Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Trials ; 25(1): 355, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38835062

RESUMO

INTRODUCTION: About 17-80% stroke survivors experience the deficit of upper limb function, which strongly influences their independence and quality of life. Robot-assisted training and functional electrical stimulation are commonly used interventions in the rehabilitation of hemiplegia upper extremities, while the effect of their combination remains unclear. The aim of this trial is to explore the effect of robot-assisted upper limb training combined with functional electrical stimulation, in terms of neuromuscular rehabilitation, compared with robot-assisted upper limb training alone. METHODS: Individuals (n = 60) with the first onset of stroke (more than 1 week and less than 1 year after stroke onset) will be considered in the recruitment of this single-blinded, three-arm randomized controlled trial. Participants will be allocated into three groups (robot-assisted training combined with functional electrical stimulation group, robot-assisted training group, and conventional rehabilitation therapies group) with a ratio of 1:1:1. All interventions will be executed for 45 min per session, one session per day, 5 sessions per week for 6 weeks. The neuromuscular function of the upper limb (Fugl-Meyer Assessment of upper extremity), ability of daily life (modified Barthel Index), pain (visual analogue scale), and quality of life (EQ-5D-5L) will be assessed at the baseline, at the end of this trial and after 3 months follow-up. Two-way repeated measures analysis of variance will be used to compare the outcomes if the data are normally distributed. Simple effects tests will be used for the further exploration of interaction effects by time and group. Scheirer-Ray-Hare test will be used if the data are not satisfied with normal distribution. DISCUSSION: We expect this three-arm randomized controlled trial to explore the effectiveness of robot-assisted training combined with functional electrical stimulation in improving post-stroke upper limb function compared with robot-assisted training alone. TRIAL REGISTRATION: Effect of upper limb robot on improving upper limb function after stroke, identifier: ChiCTR2300073279. Registered on 5 July 2023.


Assuntos
Terapia por Estimulação Elétrica , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Recuperação de Função Fisiológica , Robótica , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Extremidade Superior , Humanos , Reabilitação do Acidente Vascular Cerebral/métodos , Extremidade Superior/inervação , Método Simples-Cego , Terapia por Estimulação Elétrica/métodos , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/terapia , Pessoa de Meia-Idade , Resultado do Tratamento , Feminino , Idoso , Masculino , Adulto , Fatores de Tempo , Atividades Cotidianas , Hemiplegia/reabilitação , Hemiplegia/etiologia , Hemiplegia/fisiopatologia , Terapia por Exercício/métodos , Terapia Combinada
2.
Artigo em Inglês | MEDLINE | ID: mdl-38211761

RESUMO

OBJECTIVE: To synthetize the evidence on the effects of hand rehabilitation (RHB) interventions on cognition post-stroke and compare their efficacy. DATA SOURCES: PubMed, Embase, Cochrane, Scopus, Web of Science, and CINAHL were searched from inception to November 2022. DATA SELECTION: Randomized controlled trials conducted in adults with stroke where the effects of hand motor interventions on any cognitive domains were assessed. DATA EXTRACTION: Data were extracted by 2 independent reviewers. A Bayesian Network Meta-analysis (NMA) was applied for measures with enough studies and comparisons. Risk of bias was assessed with the Cochrane Risk of Bias tool. DATA SYNTHESIS: Fifteen studies were included in qualitative synthesis, and 11 in NMA. Virtual reality (VR) (n=7), robot-assisted (n=5), or handgrip strength (n=3) training were the experimental interventions and conventional RHB (n=14) control intervention. Two separate NMA were performed with MoCA (n=480 participants) and MMSE (n=350 participants) as outcome measures. Both coincided that the most probable best interventions were robot-assisted and strength training, according to SUCRA and rankogram, followed by conventional RHB and VR training. No significant differences between any of the treatments were found in the MoCA network, but in the MMSE, robot-assisted and strength training were significantly better than conventional RHB and VR. No significant differences between robot-assisted and strength training were found nor between conventional RHB and VR. CONCLUSIONS: Motor interventions can improve MoCA/MMSE scores post-stroke. Most probable best interventions were robot-assisted and strength training. Limited literature assessing domain-specific cognitive effects was found.

