanged. The reduction in Rictor protein levels after hypoxia was enhanced by the knockdown of GCN5L1, and was blocked by GCN5L1 overexpression. These findings correlated with changes in Rictor lysine acetylation, which were mediated by GCN5L1 acetyltransferase activity. Rictor degradation was regulated by proteasomal activity, which was antagonized by increased Rictor acetylation. Finally, we found that GCN5L1 knockdown restricted cytoprotective Akt signaling, in conjunction with decreased mTOR abundance and activity. In summary, these studies suggest that GCN5L1 promotes cardioprotective Akt/mTORC2 signaling by maintaining Rictor protein levels through enhanced lysine acetylation.


Assuntos
Isquemia Miocárdica , Proteínas Proto-Oncogênicas c-akt , Humanos , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Hipóxia/metabolismo , Lisina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteínas Mitocondriais/metabolismo , Isquemia Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Fatores de Transcrição/metabolismo
13.
bioRxiv ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38293129

RESUMO

Lifespan is influenced by complex interactions between genetic and environmental factors. Studying those factors in model organisms of a single genetic background limits their translational value for humans. Here, we mapped lifespan determinants in 85 genetically diverse C. elegans recombinant intercross advanced inbred lines (RIAILs). We assessed molecular profiles - transcriptome, proteome, and lipidome - and life-history traits, including lifespan, development, growth dynamics, and reproduction. RIAILs exhibited large variations in lifespan, which positively correlated with developmental time. Among the top candidates obtained from multi-omics data integration and QTL mapping, we validated known and novel longevity modulators, including rict-1, gfm-1 and mltn-1. We translated their relevance to humans using UK Biobank data and showed that variants in RICTOR and GFM1 are associated with an elevated risk of age-related heart disease, dementia, diabetes, kidney, and liver diseases. We organized our dataset as a resource (https://lisp-lms.shinyapps.io/RIAILs/) that allows interactive explorations for new longevity targets.

14.
Biochem J ; 481(2): 45-91, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38270460

RESUMO

The mechanistic target of rapamycin, mTOR, controls cell metabolism in response to growth signals and stress stimuli. The cellular functions of mTOR are mediated by two distinct protein complexes, mTOR complex 1 (mTORC1) and mTORC2. Rapamycin and its analogs are currently used in the clinic to treat a variety of diseases and have been instrumental in delineating the functions of its direct target, mTORC1. Despite the lack of a specific mTORC2 inhibitor, genetic studies that disrupt mTORC2 expression unravel the functions of this more elusive mTOR complex. Like mTORC1 which responds to growth signals, mTORC2 is also activated by anabolic signals but is additionally triggered by stress. mTORC2 mediates signals from growth factor receptors and G-protein coupled receptors. How stress conditions such as nutrient limitation modulate mTORC2 activation to allow metabolic reprogramming and ensure cell survival remains poorly understood. A variety of downstream effectors of mTORC2 have been identified but the most well-characterized mTORC2 substrates include Akt, PKC, and SGK, which are members of the AGC protein kinase family. Here, we review how mTORC2 is regulated by cellular stimuli including how compartmentalization and modulation of complex components affect mTORC2 signaling. We elaborate on how phosphorylation of its substrates, particularly the AGC kinases, mediates its diverse functions in growth, proliferation, survival, and differentiation. We discuss other signaling and metabolic components that cross-talk with mTORC2 and the cellular output of these signals. Lastly, we consider how to more effectively target the mTORC2 pathway to treat diseases that have deregulated mTOR signaling.


Assuntos
Transdução de Sinais , Serina-Treonina Quinases TOR , Serina-Treonina Quinases TOR/genética , Alvo Mecanístico do Complexo 2 de Rapamicina , Alvo Mecanístico do Complexo 1 de Rapamicina , Sirolimo
15.
J Transl Med ; 21(1): 919, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110956