3.
BMJ Open ; 13(9): e074481, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37709309

RESUMO

OBJECTIVES: Numbers of research have reported the usage of robot-assisted gait training for walking restoration post-stroke. However, no consistent conclusion has been reached yet about the efficacy of exoskeleton robot-assisted training (ERAT) on gait function of stroke survivors, especially during the chronic period. We conducted a systematic review to investigate the efficacy of ERAT on gait function for chronic stroke survivors. DESIGN: This review followed the Participant, Intervention, Comparison and Outcome principle. DATA SOURCES: PubMed, Cochrane Library, Web of Science, Embase and Cumulative Index to Nursing and Allied Health Literature databases were systematically searched until December 2022. ELIGIBILITY CRITERIA: Only randomised controlled trials (RCTs) were included and these RCTs took patients who had a chronic stroke as participants, exoskeleton robot-assisted gait training as intervention, regular rehabilitation therapy as comparison and gait-related functional assessments as outcomes. DATA EXTRACTION AND SYNTHESIS: Data extraction and synthesis used the reporting checklist for systematic review based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The risk of bias and methodological quality of included studies were evaluated by two independent investigators under the guidance of Cochrane risk of bias. RESULTS: Out of 278 studies, a total of 10 studies (n=323, mean age 57.6 years, 63.2% males) were identified in this systematic review. According to the Cochrane risk of bias, the quality of these studies was assessed as low risk. Six studies reported favourable effects of ERAT on gait function involving gait performance, balance function and physical endurance, and the ERAT group was significantly superior when compared with the control group. In contrast, the other four trials showed equal or negative effects of ERAT considering different study designs. All the included studies did not claim any serious adverse events. CONCLUSION: ERAT could be an efficient intervention to improve gait function for individuals who had a chronic stroke. However, more rigorously designed trials are required to draw more solid evidence. PROSPERO REGISTRATION NUMBER: CRD42023410796.


Assuntos
Exoesqueleto Energizado , Robótica , Masculino , Humanos , Pessoa de Meia-Idade , Feminino , Marcha , Caminhada , Lista de Checagem
4.
Front Robot AI ; 10: 1122914, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37771605

RESUMO

Abdominal palpation is one of the basic but important physical examination methods used by physicians. Visual, auditory, and haptic feedback from the patients are known to be the main sources of feedback they use in the diagnosis. However, learning to interpret this feedback and making accurate diagnosis require several years of training. Many abdominal palpation training simulators have been proposed to date, but very limited attempts have been reported in integrating vocal pain expressions into physical abdominal palpation simulators. Here, we present a vocal pain expression augmentation for a robopatient. The proposed robopatient is capable of providing real-time facial and vocal pain expressions based on the exerted palpation force and position on the abdominal phantom of the robopatient. A pilot study is conducted to test the proposed system, and we show the potential of integrating vocal pain expressions to the robopatient. The platform has also been tested by two clinical experts with prior experience in abdominal palpation. Their evaluations on functionality and suggestions for improvements are presented. We highlight the advantages of the proposed robopatient with real-time vocal and facial pain expressions as a controllable simulator platform for abdominal palpation training studies. Finally, we discuss the limitations of the proposed approach and suggest several future directions for improvements.

5.
J Funct Morphol Kinesiol ; 8(1)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36976128

RESUMO

Rehabilitation interventions are crucial in promoting neuroplasticity after spinal cord injury (SCI). We provided rehabilitation with a single-joint hybrid assistive limb (HAL-SJ) ankle joint unit (HAL-T) in a patient with incomplete SCI. The patient had incomplete paraplegia and SCI (neurological injury height: L1, ASIA Impairment Scale: C, ASIA motor score (R/L) L4:0/0, S1:1/0) following a rupture fracture of the first lumbar vertebra. The HAL-T consisted of a combination of ankle plantar dorsiflexion exercises in the sitting position, knee flexion, and extension exercises in the standing position, and stepping exercises in the standing position with HAL assistance. The plantar dorsiflexion angles of the left and right ankle joints and electromyograms of the tibialis anterior and gastrocnemius muscles were measured and compared using a three-dimensional motion analyzer and surface electromyography before and after HAL-T intervention. Phasic electromyographic activity was developed in the left tibialis anterior muscle during plantar dorsiflexion of the ankle joint after the intervention. No changes were observed in the left and right ankle joint angles. We experienced a case in which intervention using HAL-SJ induced muscle potentials in a patient with a spinal cord injury who was unable to perform voluntary ankle movements due to severe motor-sensory dysfunction.

6.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-965028

RESUMO

ObjectiveTo systematically review the efficacy of robot-assisted training on upper limb motor dysfunction in stroke patients. MethodsRelated literatures were searched in PubMed, Medline, Embase, Cochrane Library, Web of Science, CNKI, Wanfang Data, SinoMed, VIP data from July 1, 2019 to July 1, 2022. Two researchers screened the studies and extracted the data independently, and evaluated the methodological quality. Rev Man 5.4 was used for meta-analysis. ResultsA total of 19 randomised controlled trials with 1 258 subjects were finally included. The scores of Fugl-Meyer Assessment-Upper Extremity (SMD = 0.55, 95%CI 0.40 to 0.71, P < 0.001), modified Bathel Index (MD = 7.55, 95%CI 6.55 to 8.54, P < 0.001) and Motor Activity Log (SMD = -0.84, 95%CI -1.38 to -0.31, P = 0.002) were better in the experimental group than in the control group. However, no significant difference was found in the scores of Brunnstrom stages (upper extremity) (SMD = 0.61, 95%CI -0.08 to 1.30, P = 0.08) and modified Ashworth Scale (MD = -0.51, 95%CI -1.18 to 0.17, P = 0.14) between two groups. ConclusionRobot-assisted training could significantly improve the motor function of upper limbs in stroke patients.

7.
Heliyon ; 8(11): e11764, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36468121

RESUMO

Task-specific training constitutes a core element for evidence-based rehabilitation strategies targeted at improving upper extremity activity after stroke. Its combination with additional treatment strategies and neurotechnology-based solutions could further improve patients' outcomes. Here, we studied the effect of gamified robot-assisted upper limb motor training on motor performance, skill learning, and transfer with respect to a non-gamified control condition with a group of chronic stroke survivors. The results suggest that a gamified training strategy results in more controlled motor performance during the training phase, which is characterized by a higher accuracy (lower deviance), higher smoothness (lower jerk), but slower speed. The responder analyses indicated that mildly impaired patients benefited most from the gamification approach. In conclusion, gamified robot-assisted motor training, which is personalized to the individual capabilities of a patient, constitutes a promising investigational strategy for further improving motor performance after a stroke.

8.
Bioengineering (Basel) ; 9(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36550934

RESUMO

Bi-manual therapy (BT), mirror therapy (MT), and robot-assisted rehabilitation have been conducted in hand training in a wide range of stages in stroke patients; however, the mechanisms of action during training remain unclear. In the present study, participants performed hand tasks under different intervention conditions to study bilateral sensorimotor cortical communication, and EEG was recorded. A multifactorial design of the experiment was used with the factors of manipulating objects (O), robot-assisted bimanual training (RT), and MT. The sum of spectral coherence was applied to analyze the C3 and C4 signals to measure the level of bilateral corticocortical communication. We included stroke patients with onset <6 months (n = 6), between 6 months and 1 year (n = 14), and onset >1 year (n = 20), and their Brunnstrom recovery stage ranged from 2 to 4. The results showed that stroke duration might influence the effects of hand rehabilitation in bilateral cortical corticocortical communication with significant main effects under different conditions in the alpha and beta bands. Therefore, stroke duration may influence the effects of hand rehabilitation on interhemispheric coherence.

9.
Pediatr Rep ; 14(3): 338-351, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35997418

RESUMO

After equinus corrective surgery, repetitive exercises for ankle dorsiflexion and plantar flexion are crucial during rehabilitation. The single-joint Hybrid Assistive Limb (HAL-SJ) is an advanced exoskeletal robotic device with a control system that uses bioelectrical signals to assist joint motion in real time and demonstrates joint torque assistance with the wearer's voluntary movement. We present two cases of robot-assisted ankle rehabilitation after equinus surgery using the HAL-SJ in children. Case 1 was an 8-year-old boy, whereas case 2 was a 6-year-old boy. When they were allowed to walk without braces, training with the HAL-SJ was performed postoperatively for 20 min per session a total of eight times (2-4 sessions per week). Assessments were performed before and after HAL-SJ training. During gait analysis, case 1 had improved joint angles during the stance phase on the operated side; however, case 2 had improved joint angles during the stance and swing phases. The co-activation index values of the medial gastrocnemius and tibialis anterior muscles, which were high before training, decreased after training and approached the standard value. The HAL-SJ may provide systematic feedback regarding voluntary ankle dorsiflexion and plantar flexion and is considered to have motor learning effects.