RESUMO

BACKGROUND: Mutations in TP53 gene is considered a main driver of hepatocellular carcinoma (HCC). While TP53 mutations are the leading cause of p53 dysfunction, their occurrence rates may drop to approximately 10% in cohorts without hepatitis B virus and aflatoxin exposure. This observation suggests that the deactivation of wild-type p53 (p53wt) may be a critical factor in the majority of HCC cases. However, the mechanism undermining p53wt activity in the liver remains unclear. METHODS: Microarray analysis and luciferase assay were utilized to confirm target associations. Gain- and/or loss-of-function methods were employed to assess alterations in signaling pathways. Protein interactions were analyzed by molecular immunological methods and further visualized by confocal microscopy. Bioinformatic analysis was performed to analyze clinical significance. Tumor xenograft nude mice were used to validate the findings in vivo. RESULTS: Our study highlights the oncogenic role of Rictor, a key component of the mammalian target of rapamycin complex 2 (mTORC2), in hepatocytes. Rictor exerts its oncogenic function by binding to p53wt and subsequently blocking p53wt activity based on p53 status, requiring the involvement of mTOR. Moreover, we observed a dynamic nucleocytoplasmic distribution pattern of Rictor, characterized by its translocation from the nucleus (in precancerous lesions) to the cytoplasm (in HCCs) during malignant transformation. Notably, Rictor is directly targeted by the liver-enriched microRNA miR-192, and the disruption of the miR-192-Rictor-p53-miR-192 signaling axis was consistently observed in both human and rat HCC models. Clinical analysis associated lower miR-192/higher Rictor with shorter overall survival and more advanced clinical stages (P < 0.05). In mice, xenograft tumors overexpressing miR-192 exhibited lower Rictor expression levels, leading to higher p53 activity, and these tumors displayed slower growth compared to untreated HCC cells. CONCLUSIONS: Rictor dynamically shuttles between the nucleus and cytoplasm during HCC development. Its pivotal oncogenic role involves binding and inhibiting p53wt activity within the nucleus in early hepatocarcinogenesis. Targeting Rictor presents a promising strategy for HCC based on p53 status.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Proteína Companheira de mTOR Insensível à Rapamicina , Animais , Humanos , Camundongos , Ratos , Carcinogênese/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Genes p53 , Hepatócitos/patologia , Neoplasias Hepáticas/patologia , Camundongos Nus , MicroRNAs/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo
16.
Open Med (Wars) ; 18(1): 20230879, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38152335

RESUMO

The activation of hepatic stellate cells (HSCs) is regarded as the primary driving factor of liver fibrosis. miR-192, a miRNA associated with hepatocellular carcinoma and enriched in HSCs, has an undisclosed role in HSC activation and liver fibrosis. In this study, a CCl4-induced rat liver fibrosis model and transforming growth factor-beta 1 (TGF-ß1)-treated HSC lines (LX-2 and HSC-T6) were used to detect miR-192 and Rictor levels in vivo and in vitro. Bioinformatic analysis and a dual luciferase assay were used to predict and confirm the interaction of Rictor with miR-192. Gain- and/or loss-of-function methods evaluated molecular changes and HSC activation phenotypes, detected by quantitative real-time PCR, western blotting, and immunofluorescence. We observed a gradual downregulation of miR-192 and upregulation of Rictor during CCl4-induced liver fibrosis/cirrhosis in rats. Enriched miR-192 was downregulated, while Rictor was upregulated in TGF-ß1-activated HSCs. miR-192 inhibited the activation of HSCs by directly targeting Rictor. High miR-192/low Rictor expression attenuated the fibrotic-related gene expression by AKT/mTORC2 signaling. In conclusion, miR-192 could inhibit the activation of HSCs by directly targeting Rictor in the AKT/mTORC2 signaling pathway. This study provides insights into potential therapeutic targets for liver fibrosis and cirrhosis.

17.
bioRxiv ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37961692

RESUMO

Cardiomyocyte apoptosis and cardiac fibrosis are the leading causes of mortality in patients with ischemic heart disease. As such, these processes represent potential therapeutic targets to treat heart failure resulting from ischemic insult. We previously demonstrated that the mitochondrial acetyltransferase protein GCN5L1 regulates cardiomyocyte cytoprotective signaling in ischemia-reperfusion injury in vivo and hypoxia-reoxygenation injury in vitro. The current study investigated the mechanism underlying GCN5L1-mediated regulation of the Akt/mTORC2 cardioprotective signaling pathway. Rictor protein levels in cardiac tissues from human ischemic heart disease patients were significantly decreased relative to non-ischemic controls. Rictor protein levels were similarly decreased in cardiac AC16 cells following hypoxic stress, while mRNA levels remained unchanged. The reduction in Rictor protein levels after hypoxia was enhanced by the knockdown of GCN5L1, and was blocked by GCN5L1 overexpression. These findings correlated with changes in Rictor lysine acetylation, which were mediated by GCN5L1 acetyltransferase activity. Rictor degradation was regulated by proteasomal activity, which was antagonized by increased Rictor acetylation. Finally, we found that GCN5L1 knockdown restricted cytoprotective Akt signaling, in conjunction with decreased mTOR abundance and activity. In summary, these studies suggest that GCN5L1 promotes cardioprotective Akt/mTORC2 signaling by maintaining Rictor protein levels through enhanced lysine acetylation.