10.
Toxins (Basel) ; 14(6)2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35737076

RESUMO

Effects of the combined task-oriented trainings with botulinum toxin A (BoNT-A) injection on improving motor functions and reducing spasticity remains unclear. This study aims to investigate effects of 3 task-oriented trainings (robot-assisted therapy (RT), mirror therapy (MT), and active control treatment (AC)) in patients with stroke after BoNT-A injection. Thirty-seven patients with chronic spastic hemiplegic stroke were randomly assigned to receive RT, MT, or AC following BoNT-A injection over spastic upper extremity muscles. Each session of RT, MT, and AC was 75 min, 3 times weekly, for 8 weeks. Outcome measures were assessed at pretreatment, post-treatment, and 3-month follow-up, involving the Fugl-Meyer Assessment (FMA), Modified Ashworth Scale (MAS), Motor Activity Log (MAL), including amount of use (AOU) and quality of movement (QOM), and arm activity level. All 3 combined treatments improved FMA, MAS, and MAL. The AC induced a greater effect on QOM in MAL at the 3-month follow-up than RT or MT. All 3 combined trainings induced minimal effect on arm activity level. Our findings suggest that for patients with stroke who received BoNT-A injection over spastic UE muscles, the RT, MT, or AC UE training that followed was effective in improving motor functions, reducing spasticity, and enhancing daily function.


Assuntos
Toxinas Botulínicas Tipo A , Robótica , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Toxinas Botulínicas Tipo A/uso terapêutico , Humanos , Terapia de Espelho de Movimento , Espasticidade Muscular/tratamento farmacológico , Espasticidade Muscular/etiologia , Projetos Piloto , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/tratamento farmacológico , Resultado do Tratamento , Extremidade Superior
11.
Bioengineering (Basel) ; 9(4)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35447689

RESUMO

During the last ten years the use of robotic-assisted rehabilitation has increased significantly. Compared with traditional care, robotic rehabilitation has several potential advantages. Platform-based robotic rehabilitation can help patients recover from musculoskeletal and neurological conditions. Evidence on how platform-based robotic technologies can positively impact on disability recovery is still lacking, and it is unclear which intervention is most effective in individual cases. This systematic review aims to evaluate the effectiveness of platform-based robotic rehabilitation for individuals with musculoskeletal or neurological injuries. Thirty-eight studies met the inclusion criteria and evaluated the efficacy of platform-based rehabilitation robots. Our findings showed that rehabilitation with platform-based robots produced some encouraging results. Among the platform-based robots studied, the VR-based Rutgers Ankle and the Hunova were found to be the most effective robots for the rehabilitation of patients with neurological conditions (stroke, spinal cord injury, Parkinson's disease) and various musculoskeletal ankle injuries. Our results were drawn mainly from studies with low-level evidence, and we think that our conclusions should be taken with caution to some extent and that further studies are needed to better evaluate the effectiveness of platform-based robotic rehabilitation devices.

12.
Physiother Theory Pract ; 38(13): 2973-2982, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34424126

RESUMO

BACKGROUND: Robotic rehabilitation therapy has grown rapidly during the last two decades allowing researchers and clinicians to deliver high-intensity training to persons with sensorimotor disorders caused by neurological injuries and diseases. METHODS: This case series reports the effect of robot-assisted, impairment-oriented training for persons recovering from stroke on impairment of the paretic ankle as well as on the kinematic and spatiotemporal parameters of gait. Five persons with chronic stroke (>6 months post-stroke) participated in a 10-week training protocol, receiving three, 30-min sessions per week of a robot-assisted therapy. The robot-assisted intervention cyclically induced dorsiflexion and plantarflexion to the ankle at 5 degrees/s through ±15 degrees while the participants assisted with the imposed movement. Concurrently, participants received visual feedback of their active, assistive torque as well as targeted mechanical vibration of the ankle tendons when lengthened by the applied motion. Walking speed, cadence, step length of the non-paretic leg, percentage of paretic single limb support during the gait cycle, and ankle strength were assessed just before training began (baseline), after the last training session (post-training), and 3 months post-training (follow-up). DISCUSSION: Robot-assisted training that provided assisted movement, biofeedback, and proprioceptive stimulation reduced ankle impairment and improved kinematic and spatiotemporal gait parameters, suggesting that impairment-oriented therapy applied to the paretic ankle may provide a valuable adjunct to locomotor therapies in persons with chronic gait disorders due to stroke.


Assuntos
Transtornos Neurológicos da Marcha , Procedimentos Cirúrgicos Robóticos , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Tornozelo , Reabilitação do Acidente Vascular Cerebral/métodos , Transtornos Neurológicos da Marcha/reabilitação , Procedimentos Cirúrgicos Robóticos/efeitos adversos , Marcha/fisiologia , Acidente Vascular Cerebral/terapia
13.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-924641

RESUMO

ObjectiveTo investigate the effects of upper limb robot-assisted training on cognitive function, upper limb motor function and activity of daily living for subacute stroke patients. MethodsFrom September, 2019 to September, 2020, 65 subacute stroke hemiplegic patients with cognitive impairment were randomly divided into control group (n = 32, two cases dropped) and experimental group (n = 33, three cases dropped). Both groups accepted conventional occupational therapy; and then, the control group accepted conventional cognitive training, while the experimental group accepted upper limb robot-assisted training, for four weeks. They were assessed with Montreal Cognitive Assessment (MoCA), Mini-Mental State Examination (MMSE), Fugl-Meyer Assessment-Upper Extremities (FMA-UE) and modified Barthel Index (MBI) before and after treatment. ResultsThe scores of MoCA, MMSE, FMA-UE and MBI improved after treatment in both groups (t > 22.11, Z > 4.79, P < 0.001), the MoCA total score and some item-scores, MMSE total score and some item-scores, FMA-UE total score and the score of arm, and score of MBI improved more in the experimental group than in the control group (t > 2.06, Z > 3.19, P < 0.05). ConclusionUpper limb robot-assisted training could facilitate to improve the cognitive function, upper limb motor function and activities of daily living in subacute stroke patients.

14.
Front Neural Circuits ; 15: 750176, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970122

RESUMO

The human sensorimotor control has evolved in the Earth's environment where all movement is influenced by the gravitational force. Changes in this environmental force can severely impact the performance of arm movements which can be detrimental in completing certain tasks such as piloting or controlling complex vehicles. For this reason, subjects that are required to perform such tasks undergo extensive training procedures in order to minimize the chances of failure. We investigated whether local gravity simulation of altered gravitational conditions on the arm would lead to changes in kinematic parameters comparable to the full-body experience of microgravity and hypergravity onboard a parabolic flight. To see if this would be a feasible approach for on-ground training of arm reaching movements in altered gravity conditions we developed a robotic device that was able to apply forces at the wrist in order to simulate micro- or hypergravity conditions for the arm while subjects performed pointing movements on a touch screen. We analyzed and compared the results of several kinematic parameters along with muscle activity using this system with data of the same subjects being fully exposed to microgravity and hypergravity conditions on a parabolic flight. Both in our simulation and in-flight, we observed a significant increase in movement durations in microgravity conditions and increased velocities in hypergravity for upward movements. Additionally, we noted a reduced accuracy of pointing both in-flight and in our simulation. These promising results suggest, that locally simulated altered gravity can elicit similar changes in some movement characteristics for arm reaching movements. This could potentially be exploited as a means of developing devices such as exoskeletons to aid in training individuals prior to undertaking tasks in changed gravitational conditions.


Assuntos
Hipergravidade , Ausência de Peso , Braço , Fenômenos Biomecânicos , Humanos , Movimento
15.
Pilot Feasibility Stud ; 7(1): 207, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34782024

RESUMO

BACKGROUND: Prior studies have established that senses of the limb position in space (proprioception and kinaesthesia) are important for motor control and learning. Although nearly one-half of stroke patients have impairment in the ability to sense their movements, somatosensory retraining focusing on proprioception and kinaesthesia is often overlooked. Interventions that simultaneously target motor and somatosensory components are thought to be useful for relearning somatosensory functions while increasing mobility of the affected limb. For over a decade, robotic technology has been incorporated in stroke rehabilitation for more controlled therapy intensity, duration, and frequency. This pilot randomised controlled trial introduces a compact robotic-based upper-limb reaching task that retrains proprioception and kinaesthesia concurrently. METHODS: Thirty first-ever chronic stroke survivors (> 6-month post-stroke) will be randomly assigned to either a treatment or a control group. Over a 5-week period, the treatment group will receive 15 training sessions for about an hour per session. Robot-generated haptic guidance will be provided along the movement path as somatosensory cues while moving. Audio-visual feedback will appear following every successful movement as a reward. For the same duration, the control group will complete similar robotic training but without the vision occluded and robot-generated cues. Baseline, post-day 1, and post-day 30 assessments will be performed, where the last two sessions will be conducted after the last training session. Robotic-based performance indices and clinical assessments of upper limb functions after stroke will be used to acquire primary and secondary outcome measures respectively. This work will provide insights into the feasibility of such robot-assisted training clinically. DISCUSSION: The current work presents a study protocol to retrain upper-limb somatosensory and motor functions using robot-based rehabilitation for community-dwelling stroke survivors. The training promotes active use of the affected arm while at the same time enhances somatosensory input through augmented feedback. The outcomes of this study will provide preliminary data and help inform the clinicians on the feasibility and practicality of the proposed exercise. TRIAL REGISTRATION: ClinicalTrials.gov NCT04490655 . Registered 29 July 2020.