18.
Leuk Res ; 133: 107355, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37499483

RESUMO

Bone marrow mesenchymal stem cells (MSCs) may have contrasting impacts on the progression of multiple myeloma (MM). Priming normal MSCs, by culturing them with MM cells, mimics the MSC-induced MM growth. We studied the contrasting effects of conditioned medium (CM) from unprimed or primed MSCs on growth of MM cells from newly diagnosed cases. We elucidated potential molecular pathways using global gene expression profiling and focused on the role of the mTOR2 component, RICTOR, as a novel mediator of dormancy in MM. Primed MSCs CM consistently increased proportions of proliferating cells and supported MM growth in 3-day (n = 20) and 10-day (n = 12) cultures, effects that were partially mediated through the IGF1 axis. In contrast, unprimed MSCs CM inhibited growth of MM cells in cases mainly from stages I/II MM. The genes most overexpressed in MM cells treated with primed MSCs CM were associated with cell cycle, DNA-damage repair, and proliferation; genes most overexpressed in MM cells treated with unprimed MSCs CM were associated with dormancy pathways including RICTOR (mTOR2 pathway), CXCR4, and BCL2. RICTOR protein level was induced by unprimed MSCs CM and was lower in KI67+ proliferating MM cells treated with primed MSCs CM. RICTOR was underexpressed in clinical relapse samples compared with baseline samples of the same patients. Inhibiting RICTOR expression in primary MM cells promoted their growth, and enforced expression of RICTOR in MM cell lines inhibited their growth. Our findings suggest that, after prolonged interactions with MM cells, bone marrow MSCs shift from MM-repressive to MM-permissive. AVAILABILITY OF DATA AND MATERIALS: Our institutional GEP data of MM cells from newly diagnosed patients used to show RICTOR expression have been deposited at Gene Expression Omnibus (GEO: GSE2658, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2658).


Assuntos
Células-Tronco Mesenquimais , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Recidiva Local de Neoplasia/metabolismo , Células-Tronco Mesenquimais/metabolismo , Fatores de Transcrição/metabolismo , Perfilação da Expressão Gênica , Proliferação de Células
19.
Int J Mol Sci ; 24(14)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37511253

RESUMO

The mechanistic target of rapamycin (mTOR) kinase is a central regulator of cell growth and metabolism. It is the catalytic subunit of two distinct large protein complexes, mTOR complex 1 (mTORC1) and mTORC2. mTOR activity is subjected to tight regulation in response to external nutrition and growth factor stimulation. As an important mechanism of signaling transduction, the 'second messenger' cyclic nucleotides including cAMP and cGMP and their associated cyclic nucleotide-dependent kinases, including protein kinase A (PKA) and protein kinase G (PKG), play essential roles in mediating the intracellular action of a variety of hormones and neurotransmitters. They have also emerged as important regulators of mTOR signaling in various physiological and disease conditions. However, the mechanism by which cAMP and cGMP regulate mTOR activity is not completely understood. In this review, we will summarize the earlier work establishing the ability of cAMP to dampen mTORC1 activation in response to insulin and growth factors and then discuss our recent findings demonstrating the regulation of mTOR signaling by the PKA- and PKG-dependent signaling pathways. This signaling framework represents a new non-canonical regulation of mTOR activity that is independent of AKT and could be a novel mechanism underpinning the action of a variety of G protein-coupled receptors that are linked to the mTOR signaling network. We will further review the implications of these signaling events in the context of cardiometabolic disease, such as obesity, non-alcoholic fatty liver disease, and cardiac remodeling. The metabolic and cardiac phenotypes of mouse models with targeted deletion of Raptor and Rictor, the two essential components for mTORC1 and mTORC2, will be summarized and discussed.


Assuntos
Doenças Cardiovasculares , Complexos Multiproteicos , Sirolimo , Serina-Treonina Quinases TOR , Animais , Camundongos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Complexos Multiproteicos/metabolismo , Nucleotídeos Cíclicos/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Serina-Treonina Quinases TOR/metabolismo
20.
Genes (Basel) ; 14(6)2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37372460

RESUMO

The importance of the network defined by phosphatidylinositol-3-kinase (PI3K), AKT and mammalian target of rapamycin (mTOR) downstream of Receptor Tyrosine Kinase (RTK) has been recognized for many years. However, the central role of RICTOR (rapamycin-insensitive companion of mTOR) in this pathway has only recently come to light. The function of RICTOR in pan-cancer still needs to be systematically elucidated. In this study, we examined RICTOR's molecular characteristics and clinical prognostic value by pan-cancer analysis. Our findings indicate that RICTOR was overexpressed in twelve cancer types, and a high RICTOR expression was linked to poor overall survival. Moreover, the CRISPR Achilles' knockout analysis revealed that RICTOR was a critical gene for the survival of many tumor cells. Function analysis revealed that RICTOR-related genes were mainly involved in TOR signaling and cell growth. We further demonstrated that the RICTOR expression was significantly influenced by genetic alteration and DNA-methylation in multiple cancer types. Additionally, we found a positive relationship between RICTOR expression and the immune infiltration of macrophages and cancer-associated fibroblasts in Colon adenocarcinoma and Head and Neck squamous cell carcinoma. Finally, we validated the ability of RICTOR in sustaining tumor growth and invasion in the Hela cell line using cell-cycle analysis, the cell proliferation assay, and wound-healing assay. Our pan-cancer analysis highlights the critical role of RICTOR in tumor progression and its potential as a prognostic marker for various cancer types.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Humanos , Células HeLa , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo , Sirolimo , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...