16.
Front Neurol ; 12: 683703, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305792

RESUMO

Purpose: Robot-assisted training has been widely used in neurorehabilitation, but its effect on facilitating recovery after stroke remains controversial. One possible reason might be lacking consideration of the role of embodiment in robotic systems. Mirror visual feedback is an ideal method to approach embodiment. Thus, we hypothesized that mirror visual feedback priming with subsequent robot-assisted training might provide additional treatment benefits in rehabilitation. Method: This is a prospective, assessor-blinded, randomized, controlled study. Forty subacute stroke patients were randomly assigned into an experimental group (N = 20) or a control group (N = 20). They received either mirror visual feedback or sham-mirror visual feedback prior to robot-assisted training for 1.5 h/day, 5 days/week for 4 weeks. Before and after intervention, the Fugl-Meyer Assessment Upper Limb subscale, the Functional Independence Measure, the modified Barthel Index, and grip strength were measured. Scores of four specified games were recorded pre and post one-time mirror visual feedback priming before intervention in the experimental group. Results: All measurements improved significantly in both groups following interventions. Moreover, the Fugl-Meyer Assessment Upper Limb subscale, self-care subscale of the Functional Independence Measure, and the grip strength were improved significantly in the experimental group after a 4-week intervention, compared with the control group. Significantly higher scores of two games were revealed after one-time priming. Conclusions: Mirror visual feedback prior to robot-assisted training could prompt motor recovery, increase ability of self-care, and potentially enhance grip strength in stroke patients, compared to control treatment. Moreover, mirror visual feedback priming might have the capability to improve the patient's performance and engagement during robot-assisted training, which could prompt the design and development of robotic systems. Clinical Trial Registration: www.ClinicalTrials.gov, identifier: ChiCTR1900023356.

17.
Top Stroke Rehabil ; 28(3): 236-240, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32772812

RESUMO

BACKGROUND: AiWalker is a newly developed robot-assisted gait training system, which features over-ground walking paradigm and somatosensory stimulation during training compared to commonly-used robot-assisted gait training devices (e.g. Lokomat). However, no study has examined its true therapeutic effect and possible mechanism or mediating factor(s). OBJECTIVES: To investigate 1) the therapeutic effect of AiWalker on the balance and walking ability in patients with stroke, and 2) whether the improvement in somatosensory function represents one of the possible mediating factors for such effect. METHODS: Three patients with impaired balance and walking ability due to stroke were recruited. Two patients received AiWalker training plus conventional training; while the other one only experienced conventional training. Standing balance and walking ability were assessed before and after all the training, which were represented by 6 variables. Lower limb somatosensory function was examined using Fugl-Meyer Assessment Scale. RESULTS: Five out of the 6 variables showed greater changes in patients who received AiWalker training compared to the one who only experienced conventional training. Greater improvement in lower limb somatosensory function was observed in one patient who received AiWalker training compared to the one who only experienced conventional training. CONCLUSION: The novel robot-assisted gait training system may elicit greater improvement of balance and walking ability in patients with stroke compared to conventional interventions. Lower limb somatosensory function may be improved by AiWalker, and its improvement might represent one of the possible mediating factors for the therapeutic effect of AiWalker on balance and walking ability.


Assuntos
Terapia por Exercício/instrumentação , Transtornos Neurológicos da Marcha/fisiopatologia , Extremidade Inferior/fisiopatologia , Equilíbrio Postural , Reabilitação do Acidente Vascular Cerebral/instrumentação , Acidente Vascular Cerebral/fisiopatologia , Caminhada , Adulto , Idoso , Humanos , Masculino , Projetos Piloto , Robótica , Acidente Vascular Cerebral/terapia
18.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-912030

RESUMO

Objective:To observe any improvement in hemiplegic upper limb functioning when transcranial direct current stimulation (tDCS) is combined with robot-assisted upper limb treatment, and analyze the potential mechanism of neural plasticity through diffusion tensor imaging (DTI).Methods:Twenty stroke survivors with hemiplegia were randomly divided into a treatment group and a control group, each of 10, according to a random number table. Both groups were treated with conventional medication and rehabilitation training using an upper limb robot, while the treatment group also received tDCS daily, with the current increasing from 0 to 1mA over 10 seconds, and then decreasing to 0 over twenty minutes. The experiment lasted for 15 days. The upper extremity portion of the Fugl-Meyer rating scale (UE-FMA) and the Wolf Motor Function Rating Scale (WMFT) were used to evaluate motor functioning before and after the treatment. DTI was also conducted for both groups.Results:After the treatment, the average UE-FMA and WMFT scores of the two groups were significantly higher than before the treatment, with the average UE-FMA score of the treatment group (35.32±13.25), significantly higher than that of the control group (21.80±13.93). After the treatment there were significant differences between the groups in their average FA, rFA and FAasy of the posterior limb of the internal capsule, as well as in FA and the CST length of the central anterior gyrus.Conclusion:tDCS combined with robot-assisted upper limb rehabilitation training can significantly improve the motor functioning of hemiplegic upper limbs, possibly due to neuroplasticity mechanisms that promote CST integrity and symmetry changes. tDCS can be an important adjunct therapy in clinical neurorehabilitation.

19.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-912024

RESUMO

Objective:To explore the effect of robot-assisted training and repetitive transcranial magnetic stimulation (rTMS) on the lower limb function of hemiplegic stroke survivors.Methods:Forty hemiplegic stroke patients were randomly divided into a treatment group ( n=20) and a control group ( n=20). Both groups were given routine rehabilitation training and robot-assisted walking training, but the treatment group was additionally treated with rTMS at 1Hz applied to the primary motor cortex M1 area at an intensity of 80% of the resting motor threshold. The stimulation time was 5 seconds at 5-second intervals, 600 pulses each time, five times a week for 8 weeks. Lower limb motor function, balance and walking function were assessed before and after the intervention using the Fugl-Meyer assessment for the lower extremities, the Berg balance scale and the Holden walking function scale. Results:There was no significant difference between the two groups in any measurement before the training, but after the intervention all of the measurements had improved significantly in both groups, with the average Fugl-Meyer score, Berg score and Holden grading significantly better in the treatment group.Conclusion:Repetitive transcranial magnetic stimulation can improve the effectiveness of robot-assisted walking training in improving lower limb motor function, balance and walking after a stroke.

20.
Health Technol Assess ; 24(54): 1-232, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33140719

RESUMO

BACKGROUND: Loss of arm function is common after stroke. Robot-assisted training may improve arm outcomes. OBJECTIVE: The objectives were to determine the clinical effectiveness and cost-effectiveness of robot-assisted training, compared with an enhanced upper limb therapy programme and with usual care. DESIGN: This was a pragmatic, observer-blind, multicentre randomised controlled trial with embedded health economic and process evaluations. SETTING: The trial was set in four NHS trial centres. PARTICIPANTS: Patients with moderate or severe upper limb functional limitation, between 1 week and 5 years following first stroke, were recruited. INTERVENTIONS: Robot-assisted training using the Massachusetts Institute of Technology-Manus robotic gym system (InMotion commercial version, Interactive Motion Technologies, Inc., Watertown, MA, USA), an enhanced upper limb therapy programme comprising repetitive functional task practice, and usual care. MAIN OUTCOME MEASURES: The primary outcome was upper limb functional recovery 'success' (assessed using the Action Research Arm Test) at 3 months. Secondary outcomes at 3 and 6 months were the Action Research Arm Test results, upper limb impairment (measured using the Fugl-Meyer Assessment), activities of daily living (measured using the Barthel Activities of Daily Living Index), quality of life (measured using the Stroke Impact Scale), resource use costs and quality-adjusted life-years. RESULTS: A total of 770 participants were randomised (robot-assisted training, n = 257; enhanced upper limb therapy, n = 259; usual care, n = 254). Upper limb functional recovery 'success' was achieved in the robot-assisted training [103/232 (44%)], enhanced upper limb therapy [118/234 (50%)] and usual care groups [85/203 (42%)]. These differences were not statistically significant; the adjusted odds ratios were as follows: robot-assisted training versus usual care, 1.2 (98.33% confidence interval 0.7 to 2.0); enhanced upper limb therapy versus usual care, 1.5 (98.33% confidence interval 0.9 to 2.5); and robot-assisted training versus enhanced upper limb therapy, 0.8 (98.33% confidence interval 0.5 to 1.3). The robot-assisted training group had less upper limb impairment (as measured by the Fugl-Meyer Assessment motor subscale) than the usual care group at 3 and 6 months. The enhanced upper limb therapy group had less upper limb impairment (as measured by the Fugl-Meyer Assessment motor subscale), better mobility (as measured by the Stroke Impact Scale mobility domain) and better performance in activities of daily living (as measured by the Stroke Impact Scale activities of daily living domain) than the usual care group, at 3 months. The robot-assisted training group performed less well in activities of daily living (as measured by the Stroke Impact Scale activities of daily living domain) than the enhanced upper limb therapy group at 3 months. No other differences were clinically important and statistically significant. Participants found the robot-assisted training and the enhanced upper limb therapy group programmes acceptable. Neither intervention, as provided in this trial, was cost-effective at current National Institute for Health and Care Excellence willingness-to-pay thresholds for a quality-adjusted life-year. CONCLUSIONS: Robot-assisted training did not improve upper limb function compared with usual care. Although robot-assisted training improved upper limb impairment, this did not translate into improvements in other outcomes. Enhanced upper limb therapy resulted in potentially important improvements on upper limb impairment, in performance of activities of daily living, and in mobility. Neither intervention was cost-effective. FUTURE WORK: Further research is needed to find ways to translate the improvements in upper limb impairment seen with robot-assisted training into improvements in upper limb function and activities of daily living. Innovations to make rehabilitation programmes more cost-effective are required. LIMITATIONS: Pragmatic inclusion criteria led to the recruitment of some participants with little prospect of recovery. The attrition rate was higher in the usual care group than in the robot-assisted training or enhanced upper limb therapy groups, and differential attrition is a potential source of bias. Obtaining accurate information about the usual care that participants were receiving was a challenge. TRIAL REGISTRATION: Current Controlled Trials ISRCTN69371850. FUNDING: This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 24, No. 54. See the NIHR Journals Library website for further project information.


Many people who have arm weakness following a stroke feel that insufficient attention is paid by rehabilitation services to recovery of their arm. Unfortunately, it is currently unclear how best to provide rehabilitation to optimise recovery, but robot-assisted training and therapy programmes that focus on practising functional tasks are promising and require further evaluation. The Robot-Assisted Training for the Upper Limb after Stroke (RATULS) trial evaluated three approaches to rehabilitation for people with moderate or severe difficulty using their arm. These approaches were robot-assisted training using the Massachusetts Institute of Technology-Manus robotic gym system (InMotion commercial version, Interactive Motion Technologies, Inc., Watertown, MA, USA), an enhanced upper limb therapy programme based on repetitive practice of functional tasks and usual care. Robot-assisted training and the enhanced upper limb therapy programme were provided in an outpatient setting for 45 minutes per session, three times per week, for 12 weeks, in addition to usual care. The Massachusetts Institute of Technology-Manus robotic gym system was selected as it was felt to be the best available technology. The participant sits at a table, places their affected arm onto the Massachusetts Institute of Technology-Manus arm support and attempts to move their arm to play a game on the computer screen. Movements are assisted by the Massachusetts Institute of Technology-Manus if the patient cannot perform the movements themselves. The results of the RATULS trial show that robot-assisted training did not result in additional improvement in stroke survivors' arm use when compared with the enhanced upper limb therapy programme or usual care. Stroke survivors who received enhanced upper limb therapy experienced meaningful improvements in undertaking activities of daily living, when compared with those participants who received either robot-assisted training or usual care. Participants who received enhanced upper limb therapy also experienced benefits in their mobility, compared with usual care participants. Participants and therapists found both therapies acceptable, and described various benefits. A health economic analysis found that neither robot-assisted training nor the enhanced upper limb therapy programme was a cost-effective treatment for the NHS.


Assuntos
Robótica , Reabilitação do Acidente Vascular Cerebral/instrumentação , Reabilitação do Acidente Vascular Cerebral/métodos , Extremidade Superior/fisiopatologia , Atividades Cotidianas , Adulto , Idoso , Análise Custo-Benefício , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Econômicos , Qualidade de Vida , Anos de Vida Ajustados por Qualidade de Vida , Recuperação de Função Fisiológica , Índice de Gravidade de Doença , Método Simples-Cego , Medicina Estatal , Reabilitação do Acidente Vascular Cerebral/economia , Avaliação da Tecnologia Biomédica , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...